Software Development Challenges for Ubiquitous Augmented Reality

GI Workshop

Virtuelle und Erweiterte Realität

Asa MacWilliams

Lehrstuhl für Angewandte Softwaretechnik Institut für Informatik Technische Universität München macwilli@in.tum.de

September 28, 2004

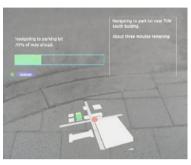
Summary

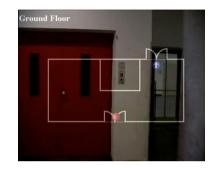
- Ubiquitous augmented reality is the convergence of augmented reality and ubiquitous computing.
- This convergence allows several promising applications.
- Building such systems presents software engineering challenges:
 - Uncertainty: users' mobility changes availability of distributed devices
 - Ill-defined requirements: interaction metaphors are being researched and users' preferences change
 - Near-real- time performance: needed to create convincing AR experience
- These challenges must be addressed by the development process, the software architecture and the run-time infrastructure.

Ubiquitous Augmented Reality

- Convergence of two interaction technologies
- Augmented reality: larger range, more devices, more users
 - classical AR: track position and orientation, superimpose virtual objects into view
 - more devices for input (multi-modality) and output (multi-media)
 - greater range: mobile AR, outdoor AR
 - many users: collaborative AR
- Ubiquitous computing: richer, natural interaction techniques
 - computing technology in environment without thinking about it as such
 - applications in home, workspace; user focuses on other activities
 - other users bring new devices, providing new services
 - goal: enhance and augment the real world
- Convergence Investigated by several groups (e.g. Klinker, Schmalstieg, Butz)

A Definition of UAR


- Augmented Reality (Azuma)
 - combines real and virtual
 - is interactive in real time
 - is registered in three dimensions
- Ubiquitous Computing (Weiser)
 - makes computers available throughout the physical environment
 - makes them effectively invisible to the user
 - augments the real world
- Ubiquitous Augmented Reality (proposed definition)
 - augments the real world with virtual information
 - is interactive in real time
 - is spatially registered
 - is available throughout a large physical environment
 - allows both immersive interaction and unobtrusive assistance


Relevance: Applications

Navigation

Construction and Maintenance

Relevance: Applications (2)

Games

Collaborative design

· Hospital, intelligent campus, exploration, team action...

Challenges in Software Development

- Workable solutions to some problems in AR are available
 - e.g. commercial optical tracking; scene graph rendering engines
 - Convincing static AR systems can be built (e.g. in surgery)
- Ubicomp applications are becoming more numerous
 - but low degree of immersivity and interactivity
- But: building UAR systems is an unsolved problem
- One reason: software engineering challenges
 - Uncertainty: dynamically combine distributed software components
 - Ill-defined requirements: young field; users' preferences change
 - Near-real- time performance: needed to create convincing AR experience
- Those are the challenges I am investigating in my dissertation
 - ...although, of course, there are many others.

Uncertainty

Problem: At system run time, which software components should be combined, and how?

Forces:

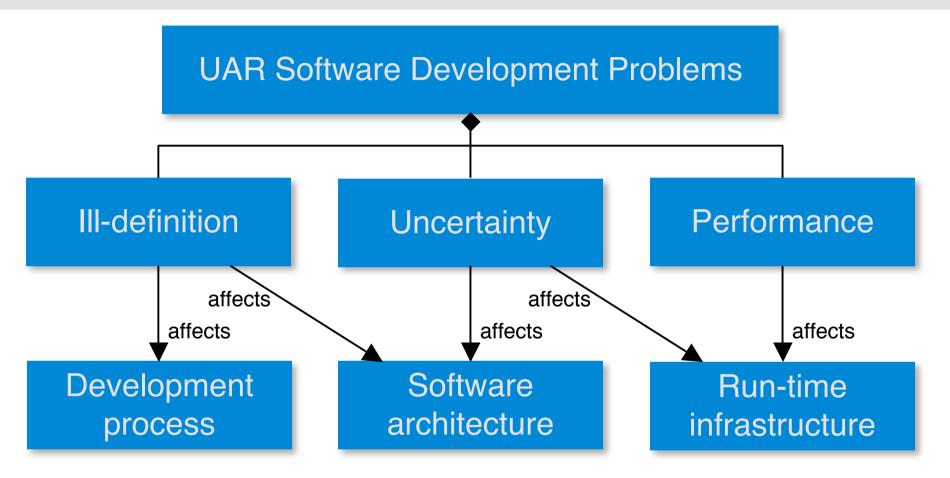
- Distributed, interdependent hardware devices
 - Mobile and stationary (handheld, room-based tracker)
 - Computing, network, input, output
- Changing availability of devices
 - Users move about
 - Limited sensor range
- Changing context influences components and system structure
 - Use devices that are ``close' to the user (in position, or in context)
- Incomplete knowledge of software components
 - stepwise deployment, different administrative domains

III-Definition

Problem: What should the system do, anyway?

Forces:

- New and changing technology
 - Interaction metaphors are still being researched
 - Difficult for users to imagine
- Many people and many disciplines involved
 - Different users have different preferences
 - Different disciplines have different languages
- Requirements elicitation is difficult
 - Users involved in real-world tasks; computers of secondary interest
- New applications
 - Users will want to recombine deployed components in different ways


Performance

Problem: System must deliver near-real-time performance in large distributed environment

Forces:

- Immersivity for convincing AR user experience
 - Low overall lag between head tracking an 3D rendering; 20ms
 - High update rate, 30 fps
- Scalability in ubiquitous computing environment
 - Many users must have access to same sensor data
 - Users' mobile devices should collaborate
- Many data and communication types
 - Video streams, sensor data streams, semantic events, transactions...

Towards a Solution

- Must balance forces in different aspects of software development
- Tradeoffs— e.g. dynamic adaption can degrade real-time performance

Conclusion

- Ubiquitous augmented reality is a promising field
- There are fundamental problems to be solved in how to develop software for it
- The three problems of...
 - uncertainty
 - ill-definition
 - performance
 - ...affect the choice of...
 - software architecture
 - middleware, run-time infrastructure
 - development process
 - ...and should be considered carefully in planning them.

Software Development Challenges for Ubiquitous Augmented Reality

GI Workshop

Virtuelle und Erweiterte Realität

Asa MacWilliams

Thank You for Your Attention!

Any Questions?

macwilli@in.tum.de

