What Do You Do When Two Hands Are Not Enough?

Interactive Selection of Bonds between Pairs of Tangible Molecules

Patrick Maier, Marcus Tönnis, Gudrun Klinker / Alexander Raith, Markus Drees, Fritz Kühn
Fachgebiet Augmented Reality / Fachgebiet Molecular Catalysis
Department of Computer Science / Chemistry
Technische Universität München
Germany

Overview

1. Project "Tangible Chemical Reactions"
2. Problems with Two Handed Interactions
3. Problem in Selecting with Controlled Objects

- Proximity Based Selection
- Shake Based Selection

4. Evaluation and User Study

Project "Tangible Chemical Reactions"

- Intention:
- Help chemists in designing catalysts
- Help students in learning/understanding chemistry
- Methods:
- Visualize and control models of
 molecules in 3D
- Show the dynamic behavior of the molecules
- Desired results:
- Speed up the process of designing new molecules
- Help to improve the understanding of chemistry

Project "Tangible Chemical Reactions"

- Show molecules on top of the markers.
- Possible bonds are shown (right picture)

Problem in Selecting a single Bond between Molecules

Separate molecule models

All possible bonds are shown

Problem:

- How to select one possible bond out of the whole set of possible bonds?

Problems with Two Handed Interaction

- Only two hands available
- Hands occupied by holding the markers
- How to tell the system to select or trigger an event on a controlled object?

This could be done in several ways: Speech, foot pedals, putting on table, ...

But we focus on gestures, when hands are not free.

Selection with Controlled Objects

Problem: How to select a possible bond?

Approaches:

- Proximity Based
- Shake Based

Proximity Based Selection

- Freely move the molecules towards each other.
- All atoms which are able to bind and ...
- ... which are closer than a specific distance are possible binding partners.
- The shortest possible bond between these possible binding partners (atoms) is selected.

Shake Based Selection

- Move the molecules towards each other
- All atoms which are able to bind and ...
- ... which are closer than a specific distance are possible binding partners.
- Perform a shaking gesture to cycle through the possible binding partners (atoms).
- The possible bond, connecting these binding partners, is selected.
\rightarrow Find a way to trigger the shaking gesture...

Recognition of the Shaking Gesture

Comparison of the trajectory length of the last second and its compactness:

Normal Movement:
Trajectory length high and not compact

Shaking:
Trajectory length high but compact

Recognition of the Shaking Gesture

- Scatterplot showing the trajectory length and the spread value (inverse compactness).

Recognition of the Shaking Gesture

- Dynamic hysteresis to prevent multiple triggering.
- Moving hysteresis window
- Scatter value goes below lower window boundaries \rightarrow window lowers
- Scatter value goes above upper window boundaries \rightarrow window raises
- Only trigger again, when the window was raised after a triggered event.

User Study

- Task:
- Within-subject, repeated measures single-session design.
- 19 Users (7 female, 12 male)
- Select possible bonds which are given by the application
- 24 combinations to select with proximity based selection
- 24 combinations to select with shake based selection
- How fast are both methods?
- How accurate are they?

User Study - Measure Speed

- Differentiate combinations between:
- all atoms
- atoms and a center atom
- only outer atoms

- Proximity based is faster, except for combinations with center atom.

User Study - Accuracy

- More errors with proximity based method
- Except combinations with only outer atoms

Conclusion \& Future Work

Both methods have their pros and cons:

- Proximity based method:
- is fast and easy on combinations with only outer atoms.
- is difficult and frustrating with combinations with center atom.
- Shake based method:
- is accurate in selecting the desired bond,
- but slow.

Future Work:

- Combine both methods to get speed and accuracy,
- by introducing layers (like shells), and switching layers by shaking,
- Use proximity based method to select bonds from the selected layers
- Find ways to confirm the selection and connect the molecules.

Another solution:

When two hands are not enough... ask someone to help you :-)

Thank You

