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Abstract Contemporary monocular 6D pose estima-

tion methods can only cope with a handful of object

instances. This naturally hampers possible applications

as, for instance, robots seamlessly integrated in every-

day processes necessarily require the ability to work

with hundreds of different objects. To tackle this prob-

lem of immanent practical relevance, we propose a novel

method for class-level monocular 6D pose estimation,

coupled with metric shape retrieval. Unfortunately, ac-

quiring adequate annotations is very time-consuming

and labor intensive. This is especially true for class-

level 6D pose estimation, as one is required to create a

highly detailed reconstruction for all objects and then

annotate each object and scene using these models. To

overcome this shortcoming, we additionally propose the

idea of synthetic-to-real domain transfer for class-level

6D poses by means of self-supervised learning, which re-
moves the burden of collecting numerous manual anno-

Fabian Manhardt
Technical University of Munich
E-mail: fabian.manhardt@tum.de

Gu Wang
Tsinghua University

Benjamin Busam
Technical University of Munich

Manuel Nickel
Technical University of Munich

Sven Meier
Toyota Motor Europe

Luca Minciullo
Toyota Motor Europe

Xiangyang Ji
Tsinghua University

Nassir Navab
Technical University of Munich

tations. In essence, after training our proposed method

fully supervised with synthetic data, we leverage recent

advances in differentiable rendering to self-supervise the

model with unannotated real RGB-D data to improve

latter inference. We experimentally demonstrate that

we can retrieve precise 6D poses and metric shapes from

a single RGB image.

Keywords Class-level 6D Pose Estimation · Self-

supervised Learning · Domain Adaptation

1 Introduction

The field of 2D object detection has made huge leaps

forward with the advent of deep learning. Current 2D

object detectors can robustly detect more than a hun-

dred different object classes in real-time (Liu et al.,

2016; Tian et al., 2019; Wu et al., 2020). Progress in

the field of 6D pose estimation, however, is still lim-

ited due to the higher complexity of this task and the

projective nature of images.

Pioneering work has significantly improved the qual-

ity of object-specific 6D pose estimation (Kehl et al.,

2017; Rad and Lepetit, 2017). However, little research

is currently devoted to developing methods which are

agnostic to the object type (Wang et al., 2019). In fact,

existing methods typically train separate networks for

each object instance, which is slow and inflexible (Sun-

dermeyer et al., 2018a; Peng et al., 2019; Park et al.,

2019b).

A few approaches have recently extended 3D object

detection to object classes. These methods typically fo-

cus on automotive scenarios for detection and estima-

tion of 3D bounding boxes of vehicles and pedestrians in

outdoor environments where shape and pose variability

is naturally bound (Chen et al., 2016, 2017). Moreover,
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2 F. Manhardt et al.

Fig. 1 From a monocular image, we detect objects unseen during training from a particular class and estimate their 3D
geometric properties such as 6D pose and metric scale (top left). Moreover, we infer the corresponding 3D shape for each
detection on the bottom and rendered into the scene on the top center. To show that that the presented method is capable of
inferring all parameters in correct 3D scale, we render our results from a different viewpoint (top right).

these works usually focus on large objects, leverage

stereo (Li et al., 2019a) or lidar (Ku et al., 2018), and

limit the degrees-of-freedom for pose (Xu and Chen,

2018). Assuming all objects rest on the ground plane,

many applications in this field restrict the output to 3D

bounding boxes, whose only degree of freedom is the

orientation of the vehicle which reduces the pose prob-

lem to an estimation of only 4 degrees-of-freedom (Chen

et al., 2016, 2017). A handful approaches for category

level 3D object detection in indoor environments have

also been proposed (Song and Xiao, 2016; Nie et al.,

2020).

In the field of robotics, where two of the main appli-

cations are grasping and manipulation, the 3D bound-

ing boxes is oftentimes an insufficent parameterization.

This task also imposes different constraints: objects are

often physically and visually small, depth is not al-

ways present or incomplete for certain objects and the

ground-plane assumption is often unrealistic (e.g. in

Fig 9: the camera on the top exhibits in-plane rotation

and the can object on bottom stands on a different level

than all other objects). Thus, 6D pose estimation is nec-

essary. Due to the increase in degrees of freedom, this

task becomes more challenging. Recently, Wang et al.

(2019) introduced the first method for class-level 6D

pose estimation. While their innovative work enabled

instance-agnostic 6d pose measurements, an additional

depth map was indispensable. Chen et al. (2020a) es-

timate the full 6D pose paired with the object’s shape

in the form of a point cloud. Nonetheless, similar to

(Wang et al., 2019), Chen et al. (2020a) also expect the

presence of the depth map. Moreover, both methods

employ labeled real data to be capable of successfully

training their models.

Annotating the 6D object pose, however, requires

additional special hardware (Garon et al., 2018), is kno-

wn to be extremely time-consuming (Xiang et al., 2018)

as well as error prone (Hodaň et al., 2019; Tremblay

et al., 2018). This is especially true when dealing with

object classes, as each object instance requires a high-

quality 3D scan, which then needs to be manually fitted

into all the training images in a very tedious process.

Furthermore, it does not scale well when introducing

new classes as the whole process needs to be repeated.

On the other hand, it is relatively easy to record a large

amount of RGB images without annotations even with

consumer hardware. Self-supervised learning is a new

research direction which focuses on learning despite the

lack of appropriate annotations (Godard et al., 2017;

Kocabas et al., 2019).

As illustrated in Fig. 1, we propose CPS, a novel

method for monocular Class-level 6D Pose and metric

Shape estimation, enabling new applications in aug-

mented reality, and robotic manipulation. To ensure

wide applicability of our method, we regress shape and

pose parameters from a single RGB input image. This
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is particularly difficult due to the inherent ambiguities

of 3D inference from 2D images. Inspired by (Man-

hardt et al., 2019b; Simonelli et al., 2019), we intro-

duce a novel 3D lifting module which directly aligns a

predicted point cloud for each detection in 3D camera

space. In contrast to other methods (Manhardt et al.,

2019b) which predict shape in a dedicated branch, trai-

ned independently from the pose estimation network,

we back-propagate the final alignment through the en-

tire network. Our method is thus trainable in an end-

to-end manner and directly optimizes for the best align-

ment in 3D. Since we need pose and shape annota-

tions to train our object detector while avoiding extra

labeling effort, we rely fully on synthetic data. How-

ever, this introduces a large domain gap against the

real world. Inspired by Self6D (Wang et al., 2020) and

recent trends in self-supervised learning (Godard et al.,

2017; Kocabas et al., 2019), we thus want to train our

pose estimator on such unsupervised samples. To this

end, we tailor Self6D towards the problem of class-level

6D pose estimation in order to transfer the knowledge

from the synthetic to the real environment with a self-

supervision loss.

In summary, we make the following contributions.

To the best of our knowledge, i) we are the first to

introduce the task of monocular 6D pose paired with

metric shape estimation and ii) propose CPS, a novel

method which directly aligns the final outcome in 3D

setting a new state of the art for pose accuracy while

it is also able to estimate object shapes. iii) We addi-

tionally introduce a self-supervised extension of CPS to

bridge the synthetic-to-real domain gap that also works

with object classes; we dub it CPS++. To this end, iv)

we also collected over 30k real RGB-D samples, which

we made publicly available. Finally, v) we also intro-

duce a new metric for joint shape and pose estimation,

which we call Average Distance of Predicted Point Sets.

2 Related Work

We first introduce essential recent works in monocu-

lar instance-level 6D object pose estimation. We then

discuss first approaches to class-level 6D object pose

estimation. Since most works for monocular class-level

3D object detection are found in the autonomous driv-

ing community, we also outline the most relevant works

there. We also take a look at recent trends in 3D shape

recovery. Finally, we discuss current developments in

neural rendering and review some first attempts at self-

supervised learning for 6D pose.

2.1 Monocular 6D Object Pose Estimation

Traditionally, object pose estimation approaches rely on

local image features (Lowe, 1999; Romea et al., 2011) or

template matching (Hinterstoisser et al., 2012a). With

the advent of consumer RGB-D cameras, the focus mov-

ed more towards conducting object pose estimation from

RGB-D data. While some works again propose to uti-

lize template matching (Hinterstoisser et al., 2012b),

others leverage point pair features (Vidal et al., 2018)

or rely on learning-based methods (Brachmann et al.,

2014; Krull et al., 2015) in order to predict the 6D pose.

Nonetheless, depth data also comes oftentimes with

limitations such as restricted field of view or high power

consumption. Recently, CNN-based methods have de-

monstrated promising results for the task of monocular

6D pose estimation (Hodan et al., 2018).

A few methods directly regress the 6D pose. For

instance, (Xiang et al., 2018; Li et al., 2019b) learn

to estimate poses through the minimization of a point

matching loss. In contrast, Kehl et al. (2017) discretize

the pose space and classifies viewpoint and in-plane ro-

tation. Manhardt et al. (2019a) adopts (Kehl et al.,

2017) to implicitly handle ambiguities via multiple hy-

potheses. A different line of works learn a latent embed-

ding for the discretized pose space and recover 6D poses

using codebook matching (Sundermeyer et al., 2018b,

2020).

Another popular branch is to establish 2D-3D cor-

respondences and solve the 6D pose using PnP with

RANSAC. Rad and Lepetit (2017); Tekin et al. (2018)

propose to estimate the 2D projections of a fixed set of

3D keypoints in image space. Similarly, Hu et al. (2019);

Peng et al. (2019) further extend this idea by employing

segmentation paired with voting to improve robustness.

In contrast, Zakharov et al. (2019b); Li et al. (2019c);

Park et al. (2019b); Hodan et al. (2020) predict object

coordinates in order to establish dense 2D-3D corre-

spondences, rather than sparse ones.

2.2 Beyond Instance-Level 6D Pose Estimation

Wang et al. (2019) recently proposed the first method

for class-level object detection and 6D pose estima-

tion. Wang et al. (2019) predict a 2D map represent-

ing the projection of the Normalized Object Coordi-

nate Space (NOCS). The NOCS is a 3D space within

a unit cube. All objects within a categories are nor-

malized to lie within the NOCS, allowing to handle

even unseen object instances of the corresponding cate-

gory. This 2D NOCS map is then backprojected, using

the associated depth map, to establish 3D-3D corre-

spondences. Leveraging these correspondences together
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with the Umeyama algorithm (Umeyama, 1991) enables

the estimation of both 6D pose and scale. Chen et al.

(2020a) instead propose to conduct class-level object

pose and size estimation with a correspondence-free

approach. They learn a canonical shape space for in-

put RGB-D images with normalized shape and metric

size based on a deep generative model before estimating

the pose by comparing the pose-independent and pose-

dependent features. Park et al. (2020) further propose a

novel framework for 6D object pose estimation of fully

unseen objects without any prior information. Nonethe-

less, this method require to compute gradients during

inference which is slow and, additionally, assumes ref-

erence images in order to reconstruct the latent 3D ob-

ject. Notice that all these methods expect annotated

real data and the presence of a depth image during in-

ference. We instead do not need labeled real data and

only use monocular data to predict 6D pose, object

shape and metric size.

2.3 Monocular Class-Level 3D Object Detection

Classical approaches rely on shape based classification

with pose parametrization by 3D geometric primitives

(Carr et al., 2012). The parametrization paradigm has

been relaxed by Chen et al. (2016) who use multiple

monocular cues such as shape, segmentation, location,

and spatial context to instantiate 3D object proposals

followed by a CNN-based scoring. Kundu et al. (2018)

predict rotation and shape of cars employing a render-

and-compare loss. Manhardt et al. (2019b) introduce

a 3D lifting loss which measures the misalignment of

the 3D bounding box corners. In addition, they also

learn a shape space for truncated sign distance func-

tions (TSDFs) using a 3D auto-encoder and train a sub-

network to predict the latent representation for each

detection. Nonetheless, these methods predict shape ei-

ther only up to scale (Kundu et al., 2018) or neglect

it during optimization for pose and learn it at a later

stage (Manhardt et al., 2019b). However, Chen et al.

(2016) show that shape can provide extra cues on the

pose and should not be dissociated. Simonelli et al.

(2019) similarly measure the 3D bounding box mis-

alignment, however, compute the error for each pose pa-

rameter separately to improve stability during training.

Ku et al. (2019) propose to leverage instance-centric

3D proposal and local shape reconstruction. Ma et al.

(2019) first conduct monocular depth prediction to pro-

duce a pseudo lidar. Afterwards, they employ a Point-

Net architecture to obtain the objects poses and di-

mensions. Ding et al. (2020) propose to employ depth-

guided local convolutions instead of pseudo lidar to bet-

ter process the predicted depth maps. Finally, Chen

et al. (2020b) attempt at improving monocular 3D ob-

ject detection by considering mutual spatial relation-

ships of objects.

Interestingly, almost all these methods assume all

objects to be standing on the ground plane and only

estimate one angle for the object’s orientation with re-

spect to the plane, thus, reducing pose to a problem

with 4 degrees-of-freedom under additional constraints.

2.4 Recent Trends in Rigid 3D Shape Recovery

Groueix et al. (2018) introduce AtlasNet, a network ar-

chitecture built on top of PointNet (Qi et al., 2017).

Sampling points from 2D uv-maps, the network can re-

construct 3D shapes of arbitrary resolution. Also based

on PointNet, Yang et al. (2018) propose a light-weight

end-to-end trainable encoder-decoder architecture, that

learns to deform a 2D grid into the 3D object surface

of a point cloud.

Wang et al. (2018) propose Pixel2Mesh, which di-

rectly regresses 3D meshes from RGB. The network it-

eratively refines the geometry of an input 3D ellipse,

using features extracted from a single RGB image em-

ploying a graph convolutional neural network. Gkioxari

et al. (2019) introduce Mesh RCNN, an extension of

Mask RCNN (He et al., 2017). This network estimates

a voxel representation for objects, which can be refined

by a series of graph convolution-based refinement steps.

Finally, another recent trend is to make use of im-

plicit functions for 3D shape recovery (Mescheder et al.,

2019; Park et al., 2019a; Genova et al., 2020; Niemeyer

et al., 2020; Deng et al., 2020a). Thereby, the 3D sur-

face is represented by the continuous decision boundary

of a deep neural network classifier. Once the networks

are trained, the object surface can be extracted from

the learnt boundary.

2.5 Differentiable Rendering For 3D Meshes

Most traditional rendering pipelines are usually not dif-

ferentiable due to the rasterization step, as they rely on

hard assignments of the closest triangle for each pixel

(Nguyen-Phuoc et al., 2018). Therefore, many works

have recently been proposed to circumvent the hard

assignment in order to re-establish the gradient flow

(Kato et al., 2020).

Early attempts try to approximate the gradients of

pixels with respect to the mesh’s vertices (Loper and

Black, 2014; Kato et al., 2018). More recent works in-

stead approximate the rasterization itself in order to

obtain analytical gradients. For instance, SoftRas con-

ducts rendering by aggregating the probabilistic contri-
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butions of each mesh triangle in relation to the rendered

pixels (Liu et al., 2019). DIB-R extends SoftRas by

considering foreground and background pixels indepen-

dently (Chen et al., 2019). Wang et al. (2020) further

adjust DIB-R to conduct a real perspective projection

and additionally render the associated depth map.

2.6 Self-Supervised Learning For 6D Pose

While most works in literature used to either rely on

Generative Adversial Networks (Bousmalis et al., 2017;

Lee et al., 2018) or make use of domain randomiza-

tion (Kehl et al., 2017; Zakharov et al., 2019a) to avoid

the need for real data with 6D pose annotations, a

few methods recently proposed to instead harness ideas

from self-supervised learning. In essence, self-supervised

learning describes learning from unlabeled real data,

where the supervision comes from the data itself, and

has recently enabled a large number of applications

in computer vision. Supervision is commonly achieved

by enforcing different constraints such as consistencies

from geometry, multiple views, or multiple modalities

(Godard et al., 2017; Kocabas et al., 2019; Kolesnikov

et al., 2019).

In the field of 6D pose, Deng et al. (2020b) pro-

pose a self-labeling pipeline for RGB-D based 6D ob-

ject pose estimation with an interactive robotic manip-

ulator. In contrast, Zakharov et al. (2020) propose a

curriculum learning strategy. They iteratively label the

training data, then optimize these annotations using

differentiable rendering and retrain the 3D object de-

tector. However, the core of both 6D pose estimation

modules is still trained fully-supervised using the self-

labeled data.

In contrast, Wang et al. (2020) recently introduced

Self6D, which directly learns pose from the raw data

without any labeling. Given a trained 6D pose estima-

tion network and unlabeled RGB-D data, Wang et al.

(2020) enforce consistency between the query data and

the predicted poses leveraging differentiable rendering.

Essentially, using DIB-R (Chen et al., 2019), Wang et al.

(2020) render an RGB and depth image which is then

visually and geometrically aligned with the sensor in-

put.

3 Class-level Monocular Pose & Metric Shape

In this section, we introduce our method for estimat-

ing the 6d object pose and metric shape, represented as

point cloud, from a single RGB image. We first describe

how we learn an explainable shape space for each class

using a PointNet (Nguyen-Phuoc et al., 2018) auto-

encoder and then present our proposed architecture for

6D pose and metric shape. Finally, we depict our novel

loss for aligning the extracted 6D pose and shape in 3D

space and demonstrate how we conduct domain transfer

from synthetic to real data.

3.1 Learning an Explainable Shape Space

A core novelty of our work lies in the joint estima-

tion of the object’s shape alongside its 6D pose from

a single RGB image. Inspired by commonly used low-

dimensional embeddings in the domain of shape estima-

tion (Kundu et al., 2018; Manhardt et al., 2019c), we

decided to employ a 32 dimensional latent space repre-

sentation for each class. During inference, this enables

the reconstruction of a 3D model by predicting only

few shape parameters as opposed to a complete point

cloud.

We employ AtlasNet (Groueix et al., 2018) to learn

a latent space representation of an object class c. The

network is based on PointNet (Qi et al., 2017) and takes

as input a complete point cloud which it then encodes

into a global shape descriptor. One can reconstruct a

3D shape by concatenating that descriptor with points

sampled from a 2D uv-map and feeding the result to

a decoder network. This approach decouples the num-

ber of predicted points from that in the original train-

ing shapes, thus enabling the reconstruction of shapes

with arbitrary resolution. We decided to employ Atlas-

Net due to the fact that the triangles for meshing can

be inferred easily from the employed 2D uv-map. This

makes it particularly useful when rendering the predic-

tions for our self-supervision. We train one AtlasNet

network for each object class separately on a subset of

point clouds Pc from ShapeNet (Chang et al., 2015),

each one learning a class specific distribution of valid

shapes in latent space.

3.2 Differentiable 6D Pose and Metric Shape

Since our self-supervision requires the flow of gradients

throughout the whole network, we cannot resort to any

method which is based on establishing non-differentiable

2D-3D correspondences. Thus, we rely on a similar ar-

chitecture as (Manhardt et al., 2019c). As illustrated

in Fig. 2, our method is based on a two-stage approach

similar to Faster R-CNN (Ren et al., 2015). We first pre-

dict 2D regions of interest using RetinaNet with Focal

Loss (Lin et al., 2017). The object proposals are then

processed by our pose and shape estimator. We employ

a ResNet-50 backbone with an FPN structure. For each
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Fig. 2 Schematic overview. We feed the input image to a RetinaNet to infer 2D detections. We then collect all detections
for each class and send them to the associated lifter module, which predicts the 6D pose together with the scale and the shape
encoding. Finally, we retrieve point clouds from AtlasNet.

detected object, we apply RoIAlign (He et al., 2017)

to crop out regions of interest with size of 32× 32. We

also apply the RoIAlign operator on the input RGB im-

age and the coordinate tensor (Liu et al., 2018). Thus,

the pose predictor is aware of the location of the crop

and does not lose global context. We concatenate both

RoIAlign outputs with the feature maps from FPN to

compute the feature map f for the given 2D detection.

3.2.1 From 2D to 3D Detection

For each RoI, separate predictor networks branch off to

infer: a 4D quaternion qa representing the 3D rotation

in SO (3), the 2D centroid (x, y) as the projection of the

3D translation into the 2D image given camera matrix

K, the distance z of the detected object with respect

to the camera, the metric size (w, h, l) of the object,

and the low-dimensional representation e of the shape.

In addition, we also predict the object mask MP as it

plays a crucial role in out latter self-supervision.

The final pose is obtained by back-projecting the

2D centroid with respect to the regressed depth and

known camera matrix K to compute the 3D trans-

lation t = K−1z (x, y, 1)
T

. Then, we use the trans-

lation to compute the egocentric rotation q from the

predicted allocentric rotation qa. Since we deal with

cropped RoIs, the allocentric representation is favored

as it is viewpoint invariant under 3D translation of the

Fig. 3 Egocentric vs.allocentric rotation. Under ego-
centric projection, a mere 3D translation of the object lateral
to the image plane, leads to different object appearance. This
is not the case under allocentric projection.

object (Kundu et al., 2018; Mousavian et al., 2017). The

difference is visualized in Fig. 3. Note that knowing the

translation, one can easily convert from the allocentric

to the egocentric representation.

Given the objects estimated allocentric rotation qa,

the 2D projection c, and the camera matrix K, we first

calculate the rotation qc, between the camera principal

axis [0, 0, 1]T and the ray through the object center pro-

jection K−1c. Then we compute the rotation that takes

vector [0, 0, 1]T to align with vector K−1c according to

qc := [cos
α

2
, A(0) · sin α

2
, A(1) · sin α

2
, A(2) · sin α

2
] (1)
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with A = [0, 0, 1]T × K−1c being the axis between

the object centroid K−1c and the optical center ray

[0, 0, 1]T and α = arccos (K−1c) describing the angle

between them. The final egocentric rotation is then

computed according to q = qc · qa.

Since features from the FPN stage are forwarded to

the second stage, we only require very small lifting net-

works for pose (qa, (x, y), z) and shape (e, (w, h, l)).

Thus, we can easily afford to use separate lifting mod-

ules for each object class. In practice, each detected

object is forwarded to its corresponding lifting mod-

ule given the estimated class label. Therefore, poses

and shapes from different classes do not interfere dur-

ing optimization. For each lifter we first apply two 2D

convolutions with batchnorm before diverging into sep-

arate branches for pose and shape. For each branch, we

employ another two 2D convolutions with batchnorm

followed by a fully-connected layer to predict the final

parameters.

3.2.2 Retrieving 3D Shape

Using the AtlasNet encoder Ec, we compute the bound

feature

Sc := { Ec(p) | p ∈ Pc } ⊂ [−1, 1]
32
, (2)

which is the set of all latent space representations of the

training shapes. From Sc, we then calculate a per-class

mean latent shape

mc :=
1

|Sc|
∑

sc∈Sc

sc. (3)

Let us denote the shape prediction branch as FShape(f),

a non-linear function that outputs a class-specific latent

shape vector for the feature map f from the given RoI.

Then, instead of forcing FShape(f) to predict absolute

shape vectors e, we let it infer a simple offset from mc,

such that e := mc+FShape(f). Finally, the AtlasNet de-

coder network reconstructs a 3-dimensional point cloud,

i.e. p(f) := Dc(mc + FShape(f)) = Dc(e).

To encourage the latent shape predictions of FShape

to stay inside of the learned shape distribution, we em-

ploy a special regularization loss. Assuming the shape

encodings of the per-class training span a convex shape

space Conv(Sc), we punish the network for any pre-

dicted e 6∈ Conv(Sc) and project them onto ∂Sc, the

boundary of Conv(Sc). In practice, we detect all e 6∈
Conv(Sc) as

I(e|Sc) =


0, if min

sc,i,sc,j∈Sc
i6=j

(e− sc,i)T (e− sc,j) ≤ 0

1, otherwise.

Fig. 4 3D Point Cloud Meshing. To mesh our prediction,
we make use of the connectivity implied by AtlasNet and fill
remaining holes with the ball-pivoting algorithm. Finally, we
smooth the result using the Laplacian filter.

(4)

where I(e|Sc) = 0 indicates that e ∈ Conv(Sc) and

I(e|Sc) = 1 otherwise.

We then project e onto the line connecting the two

closest points (s1, s2) ∈ Sc. We retrieve (s1, s2) by com-

puting the Euclidean distance for the regressed encod-

ings with all elements of Sc and taking the two elements

with the smallest distance. The error then is equal to

the length of the vector rejection

π(e|s1, s2) = (s1 − e)−
(s1 − e)T (s2 − e)
||s2 − e||22

(s2 − e). (5)

The final loss for one sample e then amounts to

Lreg(e|Sc, s1, s2) = I(e|Sc) · ||π(e|s1, s2)||2. (6)

3.2.3 Meshing of 3D Point Clouds

After estimating the shape as a point cloud, we can op-

tionally also compute the associated mesh, i.e. the tri-

angles of the model. Since AtlasNet samples 3D points

uniformly from primitives, the triangles for each primi-

tive can be easily inferred from the sampling. This facil-

itates meshing and allows a natural incorporation into

our loss formulation, since we directly operate on point

clouds. Unfortunately, the output mesh often exhibits

holes. In order to fill these, we employ the ball-pivoting

algorithm (Bernardini et al., 1999) and simply merge

the output triangles. Finally, to reduce noise, we run

one iteration of the Laplacian smoothing filter. The

overall meshing process is also visualized in Fig. 4.

3.3 3D Point Cloud Alignment

Recent works (Manhardt et al., 2019b; Yu et al., 2018;

Simonelli et al., 2019) have shown that directly opti-

mizing for the desired final target generally leads to

superior results compared to enforcing separate loss

terms for each regression target. Motivated by this, we

propose a novel loss directly aligning our regressed 3D
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Fig. 5 3D Point Cloud Loss. Given the outputs from our
network, we first retrieve the detected object’s shape from the
AtlasNet decoder. We then scale it to absolute size before
transforming it into the scene with the predicted rotation
and translation. We employ the Chamfer distance between
the ground truth point cloud and our prediction to enforce
an optimal alignment in 3D.

shape using the predicted 6D pose with the scene. Given

the egocentric 3D rotation as 4D quaternion q and 3D

translation t = K−1z (x, y, 1)
T

, together with the shape

encoding e, the decoder Dc, and the scale (w, h, l), we

compute the shape of the detected object and transform

it to the 3D camera space to obtain the point cloud

p3D := q ·

w

h

l

 · Dc(e)

 · q−1 +K−1

x · z
y · z
z

 , (7)

with K being the camera intrinsic matrix. We then

measure the alignment against the ground truth point

cloud p̄3D using the Chamfer distance with

p̄3D := R̄p̄+ t̄. (8)

Thereby, R̄ and t̄ denote the ground truth 3D rotation

and translation and p̄ denotes the ground truth point

cloud computed by uniformly sampling 2048 points from

the CAD model. The loss for 3D alignment is calculated

as

L3D :=
1

|p3D|
∑

v∈p3D

min
v̄∈p̄3D

||v − v̄||2+

1

|p̄3D|
∑

v̄∈p̄3D

min
v∈p3D

||v − v̄||2.
(9)

We also disentangle L3D for our predictions, similar to

(Simonelli et al., 2019). Therefore, we individually com-

pute our 3D point cloud loss for each pose parameter

(i.e. q, c, z, (w, h, l), e), while taking the ground truth

for the remaining parameters. The final 3D loss is then

calculated as the mean over all individual loss contri-

butions.

The overall loss is the sum of the loss for 3D align-

ment and shape regularization together with the loss

for the object mask

Lsuper := L3D + Lreg + Lbce. (10)

For mask prediction, we simply employ binary cross-

entropy loss Lbce. However, since each RoI mostly con-

tains foreground pixels, the classification problem is

not well balanced. Thus, to properly deal with class-

imbalance, we separately apply the cross-entropy loss

to all foreground and background pixels and then sum

up both contributions.

3.4 Domain Adaptation via Self-supervised Learning

3.4.1 Self-supervision for Pose & Shape

Since our proposed loss Lsuper for monocular class-level

6D pose estimation requires annotated data, which is

difficult and time-consuming to collect, we train the

network on synthetic samples only. Unfortunately, this

leaves us with a domain gap towards the real world. To

address this issue, Wang et al. (2020) recently proposed

Self6D, in which they leverage real unlabeled RGB-D

data to transfer the knowledge about the 6D pose from

the synthetic to the real domain.

In this work, we adapt Self6D to the problem of

class-level 6D pose estimation to bridge the domain gap

towards the real world. Provided the egocentric rotation

q, the 3D translation t, and the 3D mesh M = (V,E)
together with the camera matrix K, Self6D renders a

triplet consisting of RGB and depth image as well as the

object mask in a differentiable manner. In order to fully

rely on the raw sensor acquisitions without the need for

3D CAD models, we instead harness our predicted mesh

vertices

V =

w

h

l

 · Dc(e) (11)

in metric scale and derive the triangles E from the sam-

pling of the 2D uv-map points in AtlasNet. Noteworthy,

we always sample 2D locations on a uniform grid.

Since the improvement from the enforced loss on the

RGB image was insignificant in (Wang et al., 2020), we

dispense with the terms in the absence of sophisticated

3D color meshes. Therefore, we only render the pair of

object masks and depth image

R(q, t,K,M) = (DR,MR). (12)



CPS++: Improving Class-level 6D Pose and Shape Estimation 9

Fig. 6 3D Self-supervision. Using the RGB image (1st column) we detect all objects in the scene and predict each object’s
6D pose, metric shape and object mask MP , from which we extract the visible point cloud pR, shown in red. We also backproject
the associated depth map (2nd column) w.r.t to MP to retrieve the visible scene point cloud pS , depicted in blue. Naively
computing the Chamfer distance between pR and pS often converges in bad local minima due to weak correspondences as the
shift in translation can be very large (3rd column). Hence, before we calculate the Chamfer distance, we instead first align the
visible centroids according to δc, providing more reliable correspondences and, thus, better supervision (4th column).

For visual alignment, we thus only leverage the ren-

dered mask MR in order to align the predictions with

the scene MP according to (Jiang et al., 2019; Wang

et al., 2020) with

Lmask :=− 1

|N+|
∑
j∈N+

MPj logMRj−

1

|N−|
∑
j∈N−

log(1−MRj).

(13)

Thereby, N+ and N− denote all foreground and back-

ground pixels with respect to MP , respectively.

Similar as in Self6D, we aim at establishing corre-

spondences in 3D space in order to provide better su-

pervision. Wang et al. (2020) aligns both visible point

clouds after back-projection of the depth maps, pR =

π−1(DR,MR) and pS = π−1(DS ,MP ), leveraging the

Chamfer distance as objective function. Unfortunately,

this does not work well in practice, since there is a high

variance in translation (especially along the Z direc-

tion) due to the scale-distance ambiguity in monocular

class-level pose estimation. As consequence, the 3D-3D

correspondences do not represent anything meaning-

ful for most predictions (as shown in Fig. 6), making

the training prone to convergence to bad local min-

ima. Thus, prior to employing the Chamfer distance,

we first coarsely align the visible 3D centroids of the

point clouds

cR =
1

|pR|
∑

vR∈pR

vR and cS =
1

|pS |
∑

vS∈pS

vS (14)

according to δc = cS − cR.

The final loss for geometrical alignment is then com-

posed of the coarse alignment error ||δc||2 and the Cham-

fer distance for fine alignment

Lgeom :=
1

|pS |
∑

vS∈pS

min
vR∈pR

‖vS − vR + δc‖2+

1

|pR|
∑

vR∈pR

min
vS∈pS

‖vS − vR + δc‖2+

||δc||2.

(15)

Noteworthy, the presented loss for geometrical consis-

tency is more biased towards punishing 3D translational

errors. Hence, during self-supervision we build batches

which contain both: annotated synthetic samples and

real unlabeled samples. The overall self-supervision is,

thus, a combination of the loss terms for visual and ge-

ometric alignment together with our original 3D point

cloud alignment term

LSelf := Lsuper + λmaskLmask + λgeomLgeom. (16)

Notice that in order to ensure that we only apply the

loss for correct detections, we employ a very high detec-

tion threshold of 0.85 and only compute the loss on the
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Fig. 7 Training data. Exemplary samples of the recorded
training RGB (left) and depth (right) images for self-
supervision.

remaining confident samples. Moreover, we also guar-

antee that at least 90% of the masked pixels possess

depth data and filter out all detections at a distance

larger than 2.5 meters. We additionally remove outliers

from the scene point cloud via region growing of the

centroids on the depth map and statistical outlier re-

moval on the point clouds. Despite the use of depth

during self-supervision, the final inference is still fully

monocular.

3.4.2 Training Data for Self-supervision

In order to train with our self-supervised loss formu-

lation, we recorded over 30k unlabeled RGB-D sam-

ples. We leveraged multiple different calibrated con-

sumer RGB-D sensors based on structured light (e.g.

Primesene, Orbbec Astra) or stereo vision (e.g. Intel

RealSense). The data contains several different objects,

each belonging to one of the six object classes from

NOCS (Wang et al., 2019), i.e. Bottle, Bowl, Can, Cam-

era, Laptop, and Mug. Noteworthy, to make the pro-

posed approach more applicable, we do not post-process

(such as hole filling) the recorded data. A few exemplary

samples can be found in Fig. 7. The recorded data can

be downloaded at https://forms.gle/E89Asu3YDkL1W-

JEj6, as we believe that self-supervision is an very im-

portant direction in the field of class-level 6D pose es-

timation.

4 Evaluation

In this section we first introduce our implementation

details and demonstrate the evaluation protocol we fol-

lowed. Afterwards, we present an ablation study on

quality of the estimated shapes and the impact of each

loss term during supervised and self-supervised learning

and, finally, constitute our quantitative and qualitative

results.

4.1 Implementation Details

We implemented our method in PyTorch (Paszke et al.,

2019) and trained all models on a Nvidia Titan Xp GPU

with a batchsize of 8 for 200k iterations using ADAM

optimizer and a learning rate of 0.0001. We decay the

learning rate after 20k, 130k, and 170k iterations by

a factor of 0.1 each time. When training from scratch,

directly applying the Chamfer distance turns out to be

unstable due to potential convergence to local minima.

Hence, we start with a warm-up training in which we

compute the L1-norm between each component and the

ground truth using (Kendall et al., 2018) to weight the

different terms.

Since annotating 6D pose, 3D scale, and 3D mesh

is very difficult and time consuming, we decided to

solely rely on synthetic data from NOCS for training.

Nonetheless, to keep the domain gap small, we also sam-

ple with a probability of 35% images from COCO (Lin

et al., 2014), however, only back-propagate the 2D loss

for these samples. Further, when we evaluate on the

real test set, we additionally report each method af-

ter fine-tuning them for another 10k iterations on the

real training data. Similarly, we also train with our self-

supervision exactly for 10k iterations.

4.2 Evaluation Protocol

4.2.1 NOCS Dataset

For training and evaluation, we use the recently intro-

duced NOCS dataset for class-level 6D pose estimation

(Wang et al., 2019). It consists of about 270k synthetic

training images and 25k synthetic validation images.

(Wang et al., 2019) employs a mixed-reality approach to

render objects from ShapeNet (Chang et al., 2015) onto

detected planes in real images. Additionally, they pro-

vide approximately 2.5k real test and 4.5k real training

https://forms.gle/E89Asu3YDkL1WJEj6
https://forms.gle/E89Asu3YDkL1WJEj6
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images. Overall, the dataset encompasses objects from

6 different classes, i.e. Bottle, Bowl, Camera, Can, Mug

and Laptop.

4.2.2 6D Pose Metrics

Since we are the first to introduce the task of 6D pose

estimation and metric shape retrieval, we want to pro-

pose a new metric that jointly measures the perfor-

mance on both tasks. Thus, we extend two of the most

common metrics for 6D pose known as Average Dis-

tance of Distinguishable Model Points (ADD) and Av-

erage Distance of Indistinguishable Model Points (ADI)

(Hodan et al., 2016; Hinterstoisser et al., 2011). On one

hand, ADD measures whether the average deviation m

of the transformed model points is less than 10% of the

object’s diameter

m = avg
x∈M
||(Rx+ t)− (R̄x+ t̄)||2, (17)

where M denotes the set of points for the given CAD

model. On the other hand, ADI extends ADD for sym-

metries, measuring error as the mean distance to the

closest model point

m = avg
x2∈M

min
x1∈M

||(Rx1 + t)− (R̄x2 + t̄)||2. (18)

These metrics, however, are not applicable to our case

since point sets for ground truth M̄ and predicted shape

M differ and even possess differences in scale. To cir-

cumvent the need for direct correspondences and to be

agnostic to scale discrepancies, we introduce the Av-

erage Distance of Predicted Point Sets (APP) which

extends ADI to be computed bidirectionally

APP =

{
1, if m1 ≤ α · d(M) ∧m2 ≤ α · d(M̄)

0, otherwise
(19)

where

m1 = avg
x1∈M

min
x2∈M̄

||(Rx1 + t)− (R̄x2 + t̄)||2 (20)

m2 = avg
x2∈M̄

min
x1∈M

||(Rx1 + t)− (R̄x2 + t̄)||2 (21)

and d measuring the diameter of M. We employ 20%

and 50% as thresholds for α.

Since the related works do not incorporate shape

prediction, we additionally compute the 3D IoU metric

and 10°&10cm metric to properly assess pose quality

(Wang et al., 2019). For methods using depth, we addi-

tionally present the results for the more strict 5°&5cm

metric. Similar to previous works (Simonelli et al., 2019;

Wang et al., 2019), we present all results computing the

mean Average Precision (AP), measuring the area un-

derneath the Precision-Recall curve.

4.2.3 Comparison with Different Loss Functions from

Related Works

Optimally weighting multiple different loss terms is kno-

wn to be complicated and a research topic on its own

(Kendall et al., 2018; Manhardt et al., 2018). It is par-

ticularly challenging when the loss terms optimize two

terms of different unit scales that cannot be easily com-

pared such as rotation and translation. Consequently,

we propose instead to directly measure the misalign-

ment in 3D. To show the benefit of the proposed loss, we

trained our network using only the L1 loss for each pre-

diction. To this end, we set each weighting component

λ = 1 (Uniform Weighting). We later employed a more

elaborate training strategy which involves learning the

different loss weights (Kendall et al., 2018) (Multi-Task

Weighting).

We additionally implemented the loss function of

the two most relevant works from autonomous driving

for monocular 3D object detection on top of our net-

work. In particular, we train our network to optimize

the alignment of the bounding box corners (3D Bbox)

(Manhardt et al., 2019b) and for the disentangled ver-

sion from (Simonelli et al., 2019) (Dis 3D Bbox). We

chose these two works since, they estimate the full 6D

pose instead of only predicting one angle for 3D rota-

tion, as most related works do (Ding et al., 2020; Chen

et al., 2020b).

4.3 Ablation Study

In order to evaluate how well our model estimates the

shape of detected objects, we crop out the ground truth

RoI from all images in the validation set and compute

the Chamfer distance from each predicted shape as well

as the mean mc (see Eq. 3) to the corresponding ground

truth. Notice that the shapes in the validation split of

the NOCS dataset have not been seen before during

training. Table 1 shows the mean Chamfer distance for

each object class, respectively. The distance from pre-

dicted shape to ground truth is consistently lower, in-

dicating that the model does indeed predict meaningful

shapes for a specific image and object instance rather

than trivially giving the mean. Qualitative examples of

a bottle and a cup are given in the figures accompany-

ing Table 1. The predicted bottle clearly exhibits the

distinct corners and edges seen in the ground truth. In

contrast, the mean bottle shows a very rounded out sur-

face. Further, the predicted cup on the right shows the

bowl-shape of the ground truth while the mean is more

cylindrical.

Following standard practice, we also evaluate class-

level 6D pose estimation after refining the poses with
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Ground Truth Prediction Mean Ground Truth Prediction Mean

Object
Mean Chamfer Distance in mm ↓

Mean Shape Predicted Shape

Bottle 0.1028 0.0815
Bowl 0.0892 0.0536
Can 0.0161 0.0139

Camera 0.1304 0.1026
Cup 0.0481 0.0351

Laptop 0.3579 0.3117

CPS w/ ICP
3D IOU @ 5°& 5cm/

(0.25 / 0.5) ↑ 10°& 10cm ↑
Mean Shape 89.8 / 67.4 37.6 / 57.7

Predicted Shape 90.2 / 70.4 42.8 / 63.8

Table 1 Comparison of predicted and mean shapes to the
associated ground truth shapes. For each class, the mean
Chamfer distance of the shapes estimated by our model is
lower than that of the mean over all shapes. When estimat-
ing pose, leveraging our estimated models for ICP leads to
better results.

ICP on the accompanying depth data. Thereby, we com-

pare ICP leveraging the predicted shapes with ICP em-

ploying the mean shapes. While for rather simple ob-

jects the difference is negligible, for more complex shapes

the discrepancy is vast. For more strict metrics, such as

IoU@0.5 and 5°&5cm, the relative performance drops

around 3% and 5%. This clearly shows that our shapes

are more accurate than the corresponding mean shape

for each class and can be leveraged for more reliable 6D
pose estimation.

In Table 2 and 3, we want to demonstrate the indi-

vidual loss contributions. Therefore, we train and evalu-

ate CPS on the synthetic training and validation dataset

and the proposed self-supervision CPS++ on the recor-

ded unlabeled real training data and the real test data,

always turning off one loss component during training.

The ablation on the synthetic data shows that pun-

ishing encodings out of their associated spaces makes

training more robust and leads to better results. Es-

pecially, complicated shapes such as Camera (7.2% vs.

3.4% for 10°&10cm metric) mostly benefit from the reg-

ularization term. We report individual results for each

object in the supplementary material. Moreover, dis-

entangling the individual loss components further sta-

bilizes optimization, leading to a significant increase

in performance across all metrics. Interestingly, when

evaluating our method after self-supervision on the syn-

thetic data, the performance significantly degrades. Sin-

ce CPS is purely trained on the synthetic domain, the

network is performing particularly well on those sam-

ples. After self-supervised learning the network gener-

alizes better to real data, however, for the cost of losing

performance on the synthetic domain.

On the other hand, the results on the real data

demonstrate that only the modified geometry loss is

capable of improving the results and can thus success-

fully decrease the domain gap. In particular, without

centroid loss the performance is similar to the perfor-

mance before self-supervision. Noteworthy, when turn-

ing off either the mask loss or geometry loss, the results

even fall behind the original performance of the purely

synthetically trained model.

4.4 Quantitative Evaluation

4.4.1 Synthetic Data Experiments

Table 4 shows evaluation results on the synthetic dataset

published with (Wang et al., 2019). While all methods

are at a similar level, CPS still shows superior results

with respect to most metrics, especially stricter ones

such as IoU@0.5 and 10°& 10cm.

Surprisingly, the two baselines (on the top) that

simply weight the individual loss terms achieve over-

all strong results, yet, CPS still exceeds them. As for

the AP score on 3D IoU and a threshold of 0.5, we

outperform (Kendall et al., 2018) by 1.6% and Uni-

form Weighting by 1.2% with a score of 8.7. Similar

results can be also observed for 10°&10cm metric and

APP. In particular, we outperform both by 4.8% for

10°&10cm and ca. 2% for APP0.2 achieving a perfor-

mance of 31.7% and 19.1%, respectively.

Employing other recently proposed loss functions

from (Manhardt et al., 2019b) and (Simonelli et al.,

2019) led to inferior results. For most metrics we can

exceed their performance by more than 30% of rela-

tive accuracy, proving that our point cloud alignment

is unquestionably more effective than e.g.aligning 3D

bounding box corners. In contrast to autonomous driv-

ing, objects in robotics often exhibit ambiguities such

as symmetries (e.g.cans and bottles). Since (Manhardt

et al., 2019b; Simonelli et al., 2019) are minimizing the

misalignment of 3D bounding box corners, their meth-

ods are very sensitive to ambiguities.

To demonstrate the potential of CPS for real robotic

applications and for a fair comparison with the recently

published RGB-D method NOCS (Wang et al., 2019),

we also evaluate our method after refining the poses

with ICP on the associated depth maps, on the basis

of our predicted shapes. The corresponding results are

depicted in the bottom table. When employing depth,

our numbers increase significantly. In particular, our
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Method 3D IOU @ (0.25 / 0.5) 10°& 10cm 3D APP @ (0.2 / 0.5)

CPS w/o disentangling 21.4 / 5.1 17.4 14.0 / 42.1
CPS w/o Lreg 21.9 / 5.4 26.5 13.0 / 41.7

CPS 29.0 / 8.7 31.7 19.1 / 49.6
CPS++ 26.7 / 8.1 27.4 17.8 / 45.2

Table 2 Ablation study on the synthetic validation dataset from (Wang et al., 2019). We report AP scores for 3D IoU,
rotation and translation as well as APP.

Mask Loss
Geometry Loss 3D IOU @ (0.25 / 0.5) 10°& 10cm 3D APP @ (0.2 / 0.5)

Chamfer Centroid

CPS 43.7 / 14.0 16.5 30.8 / 64.0

CPS++

X X 32.3 / 2.2 1.9 15.4 / 65.2
X 31.3 / 9.5 4.9 22.2 / 53.6
X X 47.1 / 11.9 17.4 32.4 / 68.2
X X X 54.3 / 17.7 22.3 41.0 / 73.6

Table 3 Ablation study on different loss terms for self-supervision on the real test dataset from (Wang et al., 2019). We
report AP scores for 3D IoU, rotation and translation as well as APP.

3D IOU @ (0.25 / 0.5) 10°& 10cm 3D APP @ (0.2 / 0.5)

Uniform Weighting 29.2 / 7.5 26.9 17.0 / 49.2
Multi-Task Weighting (Kendall et al., 2018) 28.9 / 7.1 26.9 17.1 / 50.2

3D Bbox Loss (Manhardt et al., 2019b) 19.5 / 3.3 22.1 – / –
Dis 3D BBox Loss (Simonelli et al., 2019) 28.4 / 6.6 17.7 – / –

CPS 29.0 / 8.7 31.7 19.1 / 49.6
CPS++ 26.7 / 8.1 27.4 17.8 / 45.2

3D IOU @ (0.25 / 0.5) 5°& 5cm /10°& 10cm 3D APP @ (0.2 / 0.5)

NOCS (Wang et al., 2019) 91.4 / 85.3 38.8 / 62.2 – / –
CPS w/ ICP 90.2 / 70.4 42.8 / 63.8 89.0 / 91.3

CPS++ w/ ICP 89.4 / 63.4 33.6 / 49.6 88.2 / 91.2

Table 4 State-of-the-art methods evaluated on the synthetic validation dataset from (Wang et al., 2019). We report AP scores
for 3D IoU, rotation and translation as well as APP.

AP score with respect to APP and 3D IoU more than

quadruples. In addition, for 10°&10cm we can also dou-

ble the results reported for monocular CPS. Moreover,

when using RGB-D we reach state-of-the-art perfor-

mance for class-level 6D pose estimation. While NOCS

exceed us in terms of 3D IoU at a threshold of 0.5,we

can outperform them for the 5°&5cm and 10°&10cm

metric with 42.8% and 63.8% in comparison to 38.8%

and 62.2%. Similar to before, despite the use of ICP, we

experience a decrease in performance when evaluating

CPS++ on the synthetic validation data due to worse

initializations.

4.4.2 Real Data Experiments

We run evaluations on the real dataset of (Wang et al.,

2019). The results are reported in Table 5.

While the performance difference on the synthetic

data is rather small, for the real test dataset, the gap

is very large. In particular, CPS more than doubles all

other methods for 3D IoU and APP. Also for 10°&10cm

CPS comes out as superior. This indicates that CPS is

much stronger at generalizing than all other methods.

For the synthetic training only case, we are even on par

with NOCS without leveraging any depth information.

When finetuning each network by another 10k iter-

ations on the real labeled data, in order to address the

domain gap, the related works are capable of almost

closing the gap. Nonetheless, whereas 3D IoU is almost

on par with our method, we clearly outperform them on

10°&10cm. When investigating the accompanying plots

for each metric, we can deduce that mostly 3D transla-

tion improved from the finetuning. In contrast, the 3D

rotation AP even slightly decreased. This can be at-

tributed to the limited variation in rotation of the real

test data, since it is a very large space and the number

of samples are limited. Noteworthy, as (Wang et al.,

2019) computes 3D IoU with respect to the main axes,

the drop in rotation accuracy is not strongly reflected

there.

Further, while finetuning CPS on real data leads

again to small improvements, we can enhance the per-

formance even further when instead leveraging our pro-

posed self-supervision. For 3D IoU we can improve by
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FT Real 3D IOU @ (0.25 / 0.5) 10°& 10cm 3D APP @ (0.2 / 0.5)

Uniform Weighting 14.3 / 3.6 15.0 8.2 / 26.4
Multi-Task Weighting (Kendall et al., 2018) 17.6 / 4.1 10.4 9.4 / 32.5

3D Bbox Loss (Manhardt et al., 2019b) 1.2 / 0.2 11.2 – / –
Dis 3D Bbox Loss (Simonelli et al., 2019) 9.3 / 0.9 3.9 – / –

Uniform Weighting X 37.6 / 9.7 6.8 23.2 / 57.7
Multi-Task Weighting (Kendall et al., 2018) X 32.3 / 7.4 4.7 19.9/ 55.2

3D Bbox (Manhardt et al., 2019b) X 42.0 / 13.8 9.1 – / –
Dis 3D BBox (Simonelli et al., 2019) X 43.7 / 10.6 3.1 – / –

CPS 43.7 / 14.0 16.5 30.8 / 64.0
CPS X 48.9 / 19.2 14.7 37.8 / 71.6

CPS++ 54.3 / 17.7 22.3 41.0 / 73.6

Real Data w Labels 3D IOU @ (0.25 / 0.5) 5°& 5cm / 10°& 10cm 3D APP @ (0.2 / 0.5)

NOCS (Wang et al., 2019) 57.6 / 41.0 3.3 / 17.1 – / –
NOCS (Wang et al., 2019) X 84.9 / 80.9 9.5 / 26.7 – / –
CASS (Chen et al., 2020a) X 84.2 / 77.7 13.0 / 37.9 – / –

CPS w/ ICP 84.5 / 72.6 25.8 / 55.4 83.3 / 86.3
CPS++ w/ ICP 84.6 / 72.8 25.2 / 58.6 81.1 / 85.7

Table 5 State-of-the-art methods evaluated on the real test dataset from (Wang et al., 2019) Top: We plot AP scores for
3D IoU, rotation and translation, and APP with respect to increasing thresholds. Bottom: We report AP scores for 3D IoU,
rotation and translation, and APP at commonly employed thresholds1. Notice that all methods leverage COCO to decrease
the domain gap.

10.6% and 3.7% with 54.3% and 17.7% at a threshold

of 0.25 and 0.5, respectively. Regarding 10°&10cm, we

can report an AP of 22.3% in comparison to 16.5%.

Similarly, with respect to APP at 0.2 and 0.5, we can

increase the AP by ca. 10%. These observations are also

reflected by the accompanying graphs, as CPS++ ex-

ceeds all other monocular methods with respect to all

metrics at any threshold.

Despite the monocular pose and shape estimation

pipeline is the core focus of this work, it is worth men-

tioning that by employing ICP we can again strongly

enhance performance. While we are a little worse in

terms of 3D IoU at a threshold of 0.5 when comparing

with NOCS (Wang et al., 2019) and CASS1 (Chen et al.,

2020a), we are superior for the 5°&5cm and 10°&10cm

metrics, despite no use of any real annotated data.

Interestingly, as our objective function for self-super-

vision is highly motivated by the ICP formulation, we

achieve almost the same results when running CPS or

CPS++ with ICP on real data.

1The numbers of CASS are different as in their paper since
they used average precision instead. The authors provided us
with their results for average recall.
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3D Bounding Box XZ-plane Projection XY-plane Projection Recovered Mesh

Fig. 8 Qualitative results on synthetic validation dataset. Left: Exemplary object pose estimations with rendered 3D
bounding boxes, coordinate systems and shape meshes, overlaid on top of the respective input images. Centre: BEV images
emphasizing accurate depth estimation of multiple objects in the scene (Our results are visualized in green and ground truth
in red.). Right: Exemplary 3D mesh for each image, rendered with Meshlab (Cignoni et al., 2008).

Fig. 9 Qualitative results on real test dataset. Left: Object pose estimations with rendered 3D bounding boxes, coor-
dinate systems (Centre:) and shape mesh, overlaid on top of the respective real input images. Right: We show an alternative
viewpoint to the right to avoid ambiguities through projection.

4.5 Qualitative Evaluation

In Fig. 8, we show two qualitative examples for CPS.

Notice how the extracted shapes, on the right, matches

the perceived object in the scene. For instance, the long

lens of the camera is properly reflected in the regressed

3D mesh. Additionally, the 3D bounding box overlap

is high. Inspired by (Geiger et al., 2012), for better 3D

understanding, we plotted the bird’s-eye view visual-

ization of the scene by conducting an orthographic pro-

jection on the X-Z plane (2nd from the left). Similarly,

we computed an orthographic projection on the X-Y

plane (3rd from left) as the ground plane assumption

is invalid. We employ these projections to demonstrate

that we can compute accurate 6D poses and 3D scales

without being sensitive to ambiguities (scale vs.depth)

due to monocular data. In fact, despite the ambiguity,

our network is able to compute precise scales and poses

as demonstrated in the tight overlaps.

Fig. 9 presents some qualitative results for CPS++

without ICP, demonstrating the models’ capabilities for

real applications.
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5 Conclusion

In this paper we introduced CPS, the first method for

monocular class-level 6D pose and shape estimation.

We additionally proposed a novel point cloud alignment

loss and experimentally demonstrated that it leads to

performance that is on par or better than existing loss

functions, while also favoring accurate reconstructions

of the detected objects’ geometry. As labeling data for

the task at hand is very labor expensive, we trained our

method purely on synthetic data, leaving a significant

synthetic-to-real domain gap. Thus, to bridge the gap,

we additionally tailored Self6D towards the problem of

class-level 6D pose estimation and recorded a RGB-D

training dataset composed of over 30k frames, which we

made publicly available. We demonstrate that leverag-

ing our modified self-supervision leads to a significant

leap forward when evaluating on real data, without re-

lying on any annotations for real data.
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Vidal J, Lin CY, Lladó X, Mart́ı R (2018) A method for 6d

pose estimation of free-form rigid objects using point pair
features on range data. Sensors 18(8):2678

Wang G, Manhardt F, Shao J, Ji X, Navab N, Tombari F
(2020) Self6d: Self-supervised monocular 6d object pose
estimation. In: ECCV

Wang H, Sridhar S, Huang J, Valentin J, Song S, Guibas LJ
(2019) Normalized object coordinate space for category-
level 6d object pose and size estimation. In: CVPR

Wang N, Zhang Y, Li Z, Fu Y, Liu W, Jiang YG (2018)
Pixel2mesh: Generating 3d mesh models from single rgb
images. In: ECCV, pp 52–67

Wu X, Sahoo D, Hoi SC (2020) Recent advances in deep
learning for object detection. Neurocomputing 396:39 – 64

Xiang Y, Schmidt T, Narayanan V, Fox D (2018) PoseCNN:
A convolutional neural network for 6D object pose estima-
tion in cluttered scenes. RSS

Xu B, Chen Z (2018) Multi-level fusion based 3d object de-
tection from monocular images. In: CVPR

Yang Y, Feng C, Shen Y, Tian D (2018) Foldingnet: Point
cloud auto-encoder via deep grid deformation. In: CVPR,
pp 206–215

Yu X, Tanner S, Venkatraman N, Dieter F (2018) Posecnn: A
convolutional neural network for 6d object pose estimation
in cluttered scenes. In: RSS

Zakharov S, Kehl W, Ilic S (2019a) Deceptionnet: Network-
driven domain randomization. In: ICCV, pp 532–541

Zakharov S, Shugurov I, Ilic S (2019b) Dpod: Dense 6d pose
object detector in rgb images. In: ICCV

Zakharov S, Kehl W, Bhargava A, Gaidon A (2020) Autola-
beling 3d objects with differentiable rendering of sdf shape
priors. In: CVPR


	1 Introduction
	2 Related Work
	3 Class-level Monocular Pose & Metric Shape
	4 Evaluation
	5 Conclusion

