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Abstract. Here we present blind source separation (BSS) as a new tool
to analyse multi-echo diffusion data. This technique is designed to sep-
arate mixed signals and is widely used in audio and image processing.
Interestingly, when it is applied to diffusion MRI, we obtain the diffusion
signal from each water compartment, what makes BSS optimal for par-
tial volume effects correction. Besides, tissue characteristic parameters
are also estimated. Here, we first state the theoretical framework; second,
we optimise the acquisition protocol; third, we validate the method with
a two compartments phantom; and finally, show an in-vivo application
of partial volume correction.

1 Purpose

The compartmental nature of tissue is generally accepted [1,7,11,14,17,19]. The
diffusion-weighted MRI (dMRI) signal depends on the relaxation times of the
compartments (T2i), their diffusivities (Di), volume fractions (fi) and proton
density (S0). The simultaneous contribution of these parameters results in a
lack of specificity to each independent effect and induces a bias [13,16] on the
diffusion metrics known as partial volume contamination. Specificity and partial
volume correction problems have been addressed independently [2,6,9,13,14].
Here we present blind source separation (BSS) as a new approach in dMRI that
separates mixed signals and yields tissue microstructure parameters, tackling
both problems at once.

2 Methods

2.1 Theory

This method is based on three assumptions: 1) tissue is made of water compart-
ments with different diffusivities [6,14]; 2) there is no water exchange [1]; and
3) each compartment has a different T2 [6,11,14]. Hence, we can describe the
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Fig. 1. (b-d) Mean error of the parameter estimations. (a) Relationship between the
slope of the columns of A and the estimation of T2 for several TE differences. When
the slope of the columns tends towards 1 (T2 � TE), the estimation of T2 is in the
asymptotic region and thus uncertain. This uncertainty can be observed in (b) where
the minimum error is larger than in (c,d) for fixed T22 and dismissed T22 effect. Notice
that the optimal TE pairs are marked by the red dashed lines. The red dots mark the
TE pair used for phantom validation experiment.

measured diffusion signal as the weighted sum of the compartmental sources.
These weights depend only on the volume fraction (f) and the ratio between the
compartmental T2i and the experimental TEj . Therefore, varying TE modifies
the weights and the system can be expressed as a BSS problem:

X(TE1, ∆, q)
...

X(TEM , ∆, q)

 =

 f1e
TE1/T21 · · · fNeTE1/T2N

...
. . .

...
f1e

TEM/T21 · · · fNeTEM/T2N


S1(∆, q)

...
SN (∆, q)

S0 (1)

X = AS, (2)

where X are the measurements for several TEs, A the mixing matrix, S the
compartmental diffusion source, M the number of measurements, and N the
number of compartments. Here, among the possible BSS solutions [18], and
unlike in [12], we use a sparsifying transform [15] followed by non-negative sparse
coding [8].

Here we focus on two-compartment environments (N = M = 2). Besides,
when T2i is larger than the TEs (i.e. CSF), the exponential term can be dis-
missed (exp(TEj/T2i) ≈ 1) and thus the T2i. Alternatively, T2i can be fixed to
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Fig. 2. (a) b0 image at TE1 = 26 ms with ROIs overlaid. Each ROI represents a
possible case: ROI1 (f ≈ 0.5), whole phantom; ROI2 (f ≈ 0), water; ROI3 (f ≈ 1),
yeast. (b) Signal intensity at TE = 0 ms. Volume fractions for the associated intra-
cellular (c) and extra-cellular (d) compartments. T2 for the intra-cellular (e) and extra-
celullar (f) cell compartments. Averaged multi-echo signal for each ROI (g,h,i) and the
corresponding T2 spectral fitting with NNLS and EASI-SM (j,k,l) compared with the
volume fractions and T2s estimated by BSS (T22 fixed at 0.6 s according to NNLS and
EASI-SM). Measured and separated diffusion signals for each ROI (m,n.o).

an expected value if prior knowledge is available (i.e. T2CSF ≈ 2 s 6). We study
the effect both approximations on the error of the parameter estimation.

We perform three experiments to: 1) find the range of optimal TEs; 2) vali-
date our method; and 3) show an application. Figure 4 contains the experimental
details.

2.2 Optimisation simulations

Tissue with two compartments was simulated with known T2s (22 and 597 ms)
for restricted and free diffusion signals [4]. We ran a simulation experiment vary-
ing TE and f (11 points) to calculate the mean error for all the parameter com-
binations and find the optimal TE region for free, fixed and dismissed T22.

2.3 Phantom validation

For validation, we used a phantom made of yeast and water (1:1) as a two
compartments sample [5]. A multi-echo experiment was acquired and T2s fitted
with NNLS [10] and EASI-SM [3]. Besides, BSS was applied on the diffusion
dataset fixing T22 = 0.6 s (NNLS). Finally, results from the three methods were
compared.
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Fig. 3. Comparison of DTI metrics with and without CSF contamination correction
by BSS. Histograms of values for the whole brain (i-l) show an increase of FA, and a
decrease of MD, RD and L1. Both effects are consistent with the elimination of the
CSF contribution. Besides, we observe a significant increase of FA in the borders of
the ventricles (zoomed area), where the contamination is expected to be high. Notice
that BSS mostly crops the ventricles and the external CSF and increases the contrast
of the white matter.

2.4 In vivo

A young female volunteer went under a DTI acquisition. CSF signal was ex-
tracted from the data using BSS, fixing T22 = 2 s [11]. Finally, DTI metrics
with and without correction were compared.

3 Results and discussion

3.1 Optimisation simulations

Fig 1a depicts T2 versus the slope of a column of A. As the slope tends towards 1,
the estimation falls into an asymptotic region increasing the uncertainty on the
T2 estimation. Therefore, fixing its value or dismissing its contribution reduces
the mean error of the parameter estimations (Fig. 1b-d). Moreover, fixing the
T2 value performs slightly better than dismissing its effect (Fig. 1c-d).

3.2 Phantom validation

Fig.2g-o compare the results of BSS against NNLS and EASI-SM in a ROI-based
analysis. Fig. 2j,l show agreement of T21 and f with NNLS and EASI-SM for
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Fig. 4. Experimental setups for the optimisation simulation, the phantom validation
and the in-vivo experiment.

ROI1 and ROI3. Besides, in Fig. 1m, S1 (associated with intra-cellular space)
describes a restricted diffusion signal similar as in Fig 2o, and S2 (associated
with extra-cellular space) shows a free diffusion behaviour as in Fig. 2n. Both
findings are in agreement with the simulations and indicate that BSS success-
fully separates signals from two compartments. Interestingly, BSS disentangles
measurements from ROI2 into two similar and equally scaled sources (Fig. 2n)
indicating that only one source exists. For illustration, Fig. 2b-f show that the
voxel-based maps generated with BSS are consistent with the ROI based analy-
sis.

3.3 In vivo

In Fig. 3, with BSS, we observe an increase of the fractional anisotropy (FA)
(a,e,i) and a reduction of the mean diffusivity (MD) (b,f,j), radial diffusivity
(RD) (c,g,k), and tensor’s main eigenvalue (L1) (d,h,l). This is consistent with
the elimination of the CSF contribution. Also, we notice that with BSS the
ventricles are extracted and white matter structures are better defined, especially
the voxels at the border of the ventricles (zoomed area).
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4 Conclusions

Here we show that BSS of diffusion data is a suitable technique to separate com-
partmental sources. We demonstrate that this method is appropriate for partial
volume correction. Besides, tissue volume fraction, relaxation and diffusivity pa-
rameters are estimated allowing for simultaneous tissue characterisation.
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