

Fully automatic catheter localization in C-arm images using 11-Sparse Coding

Fausto Milletari¹, Vasileios Belagiannis¹, Nassir Navab^{1,2}, Pascal Fallavollita¹

1. Chair for Computer Aided Medical Procedures, Technical University of Munich, Germany

2. Computer Aided Medical Procedures, Johns Hopkins University, USA

Motivation

Minimally invasive procedures rely on navigation Automatic Catheters tracking and detection ✓ Facilitates navigation ✓ Enables 3D reconstruction of the catheters w.r.t. Patient ✓ Reduces surgery time and exposure to radiations

Previous Work

- Methods based on Manual Initialization [1]
- Methods based on blob detection and geometric constraints [2]

Our contribution

- Robust detection and tracking method based on:
 - Blob-like feature detection to constrain search space
 - Feature-specific intensity context (intensity profiles)
 - Hypotheses selection and scoring using I1-sparse coding

Training Stage

- Dictionaries used for **tips** detection
 - Dictionary \mathbf{D}_{T} containing patches collected around annotated tips
 - Dictionary D_F containing patches collected around ____ annotated electrodes
- Dictionaries used for **candidate** scoring
 - Dictionaries of intensity profiles collected from annotated catheters \mathbf{D}_{κ} Meta-data: for each profile store electrodes positions Dictionaries of "negative" intensity profiles **D**_N collected from background

Results

- Tested on 2835 images (20 sequences)
- Three catheters
- 50 intensity profiles used for training
- ~ 97% global detection rate

Pre-processing step

- Image enhancement via Homomorphic filter
- Noise Suppression via bilateral filtering

Tips detection step

- Two dictionary containing •
 - 1. Patches depicting tips \mathbf{D}_{T}
 - 2. Patches depicting electrodes **D**_F
- Enable tip discrimination Through reconstruction **errors** $\|\mathbf{D}_T \hat{\alpha}_t - \mathbf{y}_i\|_2^2 < \|\mathbf{D}_E \hat{\alpha}_e - \mathbf{y}_i\|_2^2$

Candidate catheters scoring

- Each Candidate catheter is represented by line joining *n-th* catheter tip and *i-th* electrode
- Intensities are sampled from lines Intensities reconstructed via each k-th catheter specific dictionary, solving:

Average precision ~ 0.5 mm ± 0.1 mm

Hypotheses selection

Candidate catheters are scored according to:

 $\begin{cases} d E_P & \text{if } E_P \ge E_N \\ d \frac{E_P}{E_N - E_P} & \text{if } E_P < E_N \end{cases}$

Interest Point detected via determinant of Hessian

- **Meta-Data**
- Each catheter specific dictionary word is associated with ground truth position of electrodes w.r.t. tip
- Therefore we can recover undetected electrodes

References

[1] - Wu, W., Chen, T., Barbu, A., Wang, P., Strobel, N., Zhou, S.K., Comaniciu, hypothesis fusion for robust catheter tracking in 2d x-ray fluoroscopy. In: CVPR, IEEE (2011) 1097–1104

[2] - Ma, Y., Gogin, N., Cathier, P., Housden, R.J., Gijsbers, G., Cooklin, M., O'Neill, M., Gill, J., Rinaldi, C.A., Razavi, R., et al.: Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Medical physics 40(7) (2013) 071902

- $\hat{\alpha}_{ni}^{k} = \min_{\alpha_{ni}^{k}} \left\| \mathbf{D}_{k} \alpha_{ni}^{k} \mathbf{l}_{ni} \right\|_{2}^{2} + \lambda_{3} \left\| \alpha_{ni}^{k} \right\|_{1}$
- And dictionary encoding "negative" profiles:
 - $\hat{\beta}_{ni}^{k} = \min_{\substack{\beta_{ni}^{N} \\ ni}} \left\| \left[\mathbf{D}_{N}, \mathbf{D}_{j \neq k} \right] \beta_{ni}^{k} \mathbf{l}_{ni} \right\|_{2}^{2} + \lambda_{4} \left\| \beta_{ni}^{k} \right\|_{1}$

- Ep and En are reconstruction errors obtained via catheter specific and "negative" profiles dictionaries
 - Multiple Catheters \rightarrow Ungarian Algorithm for best global hypothesis selection

