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Abstract

Contrastive losses yield state-of-the-art performance for person re-identification, face
verification and few shot learning. They have recently outperformed the cross-entropy
loss on classification at the ImageNet scale and outperformed all self-supervision prior
results by a large margin (SimCLR). Simple and effective regularization techniques such
as label smoothing and self-distillation do not apply anymore, because they act on multi-
nomial label distributions, adopted in cross-entropy losses, and not on tuple comparative
terms, which characterize the contrastive losses.

Here we propose a novel, simple and effective regularization technique, the Class In-
terference Regularization (CIR), which applies to cross-entropy losses but is especially
effective on contrastive losses. CIR perturbs the output features by randomly moving
them towards the average embeddings of the negative classes. To the best of our knowl-
edge, CIR is the first regularization technique to act on the output features.

In experimental evaluation, the combination of CIR and a plain Siamese-net with
triplet loss yields best few-shot learning performance on the challenging tieredImageNet.
CIR also improves the state-of-the-art technique in person re-identification on the Market-
1501 dataset, based on triplet loss, and the state-of-the-art technique in person search on
the CUHK-SYSU dataset, based on a cross-entropy loss. Finally, on the task of clas-
sification CIR performs on par with the popular label smoothing, as demonstrated for
CIFAR-10 and -100.

1 Introduction
Contrastive losses yield state-of-the-art performance for person re-identification [4, 17, 20,
45, 79], face verification [8, 53] and few shot learning [63]. In their general formulation,
contrastive losses imply processing the input samples with Siamese networks, then penaliz-
ing them if the output embeddings of two samples from the same class (aka positives) have
higher distances than those from different classes (aka negatives). Most recent advances
in self-supervised training for classification [19, 38] have leveraged contrastive losses and
this is also the case for the current best method, SimCLR [5], which has set aside from the
competition by a large margin at scale on ImageNet [9]. Notably, at the moment of writing,
a novel technique based on contrastive loss [24] has just achieved best supervised-learning
performance on ImageNet, outperforming for the first time the established cross-entropy
loss.

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

ar
X

iv
:2

00
9.

02
39

6v
1 

 [
cs

.C
V

] 
 4

 S
ep

 2
02

0

Citation
Citation
{Chen, Ding, Xie, Yuan, Chen, Yang, Ren, and Wang} 2019{}

Citation
Citation
{Guo, Yuan, Huang, Zhang, Yao, and Han} 2019

Citation
Citation
{Hermans, Beyer, and Leibe} 2017

Citation
Citation
{Quan, Dong, Wu, Zhu, and Yang} 2019

Citation
Citation
{Zhou, Yang, Cavallaro, and Xiang} 2019

Citation
Citation
{Chopra, Hadsell, and Lecun} 2005

Citation
Citation
{Schroff, Kalenichenko, and Philbin} 2015

Citation
Citation
{Wang, Wu, Qimaiprotect unhbox voidb@x penalty @M  {}Li, Xiang, Zhang, and Li} 2018

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Misra and vanprotect unhbox voidb@x penalty @M  {}der Maaten} 2019

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, and Krishnan} 2020



2 B.MUNJAL ET. AL: CLASS INTERFERENCE REGULARIZATION

In this work, we propose a novel, simple and effective regularization technique, the Class
Interference Regularization (CIR), which applies to models trained with the traditional cross-
entropy loss, but also and most effectively in the case of contrastive losses such as the triplet
loss. CIR introduces a data-driven noise term. It works by estimating output features for each
sample image in the batch and then randomly perturbing them with the average embeddings
of their negative classes.

CIR fills in a gap in the training of neural networks with contrastive losses, because the
widely adopted and effective label smoothing [57] and self-distillation [70] do not apply
to those. Both the techniques ease the training with cross-entropy by perturbing the axis-
aligned label distributions, also termed “one-hot vectors”. The first moves the labels off-axis;
the second adopts soft-labels from prior rounds of training. Both of the techniques have been
studied in-depth and have been widely adopted [12, 31, 39, 43]. However none of them ap-
plies in the case of contrastive losses because they require multinomial label distributions,
while contrastive terms such as triplets use comparative embedding distances between (pos-
itive and negative) samples. By contrast, CIR applies both for cross-entropy and contrastive
losses.

We thoroughly experiment with CIR in the case of contrastive and cross-entropy losses.
Best performance improvements are achieved for the first. In particular, CIR sets a new state-
of-the-art performance for few-shot learning on tieredImageNet [49], with a plain Siamese-
net and a triplet loss, reaching 69.1% 1-shot and 82.9% 5-shot accuracies, with absolute
margins of 2.8pp and 1.4pp on the second best respectively. Also CIR improves the plain
Siamese-net + triplet in the case of person re-identification on the Market-1501 [74] and
also slightly improves the best performer ABD-Net [4]. In the case of cross-entropy losses,
CIR improves slightly but consistently a state-of-the-art person search technique [41] on
the CUHK-SYSU dataset [66] and it yields better classification on the CIFAR-10 and -100
datasets [26], on par with the established label smoothing [57].

2 Related Work
Regularization is a major topic when learning over-parameterized models such as Deep
Neural Networks (DNN). We review most relevant, recent and widely-adopted techniques
by grouping them intro three broad categories, depending on their application focus.
Input samples. Most common methods in this category regularize the training by data aug-
mentation, i.e. by performing random transformations of the input samples such as cropping,
rotation, flipping, noise injection or random erasing [2, 59, 78]. More complex methods use
GANs to generate synthetic data [44] or add adversarial examples [15] to the training set.
Network weights and hidden units. Most popular techniques are weight decay [25] and
dropout [55]. The first adds `1 or `2 norms of the weights into the loss, to bias training to-
wards simpler solutions. The second randomly drops neurons to avoid weight co-adaptation,
as also targeted by the variants DropConnect [61] and Adaptive Dropout [1]. Other tech-
nique regularize via stochastic pooling [72], depth [22], or by integrating adversarial noise
layers in the CNN [71].
Label distributions. Most utilized in this category is Label Smoothing [39, 57] that moves
the axis-aligned target label distribution (“one-hot vectors”) off the axis, thus softening it.
Also widely adopted is Self-Distillation [21, 70] which softens the labels via iterations of
trainings on generations of network predictions. Also in this category are Disturb Label [67],
which randomly flips the ground-truth labels of some input images into wrong ones, and
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Figure 1: Illustration of the proposed Class Interference Regularization (CIR), as applied to a triplet-
Siamese neural network model with triplet loss. During training, the average per-class output features
are accumulated into a Table of Average Class embeddings (TAC) and used to perturb the anchor
with the average embedding of a randomly-sampled wrong class. The illustration refers to few-shot
learning. Cropped person IDs are the input images in the case of person re-identification. The Cyan
box shows the proposed CIR signal.

Mixup [73], changing the target label by mixing input images in known proportions.

CIR differs from all of the above because it applies to the output features of a DNN. CIR
is closest in spirit to techniques which regularize via label distributions. However established
techniques such as label smoothing and self-distillation only apply to cross-entropy losses,
while CIR applies to both cross-entropy and contrastive losses. Also, CIR is data-driven,
similarly to e.g. data augmentation techniques using PCA on the RGB pixels values [26].
But CIR is the first to act on the output space.

Multiple tasks are here considered to thoroughly evaluate the benefits of CIR, which we
also briefly review for related work.

Few-Shot Learning. This task targets classification of query samples from a single or few
training (aka support) samples. Methods are broadly split into optimization- and metric-
based. The first follow from MAML [10] and aim to learn good initial parameters of a
learner to adapt with gradient descent [23, 32, 37, 42, 47, 52]. The second learn a common
embedding space for both the support and query samples [6, 13, 14, 48, 56, 60, 63] and have
been popularized by prototypical networks [54]. We apply CIR to improve the prototypical
network with triplet loss technique of [63] and achieve state-of-the-art results.

Person Re-Identification. This targets retrieving a (query) person identity from a gallery
of individuals, using cropped images of the person bounding boxes. While earlier meth-
ods employed cross-entropy [65, 75], more recent and better performing ones adopt triplet
loss [20, 35, 36, 45] to learn to generate unique feature embeddings for each person ID. We
apply CIR and improve performance of a plain triplet loss siamese-net approach [20] as well
as of the current best method [4].

Person Search. This stands for the joint detection and re-identification of individuals in
galleries of full images, given a single query [68]. Most recent and best approaches use the
Online Instance Matching (OIM) [66] to build up look tables of people ID representative
embeddings [3, 40, 41, 64, 69]. We apply CIR and slightly improve performance of the
state-of-the-art work of [41], which employs the cross-entropy loss.
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3 Class Interference Regularization (CIR)
We propose CIR to regularize the training of multi-class DNNs, both for cross-entropy and
for contrastive losses. In this section, we first introduce the class interference signal (cf.
Fig. 1); then we detail the implementation of CIR for the tasks of re-identification, few-shot
learning and person search; finally we discuss CIR more formally and the intuition behind it.

3.1 Class Interference
CIR introduces a table Γ ∈ RCxd of average class embeddings into DNN models to track the
mean embeddings µc ∈ Rd for each of the C classes. Then for each image xi with feature
embedding zi ∈Rd and class yi, CIR randomly selects a mean class embedding µc of another
class c ∈C from Γ, with c 6= yi, to corrupt zi. This yields a new blended embedding

z̃i = (1−λ )zi +λ µc (1)

where λ ∈ [0,1] controls the amount of interference. In other words, the polluted embedding
z̃i is given by zi “pushed” towards the mean embedding µc of a wrong class c. This inter-
ference makes the optimization tougher and reduces overfitting. We further discuss CIR and
provide an intuition to it in Sec. 3.3.

Input: Training data: D = {(xn,yn)}N
n=1, where xn represents an image, yn its corresponding

person ID (re-id) or object class (few-shot learning); hyper-parameters: Γ (TAC) update
momentum γ , interference amount λ , margin δ , max. iterations T , learning rate α

Initialization: Triplet-siamese network model with initial parameters θ (0) of the feature
extractor f (xn,θ

(0)) ∈ Rd , and Γ(0) ∈RCxd is randomly initialized TAC
for t = 1, . . . ,T do

Dt = {(ai,pi,ni)}B
i=1← select a mini-batch of triplets of size B from the training set

where ai,pi are from the same id/class yi and ni is from another identity
for i = 1, . . . ,B do

za
i = f (ai,θ

(t−1))← compute feature embeddings for anchor
zp

i = f (pi,θ
(t−1))← compute feature embeddings for positive

zn
i = f (ni,θ

(t−1))← compute feature embeddings for negative
µc = Γ(t−1)[c]←average embedding of randomly chosen class c 6= yi from TAC
z̃a

i = (1−λ )za
i +λ µc← class interference acc. to Eq. 1 only for anchor embedding

Li = Ltriplet(za
i ,z

p
i ,z

n
i ,δ )← triplet loss acc. to Eq. 2

end
θ (t)← θ (t−1)+α

1
‖Dt‖ ∑i∈Dt

∇
θ (t−1)(Li)

Γ(t) = (1− γ)Γ(t−1)+ γ zDt ← update TAC per class using corresponding embeddings
from the current mini-batch during backward pass

end
Output: Trained model parameters θ (T )

Algorithm 1: Application of CIR to person re-identification and few-shot learning with
triplet loss.

3.2 Application to selected tasks
We employ CIR for re-identification, few-shot learning and person search. In all cases,
CIR is applied with minor changes and provides consistent performance improvements (cf.
Sec. 4).
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Person Re-identification: In re-identification (re-id) the model is tasked with the identi-
fication of the persons in the query, provided as crops. State-of-the-art approaches in re-id
employ the triplet loss for feature learning, which is formulated as:

Ltriplet(ai,pi,n j,δ ) = max(0,δ +‖ai−pi‖2−‖ai−n j‖2) (2)

where ai and pi are anchor and positive samples, respectively, for the positive class i and n j
is the sample of the negative class j. While δ represents the expected margin between inter-
class and intra-class distances. For the task of re-id, we propose class interference as follows:
first, we introduce a Table of Average Class embeddings (TAC) to accumulate the mean iden-
tity specific features; then, we add noise to the anchor ai according to Eq. 1 with randomly
sampled mean class embedding from TAC. We outline the procedure in Algorithm 1.

Few-Shot Learning: One-shot learning is in essence quite similar to re-identification as it
aims to learn a model which is able to classify images having only seen one example per
class. For training, Prototypical loss is common in this case, or similar to re-identification
Triplet-loss is also applicable. In our initial experiments, we found that the performance of
Proto lags behind the Triplet, therefore, we opt for the latter for our experiments. The use
of Triplet loss also makes the application of CIR, in this case, similar to few-shot learning.
Hence, the same algorithm1 applies.

Person Search: OIM [66] is one of the most common approach for person search. Many
recent state-of-the-art papers [33, 40, 41] rely on OIM loss for feature learning. During OIM
training, the output feature of a person identity is matched against the TAC lookup table.
Using Eq. 1, we corrupt the output features of the person identity with a randomly chosen
mean embedding from the TAC. We outline the procedure in Algorithm 2.

Input: Training data: D = {(xn,yn)}N
n=1, where xn represents an image, bold-face yn is

corresponding ground-truth person ID and the bounding box, while yn represents only the
ground-truth person ID; hyper-parameters: Γ (TAC) update momentum γ , interference
amount λ , max. iterations T , and learning rate α

Initialization: OIM [66] network model with initial parameters θ (0) of the feature extractor
f (xn,θ

(0)) ∈ Rd , and Γ(0) ∈RCxd is randomly initialized TAC
for t = 1, . . . ,T do

Dt = {(xi,yi)}B
i=1← select a mini-batch of size B from the training set

for i = 1, . . . ,B do
zi = f (xi,θ

(t−1))← compute feature embeddings
µ j = Γ(t−1)[c]←average embedding of randomly chosen class c 6= yi from TAC
z̃i = (1−λ )zi +λ µ j← class interference acc. to Eq. 1

ŷi = argmax
c

(
Γ(t−1)z̃i

)
← predicted person ID

Li = LFRCNN(yi, ŷi)+LOIM(yi, ŷi)← loss for person search as in [66]
end
θ (t)← θ (t−1)+α

1
‖Dt‖ ∑i∈Dt

∇
θ (t−1)(Li)

Γ(t) = (1− γ)Γ(t−1)+ γ zDt ← update TAC per class using corresponding embeddings
from the current mini-batch during backward pass

end
Output: Trained model parameters θ (T )

Algorithm 2: Application of CIR to person search.
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3.3 Intuition and discussion on CIR
We explain the regularizing effect of CIR on the network training by a simple study case. As-
sume the regression task of learning an image embedding zi for the i-th image xi, according
to the target ground-truth embedding yi. We would assume that zi be the result of a simple
linear relation, i.e. 1-layer fully-connected network, zi = Wxi . In the equation, W are the
current network parameters. The regression loss is given by

L(W,xi,yi) =
1
2
‖Wxi−yi‖2 =

1
2
‖zi−yi‖2 (3)

When applying CIR, we substitute for zi with (1−λ )zi +λ µc, as provided by Eq. (1).
This yields a regularized loss LCIR given by:

LCIR(W,xi,yi) =
1
2
‖(1−λ )zi +λ µc−yi‖2 =

1
2
‖(zi−yi)−λ (zi−µc)‖2 (4)

Notice that by allowing interference we actually force zi to come closer to the average
embedding µc of the wrong class. However, the optimization as a result tries to push the
classes even further apart so that even a noisy embedding stays far away from the average
embedding of other classes. We further support this intuition with an analysis of feature
embeddings in Sec. 4.1

4 Experiments
Here we first evaluate CIR on algorithms based on triplet losses for Few Shot Learning
and Person Re-identification; then we benchmark it on algorithms for Person Search and
Classification adopting cross-entropy losses.

4.1 Few Shot Learning
Dataset and metrics. We consider the miniImageNet [60] and tieredImageNet [49]
datasets. The first is a subset of ILSVRC-12 dataset [51] with 100 classes in total and 600 im-
ages per class. miniImageNet is divided into 64, 16, and 20 classes for meta-training, meta-
validation, and meta-testing, respectively. tieredImageNet [49] is a larger and more complex
subset of ILSVRC-12 with hierarchical structure. It contains 608 classes and 779,165 images
in total. The classes are grouped into 34 broader categories according to WordNet [9] with
20 training, 6 validation, and 8 testing subsets. Following [54], we report the classification
accuracy by taking the average over 600 randomly generated episodes from test set.
Implementation Details. Our work is based upon an open-source implementation of the
ProtoNet1 with Resnet18 [18] as backbone architecture. However, we use a triplet-siamese
network with triplet loss for optimization. We train our model in two settings, from scratch
(one-stage) and from a pre-trained model using softmax cross-entropy loss over all classes
(two-stage). Note that for pre-training we do not use any extra data from the original Im-
ageNet dataset. For triplet from scratch, we train for 300 epochs and decay the learning
rate exponentially [20] after 200 epochs. For triplet pre-trained, we train for 100 epochs
and decay the learning rate after 50 epochs. Each epoch has 100 iterations and the initial
learning rate is set to 0.0002. We use online triplet mining with Batch All sampling strategy

1 ProtoNet implementation for few shot learning
https://github.com/wyharveychen/CloserLookFewShot
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miniImageNet tieredImageNet
Method 1-shot 5-shot 1-shot 5-shot
ProtoNet [54], NIPS17 49.4 68.2 53.3 72.7
ProtoNet [6] (ResNet18), ICLR18 54.2 73.7 - -
Large Margin (Triplet) [63], NIPS18 50.1 66.9 - -
Relation Net [56], CVPR18 50.4 65.3 54.5 71.3
Transductive Prop [34], ICLR19 55.5 69.9 59.9 73.3
Incremental [50], NIPS19 54.9 63.0 56.1 65.5
IDeMe-Net [7], CVPR19 57.7 74.3 - -
Individual Feature [16], ICLR19 56.9 70.5 - -
CAML [23], ICLR19 59.2 72.3 - -
LEO [52], ICLR19 61.8 77.6 66.3 81.4
MetaOptNet [29], CVPR19 62.6 78.6 65.9 81.5
Global Class Rep. [30], ICCV19 53.2 72.3 - -
Triplet 57.4 70.2 63.9 77.1
+ CIR 58.4 72.6 64.3 77.7
Cross Entropy→ Triplet 57.7 74.3 66.6 81.7
+ CIR 60.5 75.8 69.1 82.9

Market-1501
Method mAP(%) Rank-1(%)
†Triplet [20], arXiv17 69.1 84.9
†MGN [62], ACM18 86.9 95.7
†SSP-ReID [46], IMAVIS19 75.9 89.3
HPM [11], AAAI19 82.7 94.2
†PyrNet [36], CVPR19 81.7 93.6
†BoT [35], CVPR19 85.9 94.5
DGNet [77], CVPR19 86.0 94.8
CASN [76], CVPR19 82.8 94.4
†Auto-ReID [45], ICCV19 85.1 94.5
†OSNet [79], ICCV19 84.9 94.8
†P2-Net [17], ICCV19 85.6 95.2
Triplet ours 70.4 84.5
Triplet ours + CIR 71.3 85.8
†ABD-Net [4], ICCV19 88.3 95.6
†ABD-Net [4] + CIR 88.8 95.6

(a) (b)

Table 1: (a) CIR on few shot learning for 5-way 1-shot and 5-way 5-shot. The average accuracy
of 600 randomly generated episodes is reported for miniImageNet [60] and tieredImageNet [49] (b)
Comparative evaluation of CIR for the task of person re-identification on the Market-1501 dataset [74].
Methods indicated as † also use triplet loss and could also benefit from the simple CIR strategy.

as suggested in [20]. For miniImagenet, we use a batch size of 80 (20 classes, 4 samples
per class) and for tieredImagenet we use batch size 256 (64 classes, 4 samples per class).
We use update momentum γ=0.5 for building the TAC and regularization momentum λ=0.5
for class interference. The value of TAC update momentum is motivated from [66]. Note
that, apart from keeping a TAC for average embeddings of different classes during training,
there are no additional computational and memory space overheads, considering corruption
of signal is negligible.
Results. In Table 1(a), we show the results of our evaluations in comparison to the state-
of-the-art. We prefer triplet over prototypical loss for our baseline due to its superior per-
formance (cf. Table 1(a)). We first evaluate the triplet-siamese network in one stage setting
(training from scratch). On miniImageNet dataset, this model achieves an accuracy of 57.4%
for 1 shot and 70.2% for 5 shot. For tieredImagenet, this model achieves 63.9% for 1 shot
and 77.1% for 5 shot. As shown in the table, the addition of CIR to this model, improves
its performance on miniImagenet by approximately 1pp (58.4 vs 57.4) for 1 shot and 2.4pp
(72.6 vs 70.2) for 5 shot. For tieredImagenet, we observe marginal improvement.

We then evaluate our model in two-stage setting (cross-entropy followed by triplet) and
report results in the last section of the table. As shown, this model provides a very strong
baseline and CIR further improves this strong baseline significantly. For miniImagenet, CIR
brings an improvement of almost 2.7pp for 1 shot and 1.5pp for 5 shot. For tieredImagenet,
CIR brings an improvement of 2.5pp for 1 shot and 1.2pp for 5 shot. In the same Table 1(a),
we also list the results of the state-of-the art models on few-shot learning. On tieredIma-
genet we outperform the current best approaches LEO [52] by 2.8pp on 1-shot learning and
MetaOptNet [29] by 1.4pp on 5-shot learning.

Furthermore, we perform a sanity check by adding gaussian noise to the feature embed-
dings instead of CIR, as a regularizer. These results are shown in Table 2 on tieredImageNet
for 5-way 1-shot case. We notice that adding gaussian noise does not have any impact on the
results, whereas CIR shows consistent improvements in all cases. This experiment allows us
to understand that the contribution of CIR is more significant than just the random noise.
CIR as a Regularizer : We empirically demonstrate in Figure 2 that CIR acts as a reg-
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Method tieredImageNet (1-shot)

Triplet 63.9
Triplet + Gaussian Noise 63.6
Triplet + CIR 64.3
Cross Entropy→ Triplet 66.6
Cross Entropy→ Triplet + Gaussian Noise 66.9
Cross Entropy→ Triplet + CIR 69.1

Table 2: Few-shot learning results for CIR vs Gaussian Noise on tieredImageNet [52]. The numbers
represent the average accuracy of 600 randomly generated episodes.
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Figure 2: Training and validation accuracies with or without CIR on miniImagenet (a), tieredIma-
genet (b). Notice, improvement in validation accuracy and slight drop in training accuracy with CIR,
indicating reduction in overfitting.

ularizer. Figure 2(a) shows the plots for training (left) and validation (right) accuracy on
miniImagenet. Similarly, Figure 2(b) shows the plots for training (left) and validation (right)
accuracy on tieredImagenet. As shown for both the datasets, our proposed CIR model has
constantly higher validation accuracy than the one without CIR, while having lower training
accuracy. This shows that CIR has a regularizing effect as it is able to generalize beyond the
training set and decrease the gap in training and validation accuracy.
Effect of CIR on the feature embedding : To better support the intuition on CIR of Sec. 3.3,
with reference to tieredImagenet [49], we compute the average distance from the overall
center of mass of each data-point embedding and the ratio of inter-to-intra class mean dis-
tances. The first increases from 6.99 (w/o CIR) to 38.88 (w/ CIR), while the second changes
from 1.02 (w/o CIR) to 1.17 (w/ CIR). This means that CIR effectively makes the feature-
embedding space expand, but the embeddings from each class remain relatively compact.

4.2 Person Re-identification
Dataset and metrics. We adopt the Market-1501 [74] dataset, which contains a total of
32,668 images representing the cropped bounding boxes of 1,501 persons. The train/test
splits contain 750 and 751 identities respectively. For evaluation, we use the standard met-
rics, mAP and CMC rank-1.
Implementation Details. Triplet is the most common loss used in person re-id literature due
to its superior performance. We re-implement our triplet baseline for person re-identification
following [20]. We use pre-trained ResNet-50 architecture with input images re-scaled to
256×128. For augmentation, random crops and horizontal flipping are applied during train-
ing. For CIR, we employ TAC update momentum γ=0.5 as discussed in Section 4.1 and
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CUHK-SYSU
Method mAP(%) top-1(%)
OIM [66], CVPR17 75.5 78.7
IAN [64], arXiv17 76.3 80.1
NPSM [33], ICCV17 77.9 81.2
†Mask-G [3], ECCV18 83.0 83.7
CLSA [28], ECCV18 87.2 88.5
†QEEPS [40], CVPR19 84.4 84.4
†Context Graph [69], CVPR19 84.1 86.5
OIM ours 77.8 78.1
OIM ours + CIR 79.3 80.0
†Distilled QEEPS [41] (Resnet18), BMVC19 84.1 84.3
†Distilled QEEPS [41] (Resnet18) + CIR 84.5 84.6

CIFAR-10 Accuracy Accuracy-test
No Reg. [39] 86.8±0.2 86.8

Label Smoothing [39] 86.7±0.3 87.0
CIR - 87.1

CIFAR-100 Accuracy Accuracy-test
No Reg. [39] 72.1±0.3 75.2

Label Smoothing [39] 72.7±0.3 76.0
CIR - 76.1

(a) (b)

Table 3: (a) Comparative evaluation of CIR for the task of person search on the CUHK-SYSU [59]
dataset. CIR boosts performance of OIM by a significant margin by regularizing its training. Methods
indicated as † are built on top of OIM and could also benefit from the simple CIR strategy. (b) Top-
1 Accuracy on CIFAR-10 and CIFAR-100 datasets. We follow the same implementation as in [39].
Accuracy-test is the accuracy of our implementation on actual test set.

regularization momentum λ=0.1.
Results. In Table 1(b), we show the results of our baseline re-implementation “Triplet ours”
are slightly better than the original work [20]. We show that our proposed regularization CIR
improves the baseline by 0.9pp mAP and 1.3pp CMC Rank-1. Note that other techniques
are also available for person re-identification with better performance than [20], however
most of them are still based on triplet loss. We add CIR on top of ABD-Net [4] which is the
state-of-the-art in person re-identification and also uses triplet loss. As shown in the table,
our proposed CIR brings an improvement of 0.5pp mAP and provides the best known mAP
score for person re-identification on the Market-1501 dataset.

4.3 Person Search

Most recent approaches for person search are based on OIM [66] model. Hence, we also
consider this as our baseline approach. To apply CIR in this case, we blend the ID feature
embedding of a person with the average embedding from some other person ID from TAC.
Dataset and metrics. We adopt most commonly used CUHK-SYSU [66] dataset for bench-
marking with 18,184 images labeled, 8,432 identities and 96,143 bounding boxes. We adopt
the train/test split of [66]. The dataset presents challenging large variations in person appear-
ance, background clutter and illumination changes. As metrics, we follow [66] and adopt
mean Average Precision (mAP) and Common Matching Characteristic (CMC top-1).
Implementation Details. We re-implement the OIM person search algorithm of [66] in Py-
torch, which we consider as our baseline. We use an image resolution of 600 pixels (shorter
side). For CIR, we employ TAC update momentum γ=0.5 as discussed in Section 4.1 and
regularization momentum λ=0.5.
Results. We report in Table 3(a) the most recent relevant results together with ours. Our
baseline “OIM ours” shows 77.8 mAP, slightly above the original OIM performance [66].
Implementing the CIR regularization on top of it yields 79.3 mAP and 80.0 top-1 CMC,
improving the metrics by 1.5pp and 1.9pp, respectively. As shown in the table, most of these
approaches [3, 40, 41, 69] are based on OIM, therefore CIR is directly applicable to them.
We add CIR to the state-of-the-art person search method of Distilled QEEPS [41], which
uses OIM. We adopt ResNet18 as the backbone of the Distilled QEEPS and use hyper-
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parameters of the original paper [41]. As shown in the Table 3(a), the proposed CIR brings
an improvement of 0.4pp mAP and 0.3pp top-1 on Distilled QEEPS [41].

4.4 Classification
Finally we demonstrate the application of CIR for the classification models trained with
traditional cross-entropy loss. This also allows us to compare to label smoothing regulariza-
tion [39].
Dataset and metrics. We consider CIFAR-10 and CIFAR-100 which are widely adopted
datasets for natural image recognition. Both datasets are subsets from 80-million tiny image
database [58] and contain 60k images (32×32) each. The train split has 50k images and test
set has 10k images. CIFAR-10 has 10 categories while CIFAR-100 has 100.
Implementation Details. We use AlexNet [27] for CIFAR-10 and ResNet-56 [18] for
CIFAR-100, as suggested in [39]. However, for a transparent evaluation and reproduciblity
of results by the community, we evaluate our model on publicly available test set (Accuracy-
test in Table 3 (b)), unlike [39] which defines its own private validation set for both CIFAR-10
and CIFAR-100. For both datasets, we employ CIR with TAC update momentum γ=0.5 as
discussed in Section 4.1 and regularization momentum λ=0.1.
Results. In Table 3, we notice that both Label Smoothing [57] and our proposed CIR give
minor but consistent improvement for both CIFAR-10 and -100, over model without regu-
larization. In future work, we aim to study further applications for our proposed CIR.

5 Conclusions
We have proposed CIR, a novel, simple and effective regularization technique. CIR applies
to cross entropy losses but is especially suited to contrastive losses. CIR is the first to act on
the output features and it parallels established regularization techniques acting on the label
distributions such as label smoothing and self-distillation, which do not apply to contrastive
losses. In experimental evaluation we have shown that CIR improves consistently the perfor-
mance of few-shot learning and person re-identification – for contrastive losses – and person
search and classification – for cross-entropy losses. In the latter case, improvements are more
modest, but on par with label smoothing. Given the rising popularity of contrastive losses
and given the simplicity of CIR, we hope that it would play a role in future model trainings.
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[43] G. Pereyra, G. Tucker, J. Chorowski, ÅĄ. Kaiser, and G. Hinton. Regularizing neural
networks by penalizing confident output distributions. In ICLR, 2017.

[44] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classi-
fication using deep learning. CoRR, abs/1712.04621, 2017. URL http://arxiv.
org/abs/1712.04621.

[45] Ruijie Quan, Xuanyi Dong, Yu Wu, Linchao Zhu, and Yi Yang. Auto-reid: Searching
for a part-aware convnet for person re-identification. In ICCV, 2019.

[46] Rodolfo Quispe and Helio Pedrini. Enhanced person re-identification based on saliency
and semantic parsing with deep neural network models. Image and Vision Computing,
2019.

[47] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
ICLR, 2017.

https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621


14 B.MUNJAL ET. AL: CLASS INTERFERENCE REGULARIZATION

[48] Mengye Ren, Eleni Triantafillou andSachin Ravi, Jake Snell, Kevin Swersky, Joshua B.
Tenenbaum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-
supervised few-shot classification. In ICLR, 2018.

[49] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B.
Tenenbaum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-
supervised few-shot classification. In Proceedings of 6th International Conference on
Learning Representations ICLR, 2018.

[50] Mengye Ren, Renjie Liao, Ethan Fetaya, and Richard Zemel. Incre-
mental few-shot learning with attention attractor networks. In Advances
in Neural Information Processing Systems 32, pages 5275–5285. Cur-
ran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8769-incremental-few-shot-learning-with-attention-attractor-networks.
pdf.

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y.

[52] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization.
In ICLR, 2019. URL https://openreview.net/forum?id=BJgklhAcK7.

[53] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embed-
ding for face recognition and clustering. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

[54] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In NIPS, 2017.

[55] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL http:
//jmlr.org/papers/v15/srivastava14a.html.

[56] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M.
Hospedales. Learning to compare: Relation network for few-shot learning. In CVPR,
2018.

[57] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[58] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: a large
dataset for non-parametric object and scene recognition, 2008.

[59] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408,

http://papers.nips.cc/paper/8769-incremental-few-shot-learning-with-attention-attractor-networks.pdf
http://papers.nips.cc/paper/8769-incremental-few-shot-learning-with-attention-attractor-networks.pdf
http://papers.nips.cc/paper/8769-incremental-few-shot-learning-with-attention-attractor-networks.pdf
https://openreview.net/forum?id=BJgklhAcK7
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html


B.MUNJAL ET. AL: CLASS INTERFERENCE REGULARIZATION 15

2010. URL http://dblp.uni-trier.de/db/journals/jmlr/jmlr11.
html#VincentLLBM10.

[60] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan
Wierstra. Matching networks for one shot learning. In NIPS, 2016.

[61] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 1058–1066. PMLR, 2013. URL
http://proceedings.mlr.press/v28/wan13.html.

[62] G. Wang, Y. Yuan, X. Chen, J. Li, and X. Zhou. Learning Discriminative Features with
Multiple Granularities for Person Re-Identification. ArXiv e-prints, 2018.

[63] Yong Wang, Xiao-Ming Wu, Jiatao Gu Qimai Li, Wangmeng Xiang, Lei Zhang, and
Victor OK Li. Large margin meta-learning for few-shot classification.âĂİ. In Workshop
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