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•  Minimally invasive procedures rely 
on navigation 

•  Automatic Catheters tracking and 
detection 
ü  Facilitates navigation 
ü  Enables 3D reconstruction of the 

catheters w.r.t. Patient 
ü  Reduces surgery time and 

exposure to radiations 
 

•  Methods based on Manual Initialization [1] 
•  Methods based on blob detection and geometric  

constraints [2] 

•  Robust detection and tracking method based on: 
-  Blob-like feature detection to constrain search space 
-  Feature-specific intensity context (intensity profiles) 
-  Hypotheses selection and scoring using l1-sparse 

coding 
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•  Image enhancement via 
Homomorphic filter  

•  Noise Suppression via 
bilateral filtering 

•  Interest Point detected via 
determinant of Hessian 

•  Two dictionary containing 
1.  Patches depicting tips DT 
2.  Patches depicting 

electrodes DE 
•  Enable tip discrimination 
•  Through reconstruction 

errors  

Training dictionaries for “tips” detection: In order to detect the catheter
tips, we instantiate the dictionaries DT and DE , respectively built from patches
depicting catheter tips and electrodes at various orientations. The patches are
normalized to have zero mean and unit standard deviation so that illumination
invariance and uniform probability of being selected during reconstruction are
ensured.

Training dictionaries for catheters detection: In our approach, detection
and tracking are coupled tasks. Supposing we want to track K catheters, we
train:

1. K dictionaries D1...K of positive templates capturing the appearances of each
catheter separately.

2. one dictionary DN of negative templates capturing typical background ap-
pearances.

The words djk of each dictionary Dk are associated with the specific poses
assumed by the k � th catheter during training. Furthermore, they are linked
to meta-data matrices Mj , whose purpose is to store the expected locations
of the catheter’s electrodes at specific poses. The coordinates stored in Mj are
normalized to a common orientation and expressed with respect to the catheter’s
tip position. The negative profiles stored in DN are used during tracking to
penalize candidate catheters whose appearances resemble the background. All
the appearances stored in the dictionaries consist of 1D intensity profiles of
fixed length r, sampled from training images. The intensity profiles, which are
implicitly rotation invariant, are normalized to have zero mean and unit standard
deviation.

2.3 Tracking by detection

We want to detect and track K catheters through a fluoroscopic sequence. The
output of the pre-processing step of our algorithm is a set of key-points X =
{x1...xp} (Figure 2a). Once small image patches yi are extracted around the xi

(Figure 2b), the ones that correspond to catheter tips can be discriminated by
solving the following two problems:

↵̂t = min
at

kDT↵t � yik22 + �1 k↵tk1 , s.t. ↵t � 0 (2)

↵̂e = min
ae

kDE↵e � yik22 + �2 k↵ek1 , s.t. ↵e � 0. (3)

Key-points associated to patches that have been reconstructed better with
DT than with DE , are regarded as catheter “tips” according to

T = {t1...tN�K} =
n

xi : kDT ↵̂t � yik22 < kDE↵̂e � yik22
o

. (4)

In the final step of our pipeline, we aim to formulate and score catheter
hypotheses (Figure 2c). Each catheter tip tn yields as many catheter hypotheses

•  Each Candidate catheter is 
represented by line joining  
n-th catheter tip and i-th 
electrode 

•  Intensities are sampled from 
lines 

•  Intensities reconstructed via 
each k-th catheter specific 
dictionary, solving: 

•  And dictionary encoding 
“negative” profiles: 

Fig. 2. Main steps of our algorithm. The output of each step is fed into the next.

as the number of neighboring key-point xi 2 X falling within a distance r. The
catheter hypotheses are intensity profiles lni extracted from lines of length r

originated in tn and intersected with each xi in turn. For each k = 1...K we aim
to solve the following problems:

↵̂

k
ni = min

↵k
ni

�

�

Dk↵
k
ni � lni

�

�

2

2
+ �3

�

�

↵

k
ni

�

�

1
, s.t. ↵

k
ni � 0 (5)

�̂

k
ni = min

�N
ni

�

�[DN ,Dj 6=k]�
k
ni � lni

�

�

2

2
+ �4

�

�

�

k
ni

�

�

1
, s.t. �

k
ni � 0. (6)

We aim to assess, through 5, the similarity of each catheter hypothesis with
the k-th catheter and, through 6, its similarity with the background or with
catheters having label different than k.

Furthermore, we identify the biggest element of ↵j of ↵̂k
ni, and we retrieve the

associated meta-data Mj = [m1...mQ], containing the expected, approximated
and pose specific (in terms of out-of-plane rotation of the catheter) coordinates
of the electrodes. When a catheter hypothesis corresponds to a true catheter,
mj and xi are spatially close. The minimal distances di = minq (kxi �mqk)
between each point xi (after normalization to the orientation of li) and the points
stored in Mj , are obtained.
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For each tip ti, the best catheter hypothesis that could be reconstructed using
Dk is retained (Figure 2d) and its cost Ê

k
ni is stored in a matrix C 2 RK⇥N

modeling associations between labels and catheter hypotheses. The hungarian
method is employed to select K catheter hypotheses yielding the lowest total
cost. Please note that the presence of the mata-data is not only beneficial to score
the catheter hypotesis but can be used to effectively recover missed electrodes
detections in a meaningful way.
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•  Candidate catheters are 
scored according to: 

•  Ep and En are reconstruction 
errors obtained via catheter 
specific and “negative” 
profiles dictionaries 

•  Multiple Catheters  
à Ungarian Algorithm for 
best global hypothesis 
selection 
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•  Tested on 2835  
images (20 sequences) 

•  Three catheters 
•  50 intensity profiles 

used for training 
•  ~ 97% global detection 

rate 
•  Average precision  

~ 0.5 mm ±  0.1 mm 

•  Dictionaries used for tips detection 
-  Dictionary DT containing patches collected around 

annotated tips 
-  Dictionary DE containing patches collected around 

annotated electrodes 
•  Dictionaries used for candidate scoring 

-  Dictionaries of intensity profiles collected from annotated 
catheters DK 

-  Meta-data: for each profile store electrodes positions  
-  Dictionaries of “negative” intensity profiles DN collected 

from background 

•  Each catheter specific dictionary word is associated 
with ground truth position of electrodes w.r.t. tip 

•  Therefore we can recover undetected electrodes 


