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Abstract. Real-time estimation of a camera’s pose relative to an object
is still an open problem. The difficulty stems from the need for fast and
robust detection of known objects in the scene given their 3D models,
or a set of 2D images or both. This paper proposes a method that con-
ducts a statistical analysis of the appearance of model patches from all
possible viewpoints in the scene and incorporates the 3D geometry during
both matching and the pose estimation processes. Thereby the appear-
ance information from the 3D model and real images are combined with
synthesized images in order to learn the variations in the multiple view
feature descriptors using PCA. Furthermore, by analyzing the computed
visibility distribution of each patch from different viewpoints, a reliability
measure for each patch is estimated. This reliability measure is used to
further constrain the classification problem. This results in a more scal-
able representation reducing the effect of the complexity of the 3D model
on the run-time matching performance. Moreover, as required in many
real-time applications this approach can yield a reliability measure for
the estimated pose. Experimental results show how the pose of complex
objects can be estimated efficiently from a single test image.

1 Introduction

Estimating the pose of a camera relative to an object is one of the most studied
problems in computer vision and photogrammetry. While reliable solutions have
been proposed for pose estimation given correspondences [1–4] and feature-based
3D tracking [5–7], fully automated estimation of the initial camera’s pose for
tracking is still an open problem. The difficulty stems from the need for fast and
robust detection of known objects in the scene given their 3D models, or a set
of 2D images or both. Fast and robust pose estimation has a wide variety of
applications, such as robot navigation, surveillance, and augmented reality.

Computer vision literature includes many object detection approaches [8, 9, 5,
10, 11] based on representing objects of interests by a set of local features which



are characterized by invariant descriptors for matching [12–16]. Combination of
such descriptors provide robustness against partial occlusion and cluttered back-
grounds. The descriptors are ideally invariant to viewpoint and illumination vari-
ations. Most of these methods make use of techniques for wide-baseline stereo
matching solely based on 2D images without considering any run-time require-
ments. However, in many applications where real-time object detection is required
both 3D models and several training images may be available or can be created
easily during an off-line process.

This paper presents an alternative approach for fast object detection and pose
estimation by fusing both 3D and appearance models. It shows that real-time
performance can be achieved by using the underlying 3D information to limit
the number of hypothesis for the robust matching process. Especially for large
environments this renders our method very powerful. Our method differs in two
aspects from the state of the art. First, we propose a statistical analysis and
evaluation of the appearance and shape of features from all possible viewpoints
in the scene combining real and synthetic viewpoints. Second, we make use of the
known 3D geometry in both matching and pose estimation processes. We show
that by fusing both appearance and geometric information rather than using them
in separate procedures we can improve both time and functional performance, and
make our approach more scalable for large environments.

Our approach has two phases. In the training phase, a compact appearance
and geometric representation of the target object is built. This is as an off-line
process. The second phase is an on-line process where a test image is processed for
detecting the target object using the representation built in the training phase.
During training, the variations in the descriptors of each feature are learned using
principal component analysis (PCA). Furthermore, for each feature a reliability
measure is estimated by analyzing the computed visibility distribution from dif-
ferent viewpoints. The problem of finding matches between sets of features in the
test image and on the object model is then formulated as a classification problem
which is constrained by using the reliability measure of each feature.

As an application, our method is intended to be used to provide robust ini-
tialization for a frame rate feature-based pose estimator [6] where robustness and
time efficiency are very critical. In this case the initial pose recovery is sufficient
to be performed under one second.

2 Previous work
A number of approaches have been proposed addressing the problem of 3D object
detection for pose estimation. Some methods use statistical classification tech-
niques, e.g PCA to compare the test image with a set of calibrated training images
[17]. Others are based on matching of local image features [12, 13, 18, 19, 5, 20–24].
While some approaches use simple 2D features such as corners or edges, more so-
phisticated approaches rely on local feature descriptors which are insensitive to
viewpoint and illumination changes. Usually geometric constraints are used as
verification criteria of the estimated pose. Rothganger et al. [20] introduced a 3D
object modeling and recognition algorithm for affine viewing conditions. Photo-
metrically and geometrically consistent matches are selected in a RANSAC-based
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Fig. 1. Overview of the proposed object detection process for real-time pose estimation.

pose estimation procedure. Even though this method achieves good results for 3D
object detection, it is too slow for real-time applications. Lepetit et al. [19] treat
wide baseline matching of key points as a classification problem, where each class
corresponds to the set of all possible views of each point. Once potential matches
have been established they apply a plain RANSAC method to recover the 3D pose.
Recently they introduced an approach for object pose estimation in real-time [25],
where randomized trees are used as the classification technique. Keypoint recogni-
tion relies solely on 2D image intensity values within small windows around these
keypoints.

3 Proposed approach

Our goal is to automatically detect objects and recover their pose for arbitrary
images (test image). The proposed object detection approach is based on two
stages: A learning stage which is done off-line and the matching stage at run-time.
The entire learning and matching processes are fully automated and unsupervised.
Sections 3.1 and 3.2 describe the learning step in more detail. In Sections 3.3 and
3.4 we introduce the matching and pose estimation algorithms that enforce both
photometric and geometric consistency constraints.

3.1 Creating view sets based on similarity maps
In the first step of the learning stage a set of stable feature regions are selected
from the object by analyzing their detection repeatability and accuracy as well as
their visibility from different viewpoints.

Images represent a subset of the sampling of the so called plenoptic function
[26]. The plenoptic function is aparameterized function for describing everything
that can be seen from all possible viewpoints in the scene. In computer graphics
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Fig. 2. (a) A subset of the environment maps surrounding the object of interest. (b) A
2D illustration of the 3D clusters of the view sets surrounding the target object.

terminology the plenoptic function describes the set of all possible environment
maps for a given scene. In our case, we define a complete sample of the plenop-
tic function as a full spherical environment map (see Fig. 2(a)). Having a set of
calibrated images and the virtual model of the target object, the viewing space is
coarsely sampled at discrete viewpoints and a set of environment maps is created.
Since not all samplings can be covered by the limited number of training images,
synthesized views are created from other viewpoints using computer graphics
rendering techniques.3 Next, affine covariant features [27] are extracted from the
environment maps. In our experiments we use a variant of Hessian- and Harris-
affine detector introduced in [15]. We also tested the scale and rotation invariant
SIFT detector [10] (see section 4). We then select ”good” feature regions which
are characterized by their detection repeatability and accuracy. The basic measure
of accuracy and repeatability is based on the relative amount of overlap between
the detected regions in the environment maps and the respective reference regions
projected onto that environment map using the ground truth transformation. The
reference regions can be determined e.g. from the parallel views to the correspond-
ing feature region on the object model (model region). This overlap error is defined
as the error in the image area covered by the respective regions [15].

For each model region a view set is the set of its appearances in the envi-
ronment maps from all possible viewpoints (see Fig. 2(b)). Depending on the 3D
structure of the target object a model region may be clearly visible only from cer-
tain viewpoints in the scene. We create for each model feature a similarity map by
comparing it with the corresponding extracted features. As a similarity measure
we use the Mahalanobis distance between the respective SIFT descriptors. For
each model region the respective similarity map represents its visibility distribu-
tion. This analysis can also be used to remove the repetitive features visible from
the same viewpoints in order to keep the more distinctive features for matching.
Based on the similarity maps of each model region we cluster groups of viewpoints
together using the mean-shift algorithm [28]. The clustered viewpoints for a model
region mj are W (mj) = {vj,k ∈ <3|0 < k ≤ Nj}, where vj,k is a viewpoint of

3 Due to complexity of the target object and the sampling rate this can be a time
consuming procedure. However, this does not affect the computational cost of the
system at run-time since this can be done off-line.
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Fig. 3. Experiments with simulated data. (a) The virtual model of the object. (b) The
extracted features on the model. (c)-(f) Top-down view of a subset of the similarity
maps. (g)-(j) The clustered view sets using mean-shift algorithm.

that region. Figure 3 shows some results of a simulated scene including a box and
two cylinders. The faces of the box are rendered with the texture obtained from
a real tea box. Figure 3(c)-(f) show top down views of a subset of the similarity
maps of four patches selected from each side of the box. Note how the presence of
an occluding object (cylinders) is reflected in the similarity maps. The respective
view sets determined by mean shift clustering are shown in Fig. 3(g)-(j).

3.2 Learning the statistical representation
This section describes a method to incorporate multiple view descriptors of each
view set into our statistical model. We use the PCA-SIFT descriptor [29] for a
more compact representation (e.g. first 32 components). To minimize the impact of
variations of illumination, especially between the real and synthesized images, the
descriptor vectors are normalized to unit magnitude. The image gradient vectors
gi,j are projected into the feature space to a feature vector ei,j .

We suppose that the distribution of the gradient vectors is Gaussian for the
carefully selected features as described in the previous section. For each region we
take k samples from the respective environment maps so that the distribution of
their feature vectors ei,j for 0 < j ≤ K in the feature space is Gaussian. To ensure
the Gaussian distribution of the gradient vectors for each view set we apply the χ2

test for a maximal number of samples. If the χ2 test fails after a certain number
of samplings for a region, the region will be considered as not reliable enough and
will be excluded. For each input view set Vi we then learn the covariance matrix
Σi and the mean µi of the distribution.

3.3 Matching as a classification problem
Matching is the task to find groups of corresponding pairs between the regions
extracted from the model and test image, that are consistent with both appear-
ance and geometric constraints. The matching problem can be formulated as a
classification problem [19]. Our goal is to construct a classifier so that the misclas-
sification rate is low. From the test image, the features are extracted in the same
manner as in the learning stage and their gradient image vectors are computed.
The descriptors are then projected into feature space using PCA (bold dots in Fig.



1). We use the Bayesian classifier to decide whether a test descriptor belongs to
a view set class or not. Let C = {C1, ..., CN} be the set of all classes representing
the view sets and let F denote the set of 2D-features F = {f1, ..., fK} extracted
from the test image. Using the Bayesian rule the a posteriori probability P (Ci|fj)
for a test feature fj that it belongs to the class Ci is calculated as

P (Ci|fj) =
p(fj |Ci)P (Ci)∑N

k=1 p(fj |Ck)P (Ck)
. (1)

We compute for each test descriptor the a posteriori probability of all classes
and select candidate matches using thresholding. Let m(fj) be the respective set
of most probable potential matches m(fj) = {Ci|P (Ci|fj) ≥ T}. The purpose
of this threshold is only to accelerate the run-time matching and not to consider
matching candidates with low probability. However this threshold is not crucial
for the results of pose estimation.

3.4 Pose estimation using geometric inference
This section describes a method using geometric consistency to constrain the
search space for finding candidate matches. For the pose estimation a set of N ≥ 3
matches are required. In an iterative manner we choose the first match f ′

1 ↔ C ′
1

as the pair of correspondences with the highest confidence:

argmax fk ∈ F
Cl ∈ C

P (Cl|fk).

We define VCl
as the set of all classes of regions which should also be visible from

the viewpoints where Cl is visible

VCl
= {Ck ∈ C||Wk ∩Wl| 6= 0},

where Wj is the set of 3D-coordinates of the clustered viewpoints {vj,k|0 < k ≤
Nj} for which the respective model region is visible (see building environment
maps, Section 3.1).

Assuming the first candidate match is correct, the second match f ′
2 ↔ C ′

2 is
chosen only from the respective set of visible regions. Therefore after each match
selection the search area is constrained to visibility of those regions based on
previous patches. In general the kth candidate match f ′

k ↔ C ′
k, 1 < k ≤ N is

selected in a deterministic manner

(f ′
k, C ′

k) = argmax fk ∈ F\{f1, ..., fk−1}
Ck ∈

⋂k−1

l=1
VC′

l

P (Ck|fk).

The termination criteria is defined based on the back-projected overlap error
(see Section 3.1) in the test image. This algorithm can be implemented in different
ways. One way is a recursive implementation with an interpretation tree where the
nodes are visited in the depth-first manner. The depth is the number of required
matches N for the pose estimation method. This algorithm has a lower complexity
as the results will show, than the plain version of RANSAC or the ”exhaustive”
version where all pairs of candidate matches are examined.
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Fig. 4. Experiments with real data. (a)-(b) The calibrated key frames. (c) The set of
most visible patches extracted on the model based on the statistical analysis using the
similarity maps. (d) Metrics used to compare the results (see text).

4 Experimental results

The proposed method has been tested in a series of experiments using virtual and
real objects. Due to the space limitations we only present a subset of the results
using real objects. The off-line learning process uses ImageModeler from RealViz
[30] to obtain a 3D model.4 Our experimental setup consists of a target object
and a commonly available FireWire camera (Fire-I). The camera is internally
calibrated and lens distortions are corrected using the Tsai’s algorithm [31].

We conducted a set of experiments to analyze the functional and the timing
performance of our approach. The results were compared against a conventional
approach based solely on 2D key frames. Our approach requires an input consisting
of a set of images (or key frames) of the target object. One target object is shown
in Fig. 4(a). The key frames were calibrated. We used a calibration object (a
known set of markers) for automatically calibrating the views. These markers

4 The accuracy requirements depend on the underlying pose estimation algorithms, the
object size and the imaging device.
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Fig. 5. Experiments with real data. (a)-(b) Performance evaluation (see text). (c) Visu-
alization of the pose estimation results.
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Fig. 6. Experiment 1: Control Box. Pose estimation results on test images.

were used to compute the ground truth for evaluating the matching results on
test frames as well.

In the first experiment, we analyzed the functional performance against view
point variations for the same scene but under uncontrolled lighting. The images
were taken by a moving camera around the object. For the sake of clarity of
presentation, we show a subset of 19 test images from this sequence with additional
two images as key frames (see Fig. 4(a)-(b),(d)). All those images were calibrated
as explained above. Fig. 4(d) shows some metrics we used to compare these results.
One measure of performance is the final size of the representation (number of
features in the database) used for both methods indicated by the two straight lines.
With increasing number of key frames the size of the database in the conventional
case would increase linearly with the number of key frames. In contrast, our
method keeps fewer features in the 2D-3D database after careful implicit analysis
of their planarity, visibility and detection repeatability. The database size in our
method is proportional to the scene complexity not the number of available key
frames. This is an important property for the scalability of the system for more
complex objects. Fig. 4(d) also shows the number of extracted features and
the number of correct matches found by both methods for each of the 19 test
images. It should be noted that, near the two key frames our method obtains less
correct matches compared to the conventional method. This is due to the fact that
our representation generalizes the extracted features whereas the conventional
methods keeps them as they are. The generalization has the cost of missing some
of the features in the images closer to the key frames. On the other hand, the
generalization helps to correctly match more features in disparate test views.

Complexity and performance of robust pose estimation methods like RANSAC
are dependent not on the number of correct matches but the ratio between cor-
rect and false matches. Fig. 5(a) shows the percentage of correct matches vs the
viewing angle for the proposed method and the conventional approach. Although
near the key frames our method obtains fewer matches, it has a higher percent-
age of correct positives. As a result of this and the visibility constraints used our
method needs only a few RANSAC iterations for pose estimation. This brings

(a) (b)
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(c)
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Fig. 7. Experiment 2: Blair Tower. Pose estimation results on test images.
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Fig. 8. Experiment 3: Char Minar. (a) 3D model. (b)-(d) Pose estimation results on test
images, and with virtual objects (e).

Fig. 9. Performance evaluation: ROC plot.

us to the timing performance of the matching methods. We use a more complex
matching method than the conventional one. Therefore, each individual match
costs more. However, with increasing complexity of the target object with respect
to self-occlusions our representation becomes more efficient. Fig. 5(b) shows the
respective maximal number of iterations needed (logarithmic scale) for RANSAC
based pose estimation with a confidence probability of 95%. Fig. 5(c) shows a
visualization of the pose estimation results. We obtain up to five folds speed-up
compared to the exhaustive RANSAC method. Our non-optimized implementa-
tion needs about 0.3 to 0.6 second compared to 2.5 seconds for the conventional
approach. In Fig. 6 (a)-(d) more results are shown for experiments using test
images with occlusions, cluttered background and illumination changes. The de-
tection results are quite robust and the estimated pose is accurate enough to
initialize our real-time 3D tracker [6]. Fig. 8 and 7 show the results of two other
experiments in outdoor environments. We used each time two images to build a
coarse 3D model and applied our method to several test images.

The performance of the matching part of our system was evaluated by pro-
cessing all pairs of object model and test images, and counting the number of
established matches. Fig. 9 shows the ROC curve that depicts the detection rate
vs false-positive rate, while varying the detection threshold T . Compared to the
keyframe-based approach the proposed approach performs very well and achieves
97% detection with 5% false-positives.

5 Conclusions

This paper addressed the problem of real-time object detection for pose estima-
tion. The major contribution of this paper is the integration of the known 3D



geometry of the target model during both matching and pose estimation steps.
This is achieved by a statistical analysis of the appearances distribution of model
patches in the viewing space. Instead of the local planarity assumption used in
previous approaches, our proposed method is able to learn the visibility distribu-
tion of the variations in the local descriptors considering their known geometry.
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