
June 19th 2003

Thomas Reicher, Asa MacWilliams, Bermd Bruegge
Chair for Applied Software Engineering

Institut für Informatik
Technische Universität München

(reicher,macwilli,bruegge)@in.tum.de

Decentralized Coordination of
Distributed Interdependent

Services

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 2

The DWARF Framework
• Mobile AR in ubiquitous computing environments
• Already built AR supported scenarios:

– Navigation (Pathfinder)
– Maintenance (TRAMP)
– Multi-Player Game (SHEEP)
– Collaborative Building Design

(ARCHIE)

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 3

Problems
• Goal: Seamless integration of local and remote

components
– DWARF uses a distributed approach
– No separation between local and remote component on

architectural layer
• Components offer own services and need other services

– > service interdependency
– Applications are not simply star-shaped but build a service graph

of interdependent services
• Services are distributed on several deployment units

– > no centralized coordination and configuration possible
• Usually 10 to 50 services per application

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 4

Example
• A View component needs position and orientation data
• A Tracker can provide orientation data in a particular

format
• A Filter component must translate between Tracker and

View
• The Tracker needs feature information for image

processing

View Filter Tracker MarkerInfo

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 5

Approach

Service

Need Connector Ability

Predicate Attribute

* *

**

*
*

• Service model for interdependent services
– Service have Attributes and Predicates.
– They can be variables which are set at runtime.

• Runtime Infrastructure establishes connection between
service automatically (management, lookup, connection)

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 6

Example Service: Optical Tracker
<service name="OpticalTracker">
 <attribute name="Room" value="Studio"/>
 <attribute name="Lag" value="0.01"/>
 <attribute name="Accuracy" value="0.001"/>
 <need name="markerData" type="MarkerData"
 predicate="(&(Thing=*)(User=*))">
 <connector protocol="ObjrefImport"/>
 </need>
 <need name="videoStream" type="VideoStream">
 <connector protocol="RTSPReceive"/>
 </need>
 <ability name="poseData" type="PoseData"
 isTemplate="true">
 <attribute name="Thing"
 value="$(markerData.Thing)">
 <attribute name="User"
 value="$(markerData.User)">
 <connector protocol="NotificationPush"/>
 </ability>
</service>

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 7

Service Chains
• Service instantiation

– Singleton Services exist only once
– Template Services have multiple instances and can be started on

demand by the runtime environment
• Formation of chains of services

– Services are connected automatically based on context and
service-specific attributes

– Attribute values are handed over from Abilities to Needs
• Services for configuration

– Service are configured through Configuration Services
– Selection of the correct one over context attributes
– Selector Service for user defined connection

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 8

Setup of a Service Chain

June 19th 2003
Middleware 2002 WiP
Asa MacWilliams, Thomas Reicher, Bernd Bruegge 9

Conclusion
• Service model used for several AR applications
• Configuration Service and Selector Service are

being tested
• Hops of Attribute values from Abilities to Needs

work. Particularly needed for selection of correct
Configuration Service instance

• There are use cases for the opposite way, from
Need to Ability

• Simulations and tests needed to find best set of
context attributes for clear service selection

