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Abstract

Purpose: The compartmental nature of brain tissue microstructure is typically studied

by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal repre-

sentations or biophysical models, while MR relaxometry and correlation studies are based on

regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for char-

acterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs

with blind source separation (BSS). This framework yields proton density, relaxation times, vol-

ume fractions and signal disentanglement, allowing for separation of the free-water component.

Theory and Methods: Diffusion experiments repeated for several different echo times,

contain entangled diffusion and relaxation compartmental information. These can be disentan-

gled by BSS using a physically constrained non-negative matrix factorization.

Results: Computer simulations, phantom studies, together with repeatability and repro-

ducibility experiments demonstrated that BSS is capable of estimating proton density, com-

partmental volume fractions and transversal relaxations. In vivo results proved its potential to

correct for free-water contamination and to estimate tissue parameters.

Conclusion: Formulation of the diffusion-relaxation dependence as a BSS problem intro-

duces a new framework for studying microstructure compartmentalization, and a novel tool for

free water elimination.

Keywords: brain microstructure, diffusion MRI, blind source separation, free-water elimina-

tion, MR relaxometry, non-negative matrix factorization
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Introduction

More than fifty years have passed since Stejskal and Tanner published their early research on pulsed

gradient spin-echo (PGSE) (1). Thereafter, diffusion weighted imaging (DWI) became an essential

tool for non-destructive tissue microstructure characterization. The pioneering studies on ex vivo

tissue and simulations of Krägger (2), Latour et al. (3), Szafer et al. (4), and Stanisz et al.(5)

established the theoretical basis of the compartmental model of neural tissue.

These early contributions were later translated to target specific biomarkers for in vivo human

studies. White matter (WM) anisotropy became fiber orientation with the introduction of diffusion

tensor imaging (DTI) (6). The composite hindered and restricted model of diffusion MR imaging

(CHARMED) (7) extended DTI to two compartments with restricted and hindered diffusion be-

havior. Using the same principles, the neurite orientation dispersion and density imaging (NODDI)

model (8) introduced fiber orientation dispersion metrics and added an isotropic compartment.

Additionally, axon diameter was addressed by AxCaliber (9) and ActiveAx (10). These and other

approaches rely on diffusion signal representations or a variety of geometric biophysical assumptions

about the underlying tissue compartments, producing a wide range of possible configurations (11).

In parallel with the development of multicomponent diffusion tissue models, relaxometry ad-

dressed the compartmental nature of tissue microstructure from a different perspective (12). Multi-

echo spin echo (SE) experiments combined with regularized inverse Laplace transforms (ILTs) for

multi-exponential fitting showed the presence of multiple water compartments in the tissue. Non-

negative least squares (NNLS) (13) is the current gold standard for computing a regularized discrete

ILTs for several components (14, 15). Alternatively, the exponential analysis via system identifica-

tion using Steiglitz–McBride (EASI-SM) for multicomponent estimation was introduced by Stoika

et al. (16, 17). Additionally, mcDESPOT (18), used a spoiled gradient-recalled echo and a balanced

steady-state free precession to yield relaxation, volume fraction, and water exchange parameters for

three compartments.

Nevertheless, the paths of diffusion MRI and MR relaxometry have become entangled over the

years. Studies on ex vivo nerves with a diffusion-weighted Carr-Purcell-Meiboom-Gill (CPMG)

sequence (19, 20) showed the relationship that existed between compartmental T2 decay and dif-

fusivity. However, diffusion-weighted CPMG experiments need long acquisition times and high

specific absorption rates, which makes them unsuitable for human in vivo studies. Typically, two-

dimensional ILTs were used to fit the data, but this approach is highly ill-posed and requires large
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amounts of data for stabilization. Recently, Benjamini et al. (21) introduced the marginal distri-

butions constrained optimization (MADCO), a non-CPMG compressed-sensing based solution that

reduced the amount of data necessary for NMR diffusion-relaxation correlation experiments. Kim

et al. translated diffusion-relaxation correlation spectroscopy (DR-COSY) (22, 23) into imaging

(DR-CSI) (24) using spatial regularization to reduce the amount of necessary data and stabilize

the ILTs. However, they require specific diffusion protocols with increasing b-values along a unique

diffusion direction and repeated echoes or inversion times. Other alternatives combine diffusion

models with multicompartmental relaxation. For instance, inversion recovery DWI has been used

to identify fiber populations (25, 26), and WM integrity has been characterized using the axonal

stick model and multiple echo times (TE) (27).

Compartmental analysis of the diffusion signal is intimately related to a recurring issue: cere-

brospinal fluid (CSF) contamination (28, 29). All the existing contributions agree on using a bi-

tensor signal model: parenchyma and CSF. However, this is an ill-posed problem for a single-

shell and ill-conditioned for multiple-shell acquisitions (30). Spatial regularization was proposed by

Pasternak et al. (31), relying on the local smoothness of the diffusion tensor. Later, a protocol

optimization for multiple shells was presented by Hoy et al. (32), eliminating such a constraint.

Other solutions regularize the problem by adding priors (33) or finding the best fit to the model (34).

Nevertheless, the CSF contribution to the diffusion signal depends on the TE. Thus, disentangling

the tissue CSF volume fraction requires an approach that includes T2 compartmental dependencies

(33, 35, 36).

We propose a general framework for studying diffusion and relaxation characteristics in tissue

microstructures. We call it general because it does not model the compartmental diffusion behavior.

It replaces the ILTs by a blind source separation (BSS) technique, reducing the minimum number of

distinct echo times required to the number of compartments in the tissue, less than for ILTs-based

methods. Other than the requirement to measure at more than one echo time, this framework

is diffusion protocol-agnostic, and can be used in combination with any protocol of interest. Our

approach quantifies proton density (PD), compartmental volume fractions, and transverse relaxation

times. Importantly, it handles diffusion signals from each compartment independently, allowing for

individual analyses, and thus performs CSF partial volume correction as a direct application.
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Theory

Following the Bloch-Torrey equation, we describe the diffusion signal as a weighted sum of the

signals from the compartments comprising the tissue:

X(TE, b,g) = S0

M∑
i=1

fie
− TE

T2i Si(b,g). [1]

Where b summarizes the gradient effects (1, 37) and g defines the gradient directions. Here,

the compartmental diffusion sources Si(b,g) are weighted by their volume fraction, fi, TE and T2i .

The exponent (the ratio between TE and T2i) scales the contribution of each compartment to the

acquired signal. Therefore, measuring at different TEs produces distinct diffusion signals (38) with

different weights from the compartmental signal sources.

As a result, the signal of a single voxel measured with a protocol that accounts for multiple

echoes can be formulated as:
X1(TE1, b,g)

...

XN (TEN , b,g)

 = S0


f1e

−TE1
T21 · · · fMe

−TE1
T2M

...
. . .

...

f1e
−TEN
T21 · · · fMe

−TEN
T2M



S1(b,g)

...

SM (b,g)

 , [2]

where Xj (j ∈ [1, N ]) are the diffusion signals acquired for the N TEs. fi and T2i (i ∈ [1,M ]) are

the volume fraction and T2 decay for the ith compartment, respectively, and M is the number of

compartments.

Equation 2 can be expressed in matrix form as X=AS. This is a matrix factorization of the

measurements, X ∈ RN×n
≥0 , into two new matrices: the mixing matrix, A ∈ RN×M

≥0 , which is defined

by the experimental TEs, the compartmental volume fractions f , and T2 decays; and the sources

matrix, S ∈ RM×n
≥0 , representing the diffusion sources in each sub-voxel compartment. Interestingly,

we noticed from the definition of A that the ratio between the experimental TEs and T2i determines

the direction (or slope for N = 2) of the ith column vector of the mixing matrix. Therefore:

T2i =
TEk − TEl

log( ali
aki

)
, [3]

where TEk < TEl, and aki and ali are the kth and lth elements of the ith column of the mixing

matrix, respectively.
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Additionally, diffusion is an attenuation contrast and as such, S(b = 0) = 1, allowing Eq. 2 to

be rewritten as


X1(TE1, b = 0,g)

...

XN (TEN , b = 0,g)

 = S0


e

−TE1
T21 · · · e

−TE1
T2M

...
. . .

...

e
−TEN
T21 · · · e

−TEN
T2M



f1
...

fM

 , [4]

which, together with
∑M

i=1 fi = 1, allows us to solve for the volume fractions and proton density

(fi and S0) when the number of measurements matches the number of compartments (M = N).

Contrary, when there are more compartments than measurements (M > N), Eq. 4 is undetermined

and fi and S0 cannot be estimated.

Factorizing X into A and S is known as blind source separation (BSS) (39) of mixed measure-

ments into their generating sources (Figure 1). For BSS to identify these sources, they have to be

distinct: Si 6= Sj ∀ i 6= j. Therefore, based on previous work (19, 20), we assumed them to be

different.

There are four main approaches to BSS: principal component analysis (PCA) (40), indepen-

dent component analysis (ICA) (41), non-negative matrix factorization (NMF) (42) and sparse

component analysis (SCA) (43). PCA is not an applicable solution for this problem because the

diffusion sources are not orthogonal. ICA assumes, as prior knowledge, that the signal sources are

statistically independent and have non-Gaussian distributions. However, diffusion MRI signals are

correlated with the tissue structure and temperature and they present non-Gaussian distributions

only in restricted compartments, meaning that ICA is not suitable either. We previously explored

SCA (44) and found that even though the results for simulations and real data for specific diffusion

protocols were encouraging, finding a sparse and disjoint domain to meet the method’s requirements

was not always possible for arbitrary protocols. We observed the same issue for a version of NMF

that enforces sparsity similarly (36).

In the present work, we took a BSS approach based on NMF (assuming X, A, and S are

non-negative). Instead of depending on sparsity, we used a popular NMF solver: the alternating

least squares algorithm (ALS) (42, 45, 46). We chose ALS instead of the multiplicative update

algorithm (47) due to its faster convergence (48). We extended ALS to account for physically

plausible limitations, resulting in Algorithm 1, which we refer to as constrained alternating least

squares (cALS). Compartmental T2 values available from the literature (15) allowed us to limit the

solution space of the columns of A (Eq. 3). Additionally, for in vivo data, the diffusion behavior
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of CSF is known to be approximately isotropic with 3× 10−3 mm2/s diffusivity (28), adding extra

prior information. These constraints and priors make cALS converge toward physically realistic

solutions (Figure 1).

Algorithm 1 Constrained Alternating Least Squares (cALS)

1: procedure cALS(X)

2: Use priors on T2 and experimental TEs to initialize the direction of the columns of A at the

central T2 value of the solution space of each column.

3: while iter < maximum iterations do

4: Solve for S in ATAS=ATX. . Least Squares.

5: Set all negative elements of S to 0. . Non-negativity.

6: [Fix the one element of S to a known signal.] . If analytical expression is known.

7: Solve for A in SSTAT=SXT . . Least Squares.

8: Set all negative elements of A to 0. . Non-negativity.

9: Constrain the directions of the columns of A. . T2 consistency.

10: errori = ‖A− SX‖2

11: if errori < tolerance then

12: break . Check for data consistency.

13: end if

14: if errori >= errori−1 then

15: break . Check for convergence.

16: end if

17: end while

18: return A

19: end procedure

Constrained ALS initializes the column vectors of A at the central T2 of their given constraints,

avoiding random initializations in regions that are not physically feasible and increasing the stabil-

ity. After each iteration, cALS verifies that the resulting T2 of each column vector is between its

boundaries, and sets it back to the center of its constrained solution space otherwise.

Following the factorization of A, we estimated T2 and f for each compartment, (Eqs. 3 and 4),

and recalculated the real A. This is important since the column norms of the factorized A do not

tell us about the volume fractions. Then, S=A−1X is calculated.
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An iterative algorithm like cALS inverts A repeatedly, requiring it to be non-singular and

introducing a new condition. From Eq. 2, A is non-singular when T2i 6= T2j ∀ i 6= j. Hence, in

accordance with the literature (19, 20), we assumed that the transverse relaxation times for each

compartment were distinct.

An open source implementation can be found in https://github.com/mmromero/dwybss.

Methods

Simulations

NMF is known for converging to local minima (45). Thus, it is necessary to asses the impact of

the constraints. We ran simulations with Rician noise for signal-to-noise ratio (SNR) levels of 50,

100, and 150 at the non-diffusion weighted volume and minimum TE. We accounted for T2 values,

volume fractions, and diffusivities supported by literature (15, 28).

Two compartments

Two compartments were simulated mimicking IE and CSF water. The diffusion protocol included

one non-diffusion weighted volume and 30 directions. We modeled diffusion as a Gaussian process

(see Figure S4). For all the simulations we used T2CSF = 2000 ms, and varied T2IE from 50–150 ms

in 30 increments (15). Values of fIE = 0.25, 0.5 and, 0.75 were used. We fixed TE1 = 60 ms, and

explored TE2 from 70–150 ms in 31 increments. We defined ∆TE = TE2 - TE1. The performance

of the cALS algorithm was tested under the following conditions:

1. Overlapped T2 constraints: T2IE and T2CSF were bounded from 0–1000 and 0–3000 ms

respectively, and no assumption on SCSF was made (Figures 2 and S5).

2. Overlapped T2 constraints and prior SCSF : T2IE and T2CSF were bounded from 0–1000

and 0–3000 ms respectively. CSF diffusivity was assumed to be isotropic with value 3 × 10−3

mm2/s (Figure S10).

3. Separated T2 constraints: T2IE and T2CSF were bounded from 0–300 and 300–3000 ms

respectively, and no assumption on SCSF was made (Figure S11).

4. Separated T2 and prior SCSF : T2IE and T2CSF were bounded from 0–300 and 300–3000 ms

respectively. CSF diffusivity was assumed to be isotropic with value 3 × 10−3 mm2/s (Figure

https://github.com/mmromero/dwybss
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S13).

5. Fixed T2CSF : T2IE was bounded from 0–300 ms. T2CSF was fixed to 2000 ms. No assumption

on SCSF was made (Figure S12).

6. Fixed T2CSF and prior SCSF : T2IE was bounded from 0–300 ms. T2CSF was fixed to 2000

ms. CSF diffusivity was assumed to be isotropic with value 3 × 10−3 mm2/s (Figures 3 and

S6).

We repeated the last simulation for values of fIE = 0 and 1, accounting only for IE or CSF

(Figures 4 and S7).

Finally, intra-cellular (IC) and extra-cellular (EC) T2 values are similar (15). We assessed the

potential of BSS to separate them. Two diffusion signals were generated (see Figure S14). We used

fIC = 0.25, 0.5, and 0.75. The T2IC vales ranged from 50–90 ms in 30 increments, and T2EC =

100 ms. TE1 was fixed to 60 ms and TE2 was varied between 70–150 ms in 31 increments. No

assumption was made on the diffusion signals, and T2 constraints were defined between 0–150 and

0–200 ms for IC and EC respectively (Figures 5 and S8).

We simulated 1000 times each combination of parameters, and reported the mean value of the

absolute error of f , the relative error of T2, and their standard errors (SEM).

Three compartments: searching for myelin

We incorporated a fast decaying component to model myelin, and fixed the T2 of myelin (T2M ) to

15 ms (15). T2IE was varied from 50–150 ms in 30 increments, and T2CSF = 2000 ms. To account

for short T2 components we needed to reduce the minimum TE of our simulations (see phantom

experiments in the supporting material). Therefore, we fixed TE1 = 10 ms, TE3 = 150 ms, and

varied TE2 from 20–140 ms in 31 increments. We defined ∆TE = TE2 - TE1. Three cases were

explored: 1) fM = 0.1, fIE = 0.6; 2) fM = 0.2, fIE = 0.5; and 3) fM = 0.3, fIE = 0.4; keeping

fCSF = 0.3 for all of them. Simulations were run for two cases:

1. Overlapped T2 constraints: T2M , T2IE , and T2CSF were bounded from 0–40, 0–300, and

0–3000 ms respectively. No assumption on SCSF was made.

2. Separated T2 constraints, fixed T2CSF and prior SCSF : T2M and T2IE were bounded

from 0–40 and 41–300 ms respectively, while T2CSF = 2000 ms. CSF diffusivity was assumed

to be isotropic with value 3 × 10−3 mm2/s (Figures 6 and S9).
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Each combination of parameters was simulated 1000 times. The mean value of the absolute

error of f , the relative error of T2, and their SEM were reported.

In vivo clinical data: free-water elimination

We aim to show that BSS has potential applications in clinical settings. To this end, we ran an

experiment to analyze its performance for estimating tissue parameters and correcting for CSF

contamination.

Data acquisition

Two volunteers, a male (age 28 years) and a female (age 24 years) were scanned in a 3.0 T GE

MR750w (GE Healthcare, Milwaukee, WI). The in vivo study protocol was approved by our insti-

tutional review board and prior informed consent was obtained. We acquired seven diffusion PGSE

echo planar imaging (EPI) volumes for TE values from 75.1–135.1 ms in 10 ms increments. The

following parameters were constant: FOV = 240 mm; 4 mm slice thickness; TR = 6000 ms; 96 × 96

matrix size; ASSET = 2; and 30 directions. Additionally, we measured fluid-attenuated inversion

recovery (FLAIR) SE EPIs for 17 equally-spaced TEs ranging from 20–260 ms. The same imaging

parameters were used as for the diffusion experiments but with no acceleration (ASSET = 0).

Data analysis

Diffusion data for all TEs were first registered with FSL FLIRT (49) to the shortest TE volume.

We then processed them with BSS in pairs (M = N = 2) with a fixed short TE of 75.1 ms. The

long TE was increased from 85.1 to 135.1 ms for a total ∆TE of 60 ms (Figures 7 and 8). We

used literature CSF values (T2CSF = 2 s and DCSF = 3 · 10−3 mm2/s) as the prior knowledge, and

constrained the possible values of T2IE between 0–200 ms (15, 28). We report maps of the BSS

relative factorization error (Figure 7a, 7b and 7g), CSF volume fraction (Figure 7c and 7h), proton

density (Figure 7d and 7i), T2IE (Figure 7e and 7j) and number of compartments (Figure 7f and

7k).

For reference, FLAIR multi-echo EPI data were also registered with FLIRT to the shortest TE

non-diffusion weighted volume. The signal decay for each voxel was then matched to a dictionary

of mono-exponential decays from 0–300 ms with a grid of 1 ms. We compared this map against the

BSS T2IE map (Figure 8).
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We defined the relative error of the matrix factorization for the in vivo data as follows:

ε =
|X− S0AS|2
|X|2

. [5]

This is a measure of the performance of BSS for each voxel. Given that we calculated S=A−1X,

this error formulation is sensitive to: 1) breaches of the BSS conditions due to artifacts, and 2)

numerical instabilities due to the condition of A. Point one is the result of B0 drift, subject motion,

flow, and eddy currents. These effects produce a violation of the BSS condition, making the signal

sources different between TE measurements. The second point is the error amplification factor. A

high ε denotes that the factorization could not find a solution within the constrained space and

thus, results might not be trustworthy.

Finally, BSS does not model the compartmental diffusion signal. However, to demonstrate a sim-

ple way to perform compartment-independent analysis and correct for CSF contamination, we fitted

the measured and disentangled signals to the DTI model (6). We fitted the measured diffusion vol-

umes at the shortest TE, and the BSS separated signals for the IE and CSF compartments to a mono-

exponential model using standard linear regression (FSL FDT Toolbox (http://www.fmrib.ox.ac.uk/fsl)).

For comparison, bi-exponential models using Pasternak’s and Collier’s methods were used (Figures

9, S15 and 10). Fractional anisotropy (FA) and mean diffusivity (MD) maps were derived for each

fit.

Results

Simulations

Two Compartments

The convergence area is the region where the mean relative error of T2IE is lower than 0.1 per unit

(p.u). Its shape for all the simulations (Figures 2, 3, 4, 5, S5, S6, S7, S8, S10, S11, S12, and S13)

follows two effects. First, the condition number of the mixing matrix limits the lower bound of ∆TE

– similar TE values produce more linearly dependent column vectors of A –. And second, the SNR

plays a double role, it increases the error regions where A is bad-conditioned (small ∆TE), and

limits the maximum ∆TE due to the T2 decay of the signals. Thus, when the SNR increases the

convergence area grows and the region of minimum SEM, denoting an improvement on the stability

of the algorithm. The convergence area also depends on the IE volume fraction. The larger is the
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contribution of IE, the better is th T2IE estimate.

Adding priors on SCSF improves the T2IE estimate, even at SNR = 50 (Figure S10). Bounding

the solution space into non-overlapping regions also improves the results of T2IE (Figure S11),

although less than combining it with CSF prior knowledge (Figure S13). The T2CSF estimate shows

a 0.17 p.u. due to the small variation of SCSF along the acquired TEs (4.4 %). This is corrected

when relaxometry prior is incorporated (Figures 3 and S12). The comparison between Figure 2

and 3, show the benefit of including prior knowledge into the factorization algorithm, specially at

low SNR. Then, the accuracy of the estimates will be influenced by the selection of ∆TE, the T2

boundaries, the SCSF prior, and the expected T2IE and fIE values. We used literature values for

T2IE , T2CSF (15), and SCSF (28). According to Figures 3a and 3b one needs a minimum ∆TE of

26 ms for an accurate fIE estimate. Interestingly, fIE is a reliable parameter that tell us about the

bias of T2IE , the larger fIE is, the more accurate T2IE becomes (3a and 3c).

For one tissue compartment BSS is able to precisely (SEM < 0.01) estimate the volume fraction

with mean absolute error below 0.1 when ∆TE > 35 ms (Figure 4a and 4b). When fIE = 1 the

area of mean convergence of the T2IE estimate is almost independent from ∆TE (4c and 4d). We

found an equivalent result for the mean relative error of T2CSF when fIE = 0 (4e and 4f), although

in this case it comes from the T2CSF prior. Notice the large error and instability of T2IE and T2CSF

in the opposite cases, fIE = 0 and fIE = 1 respectively (Figures 4c and 4e). This results when BSS

tries to find a component that is not in the tissue and thus, cannot be estimated.

For two components with similar T2 values and little priors (IC and EC) cALS losses efficiency.

The volume fraction estimates are biased (Figure 5a), and T2IC shows a narrow convergence region

that is almost independent of ∆TE. The lower bound of this region is limited by the proximity of

T2IC and T2EC that worses the condition of A. The upper bound results of the lack of prior on the

signal of one of the compartments, in contrast with the SCSF prior used before (compare Figures 2

and S10) that increased the convergence area towards lower T2 values.

Three Compartments: searching for myelin

The convergence area is the one where the errors of fM , fIE , T2M , and T2IE are lower than 0.1

in absolute value for the volume fractions and per unit for T2. Figures 6a, 6c, 6e, and 6g show

and optimal ∆TE = 36 ms. Notice that when ∆TE increases the error of the myelin parameters

grows due to the reduction of the myelin contribution to the second TE, worsening the SNR of that

component (Figures 6a and 6e). Since all the volume fractions add up to one, errors on fM increase
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the error on fIE (Figures 6a and 6c). The estimate of T2IE is dependent on SNR and its volume

fraction, compounding its calculation for SNR < 50 and fIE < 0.4 (Figure S9g lower left corner).

One should notice that including a third compartment increases the condition number of A,

rising the instability of the factorization (Figure 6f). See the phantom experiments in the supporting

material.

In vivo clinical data: free-water elimination

We observed that the mean relative error for the whole brain (〈ε〉) decreased as ∆TE increased

(Figures 7a, 7b, and 7g), in agreement with phantom findings (see supporting material) and the

results of the simulations for two compartments. Interestingly, for the maximum ∆TE, we can see

that the number of compartments is two in regions next to the ventricles and the cortex, but one

inside the ventricles and in some deep WM areas (Figure 7k). It is also noteworthy that the pure

CSF areas (e.g., the ventricles) have been removed from the T2IE map (Figures 7e and 7j), while

the opposite is observed in the CSF volume fraction (Figures 7c and 7h), indicating a successful

disentangling effect.

We compared the BSS-estimated T2IE maps for increasing ∆TE values with the reference map

obtained from the FLAIR multi-echo SE data. We noted how the structural similarity index (50)

increased and the mean relative error decreased as ∆TE grew (Figure 8a and 8b). Additionally, the

histograms for both subjects tended toward the reference as the difference between the short and

long TEs grew. This reflects an underestimation of T2IE for small ∆TE values that can be explained

by Eq. 3 and Figure S1c. Moreover, the FLAIR T2 map showed high values in the ventricles, possibly

indicating imperfect CSF suppression and, thus, slightly increased reference values (Figure 8a, 8c,

and 8d).

FA and MD maps and histograms were calculated from the BSS IE and CSF disentangled signals

for both subjects (Figures 9, S15, and 10). These maps displayed an overestimation of the CSF

volume fraction for low ∆TE values (the low FA peak in Figures 9b and S15b was removed). This

resulted in a compensation effect for the previously shown underestimation of T2IE . Additionally, the

FA histograms (Figures 9b and S15b) showed a tendency toward higher FA values and a reduction

of the low FA peak associated with free water. At long ∆TE values, FA seems to tend toward a

stable distribution. We also observed an enlargement of the corpus callosum and a general recovery

of peripheral WM tracts and the fornix in the colored FA maps (Figures 9a and S15a).

Additionally, on the MD histograms for IE water (Figures 9d and S15d) we found a reduced
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number of voxels with diffusivities greater than 1×10−3 mm2/s. In contrast, the main peak at

0.7×10−3 mm2/s, associated with the parenchyma, remained in its original position, indicating that

IE water represents a non-CSF tissue. This MD reduction was also visible in the maps (Figure

9c and S15c). Finally, the MD histograms for CSF water (Figure 10) showed a tendency toward

3× 10−3 mm2/s as ∆TE increased, in agreement with the literature (28). All these findings agreed

with a disentangling of IE and CSF signals and thus, a correction of the free water partial volume

effect in the diffusion signal.

Discussion

Stability

Four main approaches exist for the BSS problem (ICA, PCA, NMF, and SCA). Choosing the

appropriate method depends on the prior knowledge of the signal sources. In our experiments, we

relied on NMF, using a constrained version of the ALS algorithm (cALS). Others explored these

algorithms before. Pauca et al. (51) used low-rank and sparsity constraints to distinguish semantic

features in text mining, and later (52) smoothness regularization to identify space objects from

spectral data. Gao and Church (53) also employed sparseness for cancer class discovery through

gene clustering, which was later extended by Kim and Park (54) improving the balance between

accuracy and sparseness through regularization. They also introduced a variation based on the active

set method (55) and low-rank approximation (56). Liu et al. (57) incorporated label information to

create a semi-supervised matrix decomposition method. Sun and Févotte (58) introduced a version

based on the alternating direction method of multipliers (59) (ADMM), that was further stabilized

by Zhang et al. (60).

Supported by previous work, we presented a biophysical inspired solution to constrain the

diffusion-relaxometry NMF compartmental problem. Essentially, our cALS algorithm imposes two

constraints: 1) the rows of A must follow exponential relationships (relaxometry); and 2) when

the analytical expression of one component is known (i.e. CSF) the corresponding row in S is fixed

(diffusion). The stability of cALS is linked to the condition of A and SNR; an ill-conditioned mixing

matrix will lead to error propagation due to numerical instability. We optimized the experimental

TEs to reduce the condition number of A for literature values of T2. However, further research

based on ADMM might yield better results.

We ran extensive simulations for two compartments at clinical TE values with different priors,



Submitted to Magnetic Resonance in Medicine

and three compartments at lower TEs. These simulations highlighted the importance of choosing

literature supported priors to improve the convergence, especially at low SNR. Constrained ALS

converges when the number of compartments in tissue is equal or lower than the expected, but it

looses performance for species with similar T2.

Phantom experiments (see supporting material) agreed with simulation results, validating that

BSS was able to accurately estimate T2 for one compartment and separate diffusion signal sources

and estimate T2 and f for two compartments. However, they also showed that scaling the cALS

algorithm to three compartments, including fast T2 decaying species, is unstable in the range of the

clinically available TE values.

Finally, repeatability and reproducibility analyses (see supporting material) show that cALS

yield consistent results across repetitions and subjects, highlighting its stability.

Relaxation time and volume fraction estimates

BSS provides the means to estimate T2 relaxation values and volume fractions. Interestingly, only a

number of TE repetitions equal to the number of compartments that are assumed to be in the tissue

is necessary. This results of the substitution of the ILTs by BSS, in comparison to other techniques

(15, 17, 21, 24). We found a good agreement between the T2IE estimates of the FLAIR multi-echo

SE for 17 TEs and those of BSS for 2 TEs. In this sense, all the measurements along the diffusion

space are considered for both TEs, incorporating redundancy and reinforcing the estimation of

T2. The SNR for the in vivo data were 147 and 104 for subjects one and two. According to the

simulations at ∆TE = 60 ms, the expected absolute error for the volume fraction estimate is below

0.03, meaning that T2IE is highly reliable in white matter areas, and lesser in the CSF borders.

Myelin detection

Simulations proved that our method has the potential to disentangle three compartments by reduc-

ing the minimum TE in diffusion experiments. As a result, myelin water could be incorporated into

the model (Figure 6). However, we are prevented from conducting such experiments by gradient

performance on clinical scanners.

Disentangling the diffusion sources and free water elimination

Unlike other multicompartment diffusion models (2, 7, 8, 11) or more recent contributions (27, 35),

our approach does not model compartmental diffusion. Our framework instead relies on three
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assumptions: 1) microstructural water compartments have distinct T2 relaxation times (14, 15);

2) each have different diffusion characteristics (19, 20); and 3) the effects of the water exchange

are negligible on the timescale of our experiments (9, 61). Furthermore, our solution is diffusion

protocol-agnostic (only two TEs and one non-diffusion weighted volume are necessary), allowing for

flexibility in the design of the acquisition protocol, which might include any number of diffusion

directions and b-values. This gives it an advantage over diffusion-relaxation correlation techniques

based on regularized inverse Laplace transforms (21, 24).

A promising application of the protocol-agnostics nature of our framework is correcting for free

water contamination. Recently Collier et al. (35) included TE dependence in their bi-exponential

diffusion tensor model to regularize the fitting problem. However, they fitted the bi-exponential DTI

model directly. Contrary, our solution does not assume any particular diffusion model, we instead

separated the signal from each compartment, allowing more flexible and independent study. In this

regard, analysis of the signal associated with the CSF compartment can be seen as a disentanglement

quality assurance metric (Figures 9, S15, and 10), or in brain tissue applications, a general indicator

of the goodness-of-fit for IE and CSF.

We fitted our data to Collier’s model (35) without reaching convergence, which resulted due

to our single-shelled dataset. Comparison of BSS with Pasternak’s free-water elimination (FWE)

method (31) is show in Figures 9 and S15. We observed a good agreement between BSS for ∆TE =

60 ms and Pasternak’s FWE for FAs between 0–0.2 and 0.8–1. In the middle FA range both methods

disagree, BSS shows an homogeneous correction, while Pasternak’s results follow the standard DTI

fit from 0.2 to 0.4 and shows a correcting effect from 0.4 to 1 (Figures 9a, 9b, S15a, and S15b).

It is impossible to determine which method is better (no ground-truth). However, there are two

indicators that BSS might be performing better: 1) the BSS FA curve runs in parallel to the

standard DTI fit from 0.2 to 0.8, denoting an stable correction without favoring any FA range; and

2) Pasternak’s MD is spatially over-regularized (Figures 9c, 9d, S15c, and S15d), while BSS’s MD

keeps its maximum at 0.7 mm2/s, the reference for parenchyma (28).

Long ∆TE values benefit our framework, which is not surprising and agrees with the findings

of Collier et al. (35). This is not only due to the relationship between A and T2 (Eq. 3 and Figure

S1c) but also because longer differences between TEs produce more distinct levels of mixing and

thus better codification of the information from each source. That is to say, the short TE contains

more information about the fast-relaxing species, while the long TE is dominated by CSF.



Submitted to Magnetic Resonance in Medicine

Conclusions

We have introduced for the first time a blind source separation framework for expressing the re-

lationships between diffusion signals acquired at different TEs. This new approach does not rely

on diffusion modeling or the inverse Laplace transform. Our results show that, with the current

hardware, blind source separation allows for disentangling the diffusion signal sources generated

by each sub-voxel compartment up to two compartments, making it a suitable tool for free-water

elimination. Moreover, it simultaneously estimates proton density, volume fractions, relaxation

times and the number of compartments in the underlying microstructure, paving the way for tissue

microstructure characterization when the hardware constraints are relieved.
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Figure 1: Factorization of measurements, X, into the sources, S, and mixing matrix, A.

Example of a BSS operation for two mono-exponential sources (M = 2) and two TE measurements

(N = 2). In this illustration, the measurements, X, show a bi-exponential decay profile. BSS is

capable of separating these two independent exponential source functions, S; and calculating their

mixing matrix, A. The parameters that determine the degree of mixing (T21 , T22 and f), and the

scaling factor, S0, were estimated as described in Eqs. 3 and 4. We showed an exponential case for

simplicity, but BSS is not limited to this choice; any signal can be processed in the same manner.
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Figure 2: Convergence for two compartments (IE and CSF) with overlapping T2 con-

straints and no SCSF prior (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE

(c) and T2CSF (e) relative errors per unit (p.u.), and their standard error (d and f).Red and white

lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each com-

bination of fIE , T2IE , and ∆TE. T2IE and T2CSF were bounded between 0–1000 ms and 0–3000 ms

respectively, and no prior was imposed on SCSF . We defined the convergence area as the one with

error lower than 0.1 for fIE and T2IE . The bias of fIE and T2IE decreases for long ∆TEs as fIE

increases. See Figure S5 for more SNR levels.
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Figure 3: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE

(c) and T2CSF (e) relative error per unit (p.u.), and their standard errors (d and f). Red and

white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each

combination of fIE , T2IE , and ∆TE. T2IE and T2CSF were bounded between 0–300 ms and 2000 ms

respectively, and SCSF was set to have isotropic diffusivity with value 3 ×10−3 mm2/s. We defined

the convergence area as the one with error lower than 0.1 for fIE and T2IE . This area is larger than

for Figure 2 stressing the importance of priors. See Figure S6 for more SNR levels.
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Figure 4: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior when only one is actually present in the tissue (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE

(c) and T2CSF (e) relative error per unit (p.u.), and their standard errors (d and f). Red and

white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each

combination of fIE , T2IE , and ∆TE. T2IE and T2CSF were bounded between 0–300 ms and 2000 ms

respectively, and SCSF was set to have isotropic diffusivity with value 3 ×10−3 mm2/s. We defined

the convergence area as the one with error lower than 0.1 for fIE and T2IE . Estimates of fIE are

reliable for ∆TE > 45 ms (a and b). Estimates of T2IE and T2CSF are accurate for each case. See

Figure S7 for more SNR levels.
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Figure 5: Convergence for two compartments (IC and EC) with overlapping T2 con-

straints and no other priors (SNR = 50).

The mean of fIE absolute error and its standard error (SEM) (a and b), and the mean of T2IE (c)

and T2CSF (e) relative error per unit (p.u.), and their standard errors (d and f). Red and white lines

mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination

of fIC , T2IC , and ∆TE. T2IC and T2EC were bounded between 0–150 ms and 0–200 ms respectively,

and no other prior was imposed in the signal sources. We define the convergence area as the one

with error lower than 0.1 for fIC , T2IC , and T2EC . Estimate of fIC is biased for all fIC levels. T2

estimates show a narrow band of convergence limited by the lack of prior knowledge (see Figures 2,

S5 and S10) and the condition of A when the T2 values are similar. See Figure S8 for more SNR

levels.
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Figure 6: Convergence for three compartments (myelin, IE, and CSF) with non-

overlapping T2 constraints and SCSF prior (SNR = 50).

The mean absolute errors of the volume fraction estimates and their standard errors (SEM) (a, b,

c, and d); and the mean of T2M (e) and T2IE (g) relative error per unit (p.u.), and their standard

errors (f and h). Red and white lines mark the 0.2 and 0.1 contour respectively. There is a large

convergence area when TE1 = 10 ms, TE2 = 46 ms, and TE3 = 150 ms, which is not reachable

with current clinical hardware. See Figure S9 for more SNR levels.
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Figure 7: BSS relative factorization error for increasing ∆TE values.

The evolution of the relative factorization error with ∆TE, averaged over the whole brain, is shown

in (a). As an example of how this error reduction affects BSS estimates we also show the relative

error maps (b) and (g), CSF volume fractions (c) and (h), PDs (d) and (i), T2IE values (e) and (j)

and the number of compartments (f) and (k) for ∆TEs values of 20 and 60 ms. The mean relative

factorization error decreases as ∆TE increases, improving the parameter estimates.
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Figure 8: Comparison of the BSS-estimated T2IE values against a FLAIR reference.

A comparison of the reference (a, upper middle), for subject one with the BSS T2IE estimate is

shown for increasing values of ∆TE. The visual comparison was quantified by SSIM (50) and mean

relative error (b). Histograms of the BSS-estimated T2IE values are plotted against the reference

(c) and (d). High T2 values in the ventricles for the reference indicate that the suppression of the

CSF signal in the FLAIR experiment was not perfect, although they appeared dark in the images

(see supplementary Figure S20). This might have induced a positive bias for the reference. Finally,

the BSS-estimated of T2IE values for ∆TE above 50 ms showed good agreement with the reference.
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Figure 9: FA and MD of the BSS-disentangled IE signal against the standard DTI and

Pasternak’s free-water elimination (FWE) for subject two.

Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are

plotted against the standard DTI fit and Pasternak’s method for the short TE measured data. MD

(c) and colored FA (a) maps are also included for comparison. We observed a CSF correction effect

in the long ∆TE BSS for FA in agreement with Pasternak’s FWE. However, both method disagree

for MD, where Pasternak’s introduces spatial over-regularization. See Figure S15 for the subject

one.
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Figure 10: Evolution of the MD histogram of the BSS-disentangled CSF component

with ∆TE.

The MD histograms, calculated from the the DTI fits for the signals disentangled for the CSF

compartment, are plotted in (a) and (c). MD maps (b) and (d) are shown for anatomical inspection.

The CSF MD histograms tends towards 3×10−3 mm2/s, in agreement with the literature.
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Supporting Material

Phantom experiment

Methods

We built a phantom based on pure water and eleven different concentrations of agar and sucrose, pro-

ducing eleven unique combinations of T2 and diffusivity (Table S1) (62). We scanned the phantom

(see below) and defined regions of interest (ROIs) in the tubes containing the eleven concentrations.

Each ROI was independently processed with BSS to study the one compartment case. We also

mixed the signals from two ROIs to generate a pair of two-compartment datasets and fed these to

our BSS solver. Finally, for the three-compartment case we combined three ROIs and separated

them with BSS. We were aiming to demonstrate that our framework was able to yield T2 estimates

for one compartment; and volume fraction, T2 estimates and diffusion signal separation for two and

three compartments.

For reference, we measured multi-echo SE acquisitions (Signa HDx 3T, GE Healthcare, Milwau-

kee, WI) for TE values from 10–640 ms in 10 ms increments. The following values were constant:

TR = 3460 ms; NEX = 2; 128 × 128 matrix size; FOV = 240 mm; and 7 mm slice thickness. Eleven

diffusion experiments were undertaken for TE values from 77.5–127.5 ms in 5 ms increments. the

following parameters were constant: FOV = 240 mm; 7 mm slice thickness; 64 × 64 matrix size;

TR = 4000 ms; ASSET = 2; A/P diffusion direction; and 41 equally spaced b-values from 0–2000

s/mm2.

The multi-echo SE signals were averaged within each ROI. Each signal was fitted with NNLS

(13) using a log-scaled grid with T2 values at 500 points between 10–2000 ms. We used the maximum

values of the NNLS T2 spectra as ROI reference values (Figure S1) and fitted the signal from each

ROI with EASI-SM (17) for reassurance.

One compartment

For one compartment (M = 1), we processed the diffusion data from ten pairs of TE measurements

(N = 2) with BSS to include the relaxation effects in the dataset. For each pair, the short TE was

fixed at 77.5 ms, while the long TE was increased from 82.5–127.5 ms along with the measured echo

times. We constrained the solution space for the estimated T̂2 values to 10–2000 ms to account

for all the ROIs. No other prior information was considered. We report the evolution of the T2
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values estimated using BSS for each ROI and the differences between the short and long TEs (∆TE)

compared with their reference values (Figure S1).

Two compartments

For two compartments (M = N = 2), we created two different datasets. First, we used the diffusion

data measured at the shortest TE for ROI6 and ROI11 as the sources, S. These signals did not

contain relaxation information (Figure S2a). Thus, to mix them together, we had to compute the

mixing matrix (A) as in in Eq. 2. We used their reference T2 values, the experimental TEs, and

a volume fraction of fROI6 = 0.7 (Figure S2c). We called this the simulated dataset, given that

the signals were mixed under ideal conditions. Second, we normalized the measured data for each

ROI and TE to its maximum value at the shortest TE to allow for later comparison of the volume

fractions. In this case, the signals already contained the relaxation information (Figure S2b), so

we did not need to compute A. We scaled the normalized measured signals using the given volume

fraction and added them together to create the mixed measurements, X. We called this the measured

dataset (Figure S2c). It accounts for system imperfections like signal drift, imperfect non-diffusion

weighting, and eddy currents. To constrain the solution of the cALS algorithm we used T2ROI11
and

SROI11 as the prior knowledge and searched for T̂2ROI6
between 0–200 ms.

Three compartments

We extended the two-compartments experiment to three (M = N = 3) by adding ROI5. Simulated

and measured datasets were created as for the two-compartments case (Figures S3a, S3b, S3c,

S3d and S3e). This time, we used the volume fractions fROI5 = 0.2 and fROI6 = 0.6. To limit the

solution space of the cALS algorithm, we assumed T2ROI11
and SROI11 to be prior the knowledge. We

also constrained the T̂2ROI5
and T̂2ROI6

values to be between 0–50 ms, and 50–200 ms, respectively.

For the two- and three-compartment experiments we report the stability of the framework, the

relative error of the parameters and the disentangling capability of the method.

Results

One compartment

There was a correlation between the estimated T2 values for one compartment obtained using multi-

echo SE for 17 TEs and BSS for 2 TEs (Figures S1a, S1b, and Table S1). The T2 estimates from
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ROI2 to ROI10 showed relative errors below 0.1 p.u. for a ∆TE of 50 ms (Figures S1a and S1b). The

decreasing error trend is due to the relationship between the slope of a column of A and its T2 value

(Figure S1c). As ∆TE increased, the dynamic range of the slope of A’s columns expanded, yielding

better T2 estimates. On the other hand, in Figures S1a and S1b, ROI1 and ROI11 showed increasing

errors as ∆TE increased. In the case of ROI1, this was due to the low SNRs of the measurements at

the experimental TEs. The noise floor caused changes in the signals for longer TEs that biased the

T2 estimates. The effect observed in ROI11 cannot be explained by SNR or T2-slope dependence.

We attribute this result to an underestimation of the reference T2 value due to incomplete recovery

of the longitudinal magnetization, which is caused by the short experimental TR (TR = 3460 ms)

compared to the T1 value of ROI11 (T111 = 2200 ms). Finally, the error between the NNLS and

BSS T2 estimate for ROI4, ROI6, ROI7, and ROI8 is larger than for the others (Figure S1a) at

∆TE = 50 ms, except for ROI1 and ROI11 already discussed. For these ROIs, NNLS converges to

a bi-exponential decay (See Figure S19 and Table S1) increasing the value of the long T2 coefficient

compared to BSS and EASI-SM.

Two compartments

The disentangled signals for the simulated dataset replicated the profiles of the reference sources

(Figure S2d). Moreover, the maximum relative errors for f̂S,ROI6 and T̂2S,ROI6
were below 0.01 p.u.

for all the possible ∆TE values. Interestingly, BSS was also able to separate the signal sources of

the measured dataset (Figure S2d). This data accounted for non-ideal conditions due to system

imperfections, such as signal drift, eddy currents, or imperfect non-diffusion weighting (Figure S2b,

S2c, S2d, and S2f). In that case, the relative error in the T̂MS,ROI6
estimate remained under 0.1

p.u. for all ∆TEs above 10 ms. We believe that the 0.15 p.u. error in f̂M,ROI6 is due to the

differences between the simulated and measured signals at b = 0 s/mm2, their influence on Eq. 4,

and propagation of the error in the T̂2 estimate. Finally, we also observed a small stabilization effect

in the volume fraction estimates as ∆TE increased (Figure S2f). This behavior is due to reductions

in A’s condition number improving the cALS algorithm’s numerical stability (Figure S2e).

Three compartments

The condition number of A significantly increased compared with the two-compartment model

(Figures S2e and S3g). Results for the simulated data (Figures S3a, S3e and S3f) showed that the

signals for compartments ROI6 and ROI11 had been separated, in agreement with their references.
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Likewise, the relative errors in the T̂2S,ROI6
and f̂S,ROI6 estimates were below 0.01 p.u., confirming

the good separation. It is worth noting that the signal for the fast-decaying compartment (ROI5) was

detected, despite being heavily contaminated by the ROI6. We believe that this result is due to the

comparably large experimental TE, reducing its contribution to the observed signal. Equivalently,

we found a 0.15 p.u. error in the f̂S,ROI5 estimate and 0.45 p.u. in the T̂2S,ROI5
estimate.

Results for the measured data when A’s condition number was lowest showed that the signals

from ROI6 and ROI11 had still been separated, in agreement with the references (Figure S3f).

However, the signal from ROI5 was lost due to acquisition imperfections, bad conditioning of A,

and small contributions of this compartment at the measured TEs. On the other hand, the T̂2M,ROI6

estimate was stability with a relative error of 11%. In contrast, f̂M,ROI6 was more unstable due to

the bad conditioning of the system and propagation of the error in the T̂2M,ROI6
estimate.

Repeatability and reproducibility

Following the simulations, phantom experiment, and in vivo studies for incremental ∆TE, repeata-

bility and reproducibility analyses were conducted to demonstrate the stability and reliability of

our method. In this supporting section we described the experimental setup and results, while the

discussion remained in the main body of the paper.

Methods

Repeatability

A healthy volunteer (male, 28 years old) was scanned six times in a 3.0T GE MR750w scanner (GE

Healthcare, Milwaukee, WI). For each repetition we acquired two diffusion PGSE EPI volumes with

TE values 75.3 and 135.3 ms (∆TE = 60 ms); FOV = 225 mm; 4 mm slice thickness; 22 slices; TR

= 8000 ms; 96 × 96 matrix size; ASSET = 2; 30 directions; and one non-diffusion-weighted volume.

Besides, one non-diffusion-weighted volume was acquired with reversed polarity at each TE. Finally,

a FLAIR multi-echo sequence was acquired with the same geometrical prescription for TE = 20 –

260 ms in 30 ms increments; ASSET = 0; and TR = 8000 ms. An extra volume was acquired with

reverse polarity at TE = 20 ms.

Diffusion and FLAIR data were processed with FSL Topup (63, 64) and Eddy (65) to correct

for distortions. The long TE diffusion volume was registered to the short TE one with FLIRT and

processed with BSS for two compartments (IE and CSF). We used literature CSF values (T2CSF = 2
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s and DCSF = 3× 10−3 mm2/s) as the prior knowledge, and constrained T2IE between 0 – 200 ms.

Then, the resulting tissue volume was fitted to the DTI model using standard linear regression

(FSL FDT). For comparison, the distortion free short TE diffusion volume was also fitted to the

DTI model and free-water corrected with Pasternak’s method. Finally, FLAIR data were matched

to a dictionary of mono-exponential decays from 0 – 300 ms with 1 ms increments.

We reported the FA and MD histograms for the six repetitions of the standard DTI fit for the

short TE, IE BSS, and Pasternak’s method (Fig S16a and b). The free-water correction effects

were quantified dividing the histograms in sectors, and computing relative change per sector in the

number of voxels of BSS and Pasternak’s method reference to the standard DTI fitting (Fig S16d

and e). FA histograms were split in four quarters, while MD in two sectors with threshold in the

IE literature value (MD = 0.7 × 10−3 mm2/s) (28). Statistical t-test analyses were conducted to

determine the differences between BSS and Pasternak’s FWE. Histograms of BSS T2IE and FLAIR

T2 (Fig S16c) were compared by their peak and full width half maximum (FWHM) values (Fig

S16f).

Reproducibility

Twenty healthy volunteers (8 females, 26 years old in average) were scanned in a 3.0T GE MR750

scanner (GE Healthcare, Milwaukee, WI) at the Max Planck Institute of Psychiatry in Munich,

Germany. Two diffusion PGSE EPI volumes with TE values 60.1 and 120.1 ms (∆TE = 60 ms)

with TR = 5000 ms were acquired. All the other acquisition parameters and data processing steps

were as described for the repeatability experiment. Due to scanner availability FLAIR data was

only acquired for half of the subjects. Histograms of FA, MD, and T2, along with their statistical

analyses were reported in Figure S17.

Results

Repeatability

The histograms of FA, MD and T2 (Figure S16a, b, and c) showed highly overlapping curves for each

repetition and method, denoting good repeatability for all of them. After splitting the FA histogram

in four sectors and computing the relative change in the area per sector for BSS and Pasternak’s

method (Figure S16d), we found that the lowest ratio between the mean and the standard deviation

for BSS was 5.3 (sector IV) and 11.4 for Pasternak’s (sector II). The fact that the mean is 5.3 larger
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than the standard deviation suggested that BSS produces highly stable free-water correction. This

result held also for MD, where we found ratios of 9.9 and 65.4 for BSS and Pasternak’s method in

sector II; and T2, with mean to standard deviation ratios of 62.3 and 10.4 in the peak and FWHM

values for BSS.

Interestingly, we found that BSS and Pasternak’s free-water correction yield statistically different

results for FA > 0.25 (sectors II, III, and IV, Figure S16d and e) and both MD sectors, with a

significance level α = 0.01. Finally, BSS T2IE and FLAIR T2IE histogram peaks were not statistically

different, while the FWHM values were with a small effect. These findings indicate a good agreement

of BSS with the FLAIR reference (Figure S16f).

Reproducibility

The FA, MD and T2 histograms showed larger inter-subject variability (Figure S17a, b, and c)

compared to the intra-subject one (Figure S16a, b, and c)) . The lowest ratios between the mean

and the standard deviation of the free-water correction factor were 3.9 for BSS FA (sector IV) and

6.8 for Pasternak’s FA (sector II); and 4.9 for BSS MD (sector II) and 20.5 for Pasternak’s MD

(sector II). Furthermore, mean to standard deviation ratios of BSS T2IE were 47.2 and 8.9 for peak

and FWHM values. These results suggested that BSS experiments are highly reproducible among

subjects.

The statistical differences found in the repeatability study in FA sectors III and IV, and both

MD sectors were still present in this analysis, indicating consistent differences between BSS and

Pasternak’s method (Figure S17d and e).

We found a statistically significant difference (α = 0.01) between the means of the histogram

peaks of the BSS and FLAIR T2IE but with a small size effect (Figure S17f). Which indicates that

BSS might yield a small bias in group comparisons compared to FLAIR multi-echo.
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Figure S1: Evolution of the relative error in the T2 estimate with ∆TE for one compart-

ment.

The mean relative error of T2 estimated using BSS is shown in (a) for NNLS and in (b) for EASI-SM

references. ∆TE goes from 5 ms (darker colors) to 50 ms (lighter colors). The dependence of T2

on the direction (slope) of the columns of A (Eq. 3) is shown in (c), where it can be seen how

increasing ∆TE improves the dynamic range of the slope of A, resulting in a better estimate for T2.

Except for ROI1 and ROI11, the remaining ones reduce the T2 mean relative error as ∆TE increases

(a and b, lighter colors are closer to zero), in agreement with plot c.
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Figure S2: Separation of two compartments and parameter estimation for the phantom

data.

The signal sources of the simulated dataset are plotted in (a), and the measured data generated

from the sources in (b). The resulting mixtures for both datasets are shown in (c). We use the

subscripts M and S to refer to estimates for the measured and simulated datasets, respectively.

Measurement errors are highlighted by the differences between the measured and simulated signals,

shown in (c). BSS disentangled the original sources for both datasets, as shown in (d). We chose a

∆TE of 50 ms to minimize the condition of A (shown in (e)) and increase the numerical stability

of the framework. Finally, the relative errors in the estimated parameters, T̂2ROI6
and f̂ROI6 , are

plotted in (f) for all possible values of ∆TE. We observed good agreement between the reference

signals and those disentangled with BSS.
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Figure S3: Separation of three compartments and parameter estimation for the phantom

data.

The simulated dataset was generated from the signal sources in (a). The measured datasets were

calculated from the measured signals for ROI5 (b), ROI6 (c), and ROI11 (d). The mixed signals for

both datasets (shown in (e)) show a mismatch due to measurement errors. They were disentangled

with BSS, as shown in (f). We fixed TE1 = 77.5 ms and TE3 = 127.5 ms, and varied TE2 to

minimize the condition number of A (shown in (g)). The relative errors of the estimated parameters

are plotted for different values of the TE2 in (h).
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ROI Agar [%] Sucrose [%] T2EASI−SM [ms] T2NNLS [ms] T2BSS [ms] εNNSL [%] εEASI−SM [%]

1 5 15 25.02 23.88 ± 1.92 29.9 25.37 19.61

2 5 5 31.59 31.13 ± 2.19 31.6 1.43 0.04

3 3 30 37.68 36.50 ± 3.04 35.4 2.95 5.99

4 3 15 106.23 110.07 ± 7.93 106.0 3.70 0.22

5 3 5 45.40 44.66 ± 2.85 44.5 0.40 2.02

6 1 30 95.46 102.19 ± 10.30 93.9 8.13 1.66

7 1 15 222.22 228.94 ± 12.15 216.3 5.53 2.67

8 1 5 225.19 233.85 ± 13.84 213.4 8.76 5.25

9 0 30 457.08 456.37 ± 26.50 467.6 2.47 2.31

10 0 15 395.95 397.56 ± 21.17 401.0 0.87 1.28

11 0 0.5 876.97 881.23 ± 64.07 1008.6 14.46 15.01

Table S1: Phantom reference values and BSS estimates.

The ROIs in the phantom experiment was built using the concentrations of agar and sucrose shown

here. Signal decays along the diffusion dimension were compared to each other to ensure that they

were all different, as required by BSS (see supplementary Figure S18). For reference, the T2 values

were characterized using an NNLS fit. Confidence intervals were taken at the half maxima of the

NNLS spectral peaks. In addition, a second method, EASI-SM (17), was used to confirm the validity

of the fits. Finally, the T2BSS values were estimated for ∆TE = 50 ms and compared with the NNLS

and EASI-SM references (where ε refers to the relative error).
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Figure S4: Simulated diffusion signals for IE and CSF.

Synthetically generated diffusion signals for 30 directions (b = 1000 s/mm2) and one non-diffusion

weighted measurement. We modeled diffusion as a Gaussian process with MD of IE and CSF equal

to 0.7 × 10−3 and 3 × 10−3 mm2/s respectively (28), and standard deviations of 0.3 × 10−3 and

0.1 × 10−3 mm2/s respectively to distinguish between hindered anisotropic (IE) and free isotropic

(CSF) diffusivity.
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Figure S5: Convergence for two compartments (IE and CSF) with overlapping T2 con-

straints and no SCSF prior.

This figure extends the analysis of Figure 2 for SNR = 100 and 150. The stability for fIE increases

with SNR (a and b) and with fIE for T2IE (c and d).
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Figure S6: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior.

This figure extends the analysis of Figure 3 for SNR = 100 and 150. The size and stability of the

convergence area for fIE and T2IE increase with SNR.
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Figure S7: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior when only one is actually present in the tissue.

This figure extends the analysis of Figure 4 for SNR = 100 and 150. The SNR does not play an

important role in the definition of the convergence area.
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Figure S8: Convergence for two compartments (IC and EC) with overlapping T2 con-

straints and no other priors.

This figure extends the analysis of Figure 5 for SNR = 100 and 150. The influence of SNR on f

and T2IC is small.
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Figure S9: Convergence for three compartments (myelin, IE, and CSF) with non-

overlapping T2 constraints and SCSF prior.

This Figure extends the analysis of Figure 6 for SNR = 100 and 150.
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Figure S10: Convergence for two compartments (IE and CSF) with overlapping T2 con-

straints and SCSF prior.

The mean and the standard error of fIE absolute error (a and b), and the mean and the standard

error of T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines

mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combina-

tion of SNR, fIE , T2IE , and ∆TE. T2IE and T2CSF were bound between 0–1000 ms and 0–3000 ms

respectively. SCSF was set to have isotropic diffusivity with value 3× 10−3 mm2/s. We defined the

convergence area as the one with error lower than 0.1 for fIE and T2IE . Notice the growth of the

converge area compared to the lack of priors (Figures 2 and S5).
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Figure S11: Convergence for two compartments (IE and CSF) with non-overlapping T2

constrained and no SCSF prior.

The mean and the standard error of fIE absolute error (a and b), and the mean and the standard

error of T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines

mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination

of SNR, fIE , T2IE , and ∆TE. T2IE and T2CSF were bound between 0–300 ms and 300–3000 ms

respectively. No prior was imposed on SCSF . We defined the convergence area as the one with error

lower than 0.1 for fIE and T2IE . Non-overlapping T2 bounds stabilize the factorization, compared

to Figures 2 and S5, although not as much as using priors on the signal sources (Figure S10).
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Figure S12: Convergence for two compartments (IE and CSF) with fixed T2CSF and no

SCSF prior.

The mean and the standard error of fIE absolute error (a and b), and the mean and the standard

error of T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines mark

the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of

SNR, fIE , T2IE , and ∆TE. T2IE was bound between 0–300 and T2CSF fixed to 2000 ms. No prior

was imposed on SCSF . We defined the convergence area as the one with error lower than 0.1 for

fIE and T2IE . Fixing the value of T2CSF does not have any effect on the size of the convergence

area, while bounding T2IE does it (see Figure S11).
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Figure S13: Convergence for two compartments (IE and CSF) with non-overlapping T2

constraints and SCSF prior.

The mean and standard error of fIE absolute error (a and b), and mean and standard error of

T2IE (c and d), and T2CSF (e and f) relative error per unit (p.u.). Red and white lines mark the

0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of SNR,

fIE , T2IE , and ∆TE. T2IE and T2CSF were bound between 0–300 ms and 300–3000 ms respectively.

SCSF was set to have isotropic diffusivity with value 3× 10−3 mm2/s. We defined the convergence

area as the one with error lower than 0.1 for fIE and T2IE . Incorporating prior knowledge on the

behavior of the signal sources (as CSF) improves convergence and stability more than bounding T2

(Compare with Figures S10 and S11)
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Figure S14: Simulated diffusion signals for intra and extra-cellular water compartments.

Synthetically generated diffusion signals for 30 directions (b = 1000 s/mm2) and one non-diffusion

weighted measurement. We modeled diffusion as a Gaussian process with MD of intra-cellular

(IC) and extra-cellular (EC) equal to 0.6 × 10−3 and 0.8 × 10−3 mm2/s respectively (to keep the

MD of parenchyma equals to 0.7 × 10−3 mm2/s (28)) and standard deviations of 0.3 × 10−3 and

0.1×10−3 mm2/s respectively to distinguish between a more (IC) and less (EC) hindered anisotropic

diffusivity.
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Figure S15: FA and MD of the BSS-disentangled IE signal against the standard DTI

and Pasternak’s free-water elimination (FWE) for subject one.

Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are

plotted against the standard DTI fit and Pasternak’s method for the short TE measured data. MD

(c) and colored FA (a) maps are also included for comparison. We observed a CSF correction effect

in the long ∆TE BSS for FA in agreement with Pasternak’s FWE. However, both method disagree

for MD, where Pasternak’s introduces spatial over-regularization. See Figure 9 for subject two.
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Figure S16: Repeatability analysis showing intra-subject variability.

A healthy volunteer was scanned six times. The FA (a) and MD (b) histograms for standard DTI,

BSS and Pasternak’s method are shown. These histograms were fragmented in sectors and the

relative changes in number of voxels per sector and repetition for BSS and Pasternak’s methods

were computed. Statistical t-tests were run per sector to determine the level of significance of the

differences between BSS and Pasternak’s results (d and e). BSS and FLAIR T2IE histograms (c)

showed good agreement. Their peak and the full width half maximum (FWHM) were used for t-test

comparison between BSS and FLAIR (f) highlighting the concordance.
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Figure S17: Reproducibility analysis showing inter-subject variability.

Twenty healthy volunteers were scanned. The FA (a) and MD (b) histograms for standard DTI,

BSS and Pasternak’s method are shown. These histograms were fragmented in sectors and the

relative changes in number of voxels per sector and repetition for BSS and Pasternak’s methods

were computed. Statistical t-tests were run per sector to determine the level of significance of the

differences between BSS and Pasternak’s results (d and e). Notice that the inter-subject variability

is larger than intra-subject (Figure S16). BSS and FLAIR T2IE histograms (c) were depicted. Their

peak and the full width half maximum (FWHM) were used for t-test comparison between BSS and

FLAIR (f).
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Figure S18: Normalized diffusion signal decay profiles for all ROIs at each TE.

For reference, the measured signals for all ROIs at all TEs are shown here. The signals for shorter

TEs are plotted in light colors, while longer TEs are represented by dark colors. Eleven TEs were

measured from 77.5–127.5 ms in 5 ms increments. The phantom is shown alongside the ROIs in the

lower right plot. Each ROI has a characteristic diffusion and relaxation signal decay profile.
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Figure S19: Normalized NNLS spectrum for all ROIs.

We The NNLS spectrum fitted for 500 T2 points logarithmically spaced between 10 – 2000 ms.

Notice the bi-exponential profile of ROI4, ROI6, ROI7, and ROI8.
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Figure S20: FLAIR EPI images for both subjects at different echo times.

We measured FLAIR EPI images for both subjects for TEs from 20–260ms in 15 ms increments.

The shortest four TEs are shown for both subjects. The signal intensity in the ventricles is dark,

indicating attenuation of the CSF component.



Submitted to Magnetic Resonance in Medicine

FA Maps

a Standard DTI BSS, ∆TE=60 ms Pasternak's FWE Collier's FWE

MD Maps

c Standard DTI BSS, ∆TE=60 ms Pasternak's FWE Collier's FWE

0 0.5 1 1.5 2 2.5 3

MD [mm
2
/s] ×10

-3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FA

F
re

q
u

en
cy

FA Histogram

b
Standard DTI

Pasternak's FWE

Collier's FWE

BSS, ∆TE=20 ms

BSS, ∆TE=30 ms
BSS, ∆TE=40 ms

BSS, ∆TE=50 ms
BSS, ∆TE=60 ms

0.5 1 1.5 2 2.5

MD [mm
2
/s] ×10

-3

F
re

q
u

en
cy

MD Histogram

d
Standard DTI

Pasternak's FWE

Collier's FWE

BSS, ∆TE=20 ms

BSS, ∆TE=30 ms
BSS, ∆TE=40 ms

BSS, ∆TE=50 ms
BSS, ∆TE=60 ms

Figure S21: FA and MD of the BSS-disentangled IE signal against the standard DTI

fitting, Pasternak’s, and Collier’s free-water elimination (FWE) for subject one.

Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are

plotted against the standard DTI, Pasternak’s, and Collier’s method fit for the short TE measured

data. MD (c) and colored FA (a) maps are also included for comparison. We observed a CSF

correction effect in the long ∆TE BSS for FA in agreement with Pasternak’s FWE. However, both

method disagree for MD, where Pasternak’s introduces spatial over-regularization. Collier’s method

did not converge for our single-shell acquisition.
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Figure S22: FA and MD of the BSS-disentangled IE signal against the standard DTI

fitting, Pasternak’s, and Collier’s free-water elimination (FWE) for subject two.

Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are

plotted against the standard DTI, Pasternak’s, and Collier’s method fit for the short TE measured

data. MD (c) and colored FA (a) maps are also included for comparison. We observed a CSF

correction effect in the long ∆TE BSS for FA in agreement with Pasternak’s FWE. However, both

method disagree for MD, where Pasternak’s introduces spatial over-regularization. Collier’s method

did not converge for our single-shell acquisition.
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Figure S23: Pulsed gradient spin echo (PGSE) sequence for the TE values used for the

in vivo experiments.

We show the waveforms measured in our scanner (3.0 T GE MR750w, GE Healthcare, Milwaukee,

WI) for b=1000 s/mm2 and TE equal 75.1 (a) and 135.1 ms (b). The gradient width (δ) and the

mixing time (∆) are 1.6 and 3.8 ms apart respectively. For long TE values the scanner optimizes for

maximum gradient amplitude and minimum δ by increasing ∆. These differences in δ and ∆ induce

dissimilar diffusion sensitization. We show in Figure S24 their effects for IE and CSF Gaussian

diffusivities.
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Figure S24: Normalized simulated signals for IE and CSF for the two combinations of

TE, δ, and ∆.

We ran four Monte-Carlo simulations with Camino (66). IE and CSF diffusivities were modeled

as Gaussian processes with values 0.7 × 10−3 and 3 × 10−3 mm2/s respectively (28). These were

measured for the measured PGSE waveforms (a) (See Figure S23). The signal differences (b) were

six order of magnitude smaller than the signal. These were due to numerical errors and not to the

differences in δ and ∆.


	Introduction
	Theory
	Methods
	Simulations
	Two compartments
	Three compartments: searching for myelin

	In vivo clinical data: free-water elimination
	Data acquisition
	Data analysis


	Results
	Simulations
	Two Compartments
	Three Compartments: searching for myelin

	In vivo clinical data: free-water elimination

	Discussion
	Stability
	Relaxation time and volume fraction estimates
	Myelin detection
	Disentangling the diffusion sources and free water elimination

	Conclusions
	Acknowledgments
	Figures and Tables
	Supporting Material
	Phantom experiment
	Methods
	One compartment
	Two compartments
	Three compartments

	Results
	One compartment
	Two compartments
	Three compartments


	Repeatability and reproducibility
	Methods
	Repeatability
	Reproducibility

	Results
	Repeatability
	Reproducibility


	Supporting Figures (for publication)
	Supporting Figures only for reviewers

