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Miguel Molina-Romero1,2, Pedro A. Gómez1,2, Shadi Albarqouni1, Jonathan I.
Sperl2, Marion I. Menzel2, and Bjoern H. Menze1

1 Computer Science, Technischen Universität München, Munich, Germany
2 GE Global Research Europe, Munich, Germany

Abstract. Diffusion metrics are typically biased by Cerebrospinal fluid
(CSF) contamination. In this work, we present a deep learning based
solution to remove the CSF contribution. First, we train an artificial
neural network with synthetic data to estimate the tissue volume frac-
tion. Second, we use the resulting network to predict estimates of the
tissue volume fraction for real data, and use them to correct for CSF
contamination. Results show corrected CSF contribution which, in turn,
indicates that the tissue volume fraction can be estimated using this joint
data generation and deep learning approach.
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Introduction

Cerebrospinal fluid (CSF) partial volume contamination poses a problem for de-
tecting changes in tissue microstructure [1], biasing the diffusion measurements
and derived metrics. CSF is mostly composed of free water, with isotropic dif-
fusion and diffusivity three times bigger than parenchyma [2].

FLAIR DWI [3] tackles the problem suppressing the CSF signal during ac-
quisition, at the cost of low SNR and longer acquisition times. Post-processing
solutions have focused on fitting a bi-tensor model; yet, this is an ill-posed prob-
lem with several regularizations [1][2][4][5][6][7].

In this work, we hypothesize and show that artificial neural networks (ANN)
can estimate the tissue volume fraction from the diffusion signal. Then the CSF
contribution can be corrected.

Methods

Theory: CSF has isotropic diffusion with diffusivity DCSF = 3× 10−3 mm2/s
[2] and can be computed from b:

SCSF = e−bDCSF , (1)
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The measured signal is the contribution of CSF and tissue (parenchyma)
components:

S = f · Stissue + (1− f)SCSF . (2)

Eq. 2 is ill-posed since Stissue and its volume fraction, f , are unknowns. In
this work, we present a deep learning approach that uses ANNs to estimate f ,
regularizing the problem:

Stissue =
S − (1− f)SCSF

f
. (3)

Generation of synthetic data: The training dataset were designed to teach
the ANN to detect CSF-like components mixed with a random signal (Fig. 1).
CSF signal was derived from Eq.1 and acquisition parameter b. Tissue signal
was randomly generated to simulate undetermined directions. The generation
steps were:

1. Straining
CSF was computed (Eq. 1).

2. Straining
tissue was randomly created simulating arbitrary directions: U(0, 1).

3. f was randomly generated: U(0, 1).
4. Straining was computed (Eq. 2).
5. The ANN was trained with input to match the output (Fig. 2).

Free water elimination: For comparison, we trained [8] five ANN architec-
tures in MATLAB (MathWorks, Natick, MA) for datasets with 32 directions
(one shell) and 64 directions (two shells), (Fig. 2). We chose the best performing
ANNs and compared them against Pasternak’s [4] and Hoy’s [6][9] methods.

Data acquisition: A volunteer went under a diffusion acquisition (GE 3T
MR750w, Milwaukee, WI) with 30 directions; 2 shells: b = 500, 1000 s/mm2;
four b = 0 s/mm2; TR/TE = 8000/80 ms; FOV = 200 mm; resolution 128x128;
ASSET = 2; and 25 slices with 3.6 mm thickness and no gap.

Pipeline:

1. Diffusion measurement.
2. Synthetic data generation from the experimental b (Fig. 1).
3. ANN training.
4. Volume fraction estimation: ANN(S)→ f .
5. Computation of Stissue (Eq. 3).
6. Fitting of the tensor model [10][11] on Stissue.

Results

The five ANN architectures (Fig. 2) showed similar performance (Fig. 3). ANNs
trained for two shells (ANN2s) outperformed those for one shell (ANN1s), due
to the better CSF encoding of two shells protocols. The best performing ANNs
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were L=2 and L=3 for one and two shells respectively, suggesting a potential
coupling between the number of hidden layers and shells.

DTI metrics after ANNs correction showed differences depending on the num-
ber of shells. ANN1s estimated larger volumes of CSF than ANN2s (Fig. 4c),
that resulted in larger FA (Fig. 4a) and lower MD (Fig. 4b) estimates. This
difference on the f estimate might be explained by the limited CSF information
contained in the single shell protocol. MD values for ANN2s (Fig. 4b) agreed
with the reference [2].

ANNs kept the anatomical integrity of the FA, MD, and fCSF maps (Fig. 5).
We observed the CSF correction in the enlargement of the corpus callosum and
fornix, and a general increment of FA in white matter, compared to the standard
DTI (Fig. 5a,c,e,f). CSF contribution was accurately removed from MD maps,
especially for ANN2s (Fig. 5g,h,k,l). ANNs1 and ANNs2 differ on the f estimate
in white matter (Fig. 5m,o), as previously explained.

Discussion

ANNs trained with synthetic data are capable of estimating the tissue volume
fraction from the measured diffusion signal. Their correction is equivalent to
well-established methods: Pasternak et al. and Hoy et al. (Fig. 4 and Fig. 5).

Using ANNs has a performance advantage. Their training time is in the order
of ten minutes and once trained they can be used for any data acquired with
the same protocol. CSF correction is faster than traditional methods. For one
shell, Pasternaks method ran for 38.4s and ANN1s for 0.7s (55x). For two shells,
Hoys method ran for 392.5s and ANN2s for 1.3s (302x). Besides, to improve
the accuracy, one can carefully design the training dataset to mimic only tissue
characteristics (here it is random), or incorporate prior knowledge of the bi-
exponential problem and noise model into the learning process [12].

Conclusions

This is the first application of ANNs to remove CSF contamination. We proved
that tissue volume fraction can be estimated by ANNs trained with synthetic
data, creating a new tool for free water elimination.

Acknowledgments

With the support of the TUM Institute of Advanced Study, funded by the Ger-
man Excellence Initiative and the European Commission under Grant Agree-
ment Number 605162.

References

1. C. Metzler-Baddeley et al. How and how not to correct for CSF-contamination in
diffusion MRI. Neuroimage, 59(2):1394–1403, 2012.



IV

2. C. Pierpaoli and D.K. Jones. Removing CSF Contamination in Brain DT-MRIs
by Using a Two-Compartment Tensor Model. In ISMRM, Kyoto, page 1215, 2004.

3. Guoying Liu, Peter Van Gelderen, Jeff Duyn, and Chrit T W Moonen. Single-shot
diffusion MRI of human brain on a conventional clinical instrument. Magn. Reson.
Med., 35(5):671–677, 1996.

4. O. Pasternak et al. Free Water Elimination and Mapping from Diffusion MRI.
Magn. Reson. Med., 730:717–730, 2009.

5. Z. Eaton-Rosen et al. Beyond the Resolution Limit: Diffusion Parameter Estima-
tion in Partial Volume. MICCAI, pages 605–612, 2016.

6. A.R. Hoy et al. Optimization of a Free Water Elimination Two-Compartment
Model for Diffusion Tensor Imaging. Neuroimage, (103):323–333, 2014.

7. M. Molina-Romero et al. Theory, validation and application of blind source sepa-
ration to diffusion MRI for tissue characterisation and partial volume correction.
In ISMRM, Honolulu, page 3462, 2017.

8. Martin T. Hagan and Mohammad B. Menhaj. Training Feedforward Networks with
the Marquardt Algorithm. IEEE Trans. Neural Networks, 5(6):989–993, 1994.

9. Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan
van der Walt, Maxime Descoteaux, and Ian Nimmo-Smith. Dipy, a library for the
analysis of diffusion MRI data. Front. Neuroinform., 8, 2014.

10. P J Basser, J Mattiello, and D LeBihan. MR diffusion tensor spectroscopy and
imaging. Biophys. J., 66(1):259–267, 1994.

11. Mark Jenkinson, Christian F. Beckmann, Timothy E.J. Behrens, Mark W. Wool-
rich, and Stephen M. Smith. FSL. Neuroimage, 62(2):782–790, 2012.
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Fig. 1. Generation of synthetic data. The vectorization of the diffusion MRI signal
along the diffusion directions (B) shows a tissue dependent pattern. SCSF is charac-
terized by Eq. 1 and can be calculated from the diffusion protocol (b values). Stissue

depends on the tissue anisotropy and acquired directions, thus it cannot be predicted.
We represented Stissue as a uniformly distributed signal, U(0, 1), with maximums where
b = 0 s/mm2. Tissue volume fraction, f , was also generated uniformly, U(0, 1). Finally,
Straining was computed as in Eq. 2, and presented to the input of the ANN, and f to
the output for training (Fig. 2).
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Fig. 2. ANN architectures. Five architectures with L = 1–5 were tested to determine
their performance. For L = 1 hidden layer, I1=I0/3. For L = 2 hidden layers, I1 = I0/2
and I2 = I0/4. For L = 3 hidden layers, I1 = I0/2, I2 = I0/3 and I3 = I0/4. For L
= 4 hidden layers, I1 = I0/2, I2 = I0/3, I3 = I0/4 and I4 = I0/5. For L = 5 hidden
layers, I1 = 2 × I0/3, I2 = I0/2, I3 = I0/3, I4 = I0/4 and I5 = I0/5. The number
of inputs, I0, matched the number of diffusion directions and non-diffusion-weighted
volumes. In these experiments, we used I0 = 32 for one shell and I0 = 64 for two shells.
One million signal combinations and volume fractions were generated for training, 20%
were separated for validation and 20% for testing.
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Fig. 3. Performance comparison for the five ANN architectures. We generated
5000 artificial diffusion signals for FA = 0–1 and f = 0–1. They were mixed as in Eq. 2
and Fig. 1 and presented to the trained ANNs to estimate f̂ . We plot the error (f − f̂)
of the estimated volume fraction (f̂) against its true value (f), their correlation (ρ),
and the standard deviation of the error (σ). For ANN1s, we found the largest ρ and
minimum σ for L = 2; and L = 3 for ANN2s. We used L=2 for the one shell and L=3
for two shells for in vivo experiments.
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Fig. 4. Comparison of FA, MD and f histograms. FA (a) and MD (b) were
consistent for standard DTI of one and two shells, fixing a common reference. ANN1s
showed larger correction of FA. Hoys method did not correct FA = 0.15–0.45. ANN2s
and Pasternaks method showed stable correction for all FA values. However, ANN1s
and Pasternaks method suffered from over regularization of MD (b), with peaks off the
reference (0.7 mm2/s). Volume fraction estimates (c) for ANN1s and Pasternaks were
similar, but the later struggled to estimate small f . ANN2s estimated less CSF volume
(c) in white matter than other methods (Fig. 5o).
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Fig. 5. Comparison of FA, MD and fCSF maps. ANNs maps showed anatomical
coherence with standard DTI, Pasternaks and Hoys methods. We observed an enlarge-
ment of the corpus callosum and recovery of the fornix in FA for all the methods (a-d)
comparted to the standard (e-f). CSF contribution was removed from all the MD maps
(g-j vs k-l). MD maps for two shells methods (i-j) contained more information than one
shell (g-h). Single shell methods (m-n) showed a larger CSF volume estimate in white
matter. ANN2s estimated a lower and more homogeneous CSF volume (o) than Hoys
(p) in white matter.


