# What Do You Do When Two Hands Are Not Enough?

#### Interactive Selection of Bonds between Pairs of Tangible Molecules

Patrick Maier, Marcus Tönnis, Gudrun Klinker / Alexander Raith, Markus Drees, Fritz Kühn Fachgebiet Augmented Reality / Fachgebiet Molecular Catalysis Department of Computer Science / Chemistry Technische Universität München Germany

#### **Overview**

- 1. Project "Tangible Chemical Reactions"
- 2. Problems with Two Handed Interactions
- 3. Problem in Selecting with Controlled Objects
  - Proximity Based Selection
  - Shake Based Selection
- 4. Evaluation and User Study

FAR



#### **Project "Tangible Chemical Reactions"**

- Intention:
  - Help chemists in designing catalysts
  - Help students in learning/understanding chemistry
- Methods:
  - Visualize and control models of molecules in 3D
  - Show the dynamic behavior of the molecules
- Desired results:
  - Speed up the process of designing new molecules
  - Help to improve the understanding of chemistry







#### **Project "Tangible Chemical Reactions"**

- Show molecules on top of the markers.
- Possible bonds are shown (right picture)







#### **Problem in Selecting a single Bond between Molecules**



Separate molecule models



All possible bonds are shown

Problem:

• How to select one possible bond out of the whole set of possible bonds?

#### **Problems with Two Handed Interaction**

- Only two hands available
- Hands occupied by holding the markers
- How to tell the system to select or trigger an event on a controlled object?

This could be done in several ways: Speech, foot pedals, putting on table, ...

But we focus on gestures, when hands are not free.



#### **Selection with Controlled Objects**

Problem: How to select a possible bond?

Approaches:

- Proximity Based
- Shake Based

### 

#### **Proximity Based Selection**

- Freely move the molecules towards each other.
- All atoms which are able to bind and ...
- ... which are closer than a specific distance are possible binding partners.
- The shortest possible bond between these possible binding partners (atoms) is selected.





#### **Shake Based Selection**

- Move the molecules towards each other
- All atoms which are able to bind and ...
- ... which are closer than a specific distance are possible binding partners.
- Perform a shaking gesture to cycle through the possible binding partners (atoms).
- The possible bond, connecting these binding partners, is selected.
- $\rightarrow$  Find a way to trigger the shaking gesture...





#### **Recognition of the Shaking Gesture**

Comparison of the trajectory length of the last second and its compactness:





#### **Recognition of the Shaking Gesture**

• Scatterplot showing the trajectory length and the spread value (inverse compactness).





#### **Recognition of the Shaking Gesture**

- Dynamic hysteresis to prevent multiple triggering.
- Moving hysteresis window
  - Scatter value goes below lower window boundaries → window lowers
  - Scatter value goes above upper window boundaries → window raises
- Only trigger again, when the window was raised after a triggered event.



### **User Study**

- Task:
  - Within-subject, repeated measures single-session design.
  - 19 Users (7 female, 12 male)
  - Select possible bonds which are given by the application
  - 24 combinations to select with proximity based selection
  - 24 combinations to select with shake based selection

- How fast are both methods?
- How accurate are they?



FAR



#### **User Study – Measure Speed**

- Differentiate combinations between:
  - all atoms
  - atoms and a **center** atom
  - only outer atoms



• Proximity based is faster, except for combinations with center atom.



**Tangible Chemical Reactions** 



#### **User Study – Accuracy**

- More errors with proximity based method
- Except combinations with only outer atoms





#### **Conclusion & Future Work**

Both methods have their pros and cons:

- Proximity based method:
  - is fast and easy on combinations with only outer atoms.
  - is difficult and frustrating with combinations with center atom.
- Shake based method:
  - is accurate in selecting the desired bond,
  - but slow.

Future Work:

- Combine both methods to get speed and accuracy,
- by introducing layers (like shells), and switching layers by shaking,
- Use proximity based method to select bonds from the selected layers
- Find ways to confirm the selection and connect the molecules.



#### Another solution:

#### When two hands are not enough... ask someone to help you :-)

## Thank You