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Abstract— We propose an efficient and scalable method for
incrementally building a dense, semantically annotated 3D map
in real-time. The proposed method assigns class probabilities to
each region, not each element (e.g., surfel and voxel), of the 3D
map which is built up through a robust SLAM framework and
incrementally segmented with a geometric-based segmentation
method. Differently from all other approaches, our method
has a capability of running at over 30Hz while performing
all processing components, including SLAM, segmentation, 2D
recognition, and updating class probabilities of each segmenta-
tion label at every incoming frame, thanks to the high efficiency
that characterizes the computationally intensive stages of our
framework. By utilizing a specifically designed CNN to improve
the frame-wise segmentation result, we can also achieve high
accuracy. We validate our method on the NYUv2 dataset by
comparing with the state of the art in terms of accuracy and
computational efficiency, and by means of an analysis in terms
of time and space complexity.

I. INTRODUCTION

The task of incrementally building a semantically an-
notated 3D map is a challenging research topic for both
the robotics and computer vision communities. It has a
wide range of applications including autonomous grasping
and manipulation of objects, scene understanding, robotics
navigation and augmented reality. For this reason, a valuable
research effort is currently undergoing in literature with the
aim of developing efficient systems that can scale up to
mobile/embedded architectures while being robust enough
to generalize to unseen environments.

Motivated by the recent developments of deep learning and
Convolutional Neural Networks (CNNs) for 3D data, recent
methods have mostly focused on increasing the accuracy
of the semantic segmentation map [1], [2], [3]. At the
same time, they still face the critical issue of yielding real-
time performance, since such systems are built on a set
of computationally demanding processing stages, including
3D reconstruction, camera pose estimation and CNN-based
semantic segmentation. This becomes even more relevant
with regards to embedded and mobile architectures that are
typically employed for the aforementioned applications of
robotics navigation/grasping and augmented reality.

To achieve real-time performance, some of these methods
suggested to only extract semantic information on a subset
of the input frames. For example, the methods proposed by
Hermans et al. [4] and McCormac et al. (SemanticFusion)
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Fig. 1: Our method achieves accurate semantic mapping
(comparable to the state of the art [1], bottom row) while
being more efficient and scalable. It relies on the geometric
segmentation that takes into account semantic information
and thus providing meaningful segments than the method of
Tateno et al. [6] (middle row).

[1] achieved, respectively, an output frame-rate of 4Hz and
25.3Hz, by running semantic segmentation, respectively,
every 6 and every 10 frames. While such frame skipping
strategy can improve run-time performance, it limits their
range of application, since it tends to bring in inaccuracies
under fast camera motions.

In this paper, we propose a novel incremental semantic
mapping approach that aims at overcoming such issues by
yielding highly accurate semantic scene reconstruction (see
bottom row of Fig. 1) in real-time. The framework relies on
effectively combining a reliable camera pose tracking (In-
finiTAM v3 [5]), an incremental segmentation approach [6],
and an efficient CNN-based semantic segmentation method.
In particular, the 3D map of the scene is built through the
fast and robust surfel-based SLAM approach in [7], and
geometric segmentation labels are assigned to each surfel



based on the approach of [6]. Class probabilities of each
label are updated through a specifically designed CNN.

We introduce a new probabilistic strategy to deal with one
of the most delicate stages, i.e. class probability assignment.
According to this strategy, and in contrast to conventional se-
mantic mapping methods which assign class probabilities to
each surfel [4], [1], [2], we assign class probabilities to each
segment. This reduces notably the time complexity since at
each new frame probability distributions need to be updated
for those segments which are visible on the image plane from
the current camera pose, in contrast to conventional methods
which need to update such probabilities for all surfels on the
image plane. This strategy also reduces notably the space
complexity since probability distributions need to be stored
only at each segment rather than each surfel.

In return, the semantic information also improves the
geometric-based segmentation from [6]. By taking into ac-
count semantic information, it provides additional edges that
better represent the semantic structure of the scene, hence
allowing to obtain accurate segment regions (see middle row
of Fig. 1). Since smoothing of semantic labels is carried out
at the geometric fusion stage, this allows us to utilize a CNN
with a low resolution (i.e. 40 × 30) output, with a forward
pass requiring only 19ms on an off-the-shelf GPU (i.e., a
GeForce GTX 1080).

The overall framework is capable of working in real-
time on off-the-shelf architectures, while the requiring a low
computational complexity with respect to state of the art. In
addition, differently from other methods such as [4], [1], [2],
[3], [8], our approach does not require any post-processing
based on, e.g., Conditional Random Field, to refine the output
of the semantic mapping. We demonstrate the effectiveness
and efficiency of our approach on a common benchmark, i.e.
the NYUv2 dataset [9], reporting comparable accuracy than
the state-of-the-art approaches while being notably faster and
scaling better in terms of memory requirements. In addition,
we also report an analysis in terms of time and space
complexity of our method, demonstrating its advantages with
respect to conventional approaches.

II. RELATED WORK
A. Semantic mapping

Related work aimed at incrementally computing a seman-
tic 3D map of the environment are mostly build on top of the
following three main stages: (i) frame-wise segmentation to
estimate the per-pixel class probability of the input frame, (ii)
2D-3D label transfer to fuse the 2D semantic segmentation
labels to the 3D map; and, (iii) 3D refinement to denoise the
class probabilities of the 3D map [4], [1], [2], [3], [10], [8].
Notably, [4] employed Random Decision Forests (RDF), a
Bayesian framework and Conditional Random Field (CRF)
respectively to carry out the three above-mentioned stages.

Since the CRF works on each element of the 3D map
reconstructed via SLAM, it is effective in refining the se-
mantic model and obtain high accuracy. Nevertheless, it is
computationally heavy, as it requires 400 to 1800ms just
for the CRF stage, yielding a frame-rate of 3.9 to 4.6Hz

even if the method computes the RDF once every 6 input
frames and the CRF once every 30 frames. SemanticFusion
[1] employs the CNN model proposed by Noh et al. [11]
for 2D semantic segmentation, a Bayesian framework for
2D-3D label transfer, and a CRF for 3D refinement. By using
a CNN to carry out semantic segmentation of each input
frame, the method can achieve a better runtime performance.
However, the CNN still requires 51.2ms and the Bayesian
update scheme requires a further 41.1ms, eventually running
at 25.3Hz by applying these stages once every 10 input
frames.

Other related works include [12], [13], [14] that aim at
building a semantic 3D map, although not incrementally.
[12] firstly builds a 3D map of a scene through RGB-D
SLAM framework, then assigns class probabilities to each
point of the 3D map by means of a Dense CRF. [13] exploits
relational information derived from the full-scene 3D map for
object labeling relying on a Markov-Random-Field (MRF)-
based model.

In addition, several methods for recognizing only a part of
the 3D map without making a dense semantic 3D map have
been proposed [15], [16], [17], [18]. SLAM++ [15] maps
indoor scenes at the level of semantically defined objects.
Bowman et al. [16] improved the RGB SLAM performance
in terms of camera pose and scale estimation by utilizing not
only low-level geometric features such as points, lines, and
planes but also detected objects as landmarks.

B. 2D semantic segmentation

Several CNN models [19], [20], [11], [21] for seman-
tic segmentation have been proposed, sometimes yielding
impressive results. To achieve a highly precise semantic
segmentation map, such methods aim at exploiting global
information and context to improve the features extracted
by the convolutional layers. In particular, Fully Convolu-
tional Network (FCN) [19] proposed a skip architecture
that combines semantic information from a deep layer with
appearance information from a shallow layer to perform
accurate and detailed segmentation.

C. 3D geometric segmentation

On the other hand, 3D geometric segmentation algorithms
have been developed, to extract geometrically separated
segments from 3D data by unsupervised fashion. Real-time
segmentation for depth map has been investigated by the
works of Uckermann et. al. [22], [23], Pieropan et al. [24]
and Abramov et al. [25]. As a consequence, in addition to
frame-wise segmentation, [26], [6] has addressed the prob-
lem of real-time geometric segmentation for 3D point cloud
or 3D mesh reconstructed via dense SLAM by incremental
approach.

III. METHOD

Fig. 2 shows the flow diagram of our framework. The input
is represented by RGB and depth frames obtained from a
moving RGB-D sensor, which are processed individually.



Fig. 2: Flow of the proposed framework. Efficient CNN-based semantic segmentation is exploited to refine the geometric
edges on frame-wise segmentation, then it is efficiently fused in the SLAM-based model using the rendered viewpoint
according to the estimated camera pose.

Our method has four components: SLAM framework, 2D
semantic segmentation with a specifically designed CNN,
incrementally building a geometric 3D map, and updating
class probabilities assigned to each segment of the geometric
3D map. Firstly, SLAM and semantic segmentation with
the CNN are performed simultaneously. In the segmentation
stage, the geometric edge map is generated from the cur-
rent depth frame and improved with edges extracted from
the semantic segmentation result toward the semantic-aware
representation. The geometric 3D map is updated through the
edge map, and rendered to the current image plane. Finally,
class probabilities assigned to each segmented region are
updated with the rendered segmentation map. The following
section describes these components in more detail.

A. SLAM

To carry out SLAM in terms of camera pose estimation
and fusion we employ the dense approach of InfiniTAM v3
[5], relying on the efficient and scalable data representation
proposed by Keller et al. [7], which uses a set surfels sk to
build the 3D map. As per this method, at the t-th incoming
RGB-D frames, the current camera pose Tt ∈ SE(3) is
estimated through Iterative Closest Point [27] and RGB
alignment. The new surfels generated from the current depth
map are fused into the 3D map by means of the estimated
camera pose, and are used to refine the 3D coordinates and
normal associated to the existing surfels.

B. CNN architecture

The details of the CNN architecture proposed in our
framework, Low-Res Net, are shown in Fig. 2 (g). The
architecture combines concepts from state-of-the-art CNN
models, i.e. Deep Residual Networks (ResNet) [28] and
FCN [19]. Specifically, the original FCN architecture [19]
utilizes the VGG model [29] to extract features and outputs
a semantic segmentation result at the same resolution of the

input image. On the other hand, Low-Res Net employs the
ResNet architecture [28], which achieved higher accuracy
than the VGG model [29] in ImageNet [30], and employs
skip connections as done by FCN [19].

Towards the goal of achieving a fast forward pass, we do
not incorporate multi-layered upsampling and design it only
with two deconvolution layers with two strides. Therefore,
given the input image It(u),u = (x, y) ⊂ Z2, 0 ≤
x < W, 0 ≤ y < H , Low-Res Net outputs a semantic
segmentation map in Fig. 2 (h) as a set of semantic class
probabilities, i.e.

S̃(v) = P(c|It) (1)

where v = (s, t) ⊂ Z2, 0 ≤ s < W/8, 0 ≤ t < H/8.
Here, P(c) denotes a class probability, where P(c) ⊂ R, 0 ≤
P(c) ≤ 1, c ⊂ Z, 0 ≤ c < N with N being the number
of categories. The symbol ˜ denotes instead hereinafter a
map of size H/8×W/8. In our implementation, H = 240,
W = 320, and the number of channels of the input image I
is 3 as in ResNet [28].

C. Segmentation
Our geometrical segmentation scheme is based on the

method proposed by Tateno et al. [6]. The method incremen-
tally builds up a geometric 3D map, where a segmentation
label li is associated with each surfel sk, by properly
propagating and merging segments extracted from the current
depth map.

As a result, we obtain a binary geometric edge map Bg
in Fig. 2 (c) from the input depth frame by comparing
neighboring normal angles and vertex distances and by
relying on a vertex and normal map as proposed in [6]. Here,
Bg(u) takes 1 if u is on an edge and 0 for otherwise. It is
important to point out that, while Bg is stable since those
edges are extracted geometrically, edges between objects that
do not present notable geometric characteristics (e.g., such
as with two nearby flat objects) can not be extracted.



Fig. 3: Example results of our segmentation improvement scheme.

Differently from the geometric segmentation from [6], we
introduce semantic information into the segments. First, we
generate a class map S̃c, where each component S̃c(v) has
a class category c, with

S̃c(v) = arg max
c

S̃(v) = P(c|It). (2)

After applying a median filter to S̃c to remove isolated
points, we resize S̃c to Sc with a nearest neighbor interpo-
lation. We would like to point out that the choice of such an
efficient interpolation approach over a higher quality resizing
such as bilinear interpolation is motivated by the fact that
contours of a CNN-based semantic segmentation map are
often imprecise, hence a better interpolation method would
not yield benefits in terms of accuracy. At the same time,
noise in the segment contours is eventually averaged out
by the employed confidence-based label fusion approach.
Then, we generate a binary semantic edge map Bs with the
following scheme:

Bs(u = (x, y)) =

 1 if
Sc(x, y) 6= Sc(x+ 1, y) ∨
Sc(x, y) 6= Sc(x, y + 1) ∨
Sc(x, y) 6= Sc(x+ 1, y + 1)

0 otherwise
(3)
The final binary semantic-aware edge map B, (d) in Fig. 2,
is obtained by applying a binary OR operator between Bg
and Bs.

In Fig. 3, the geometric edge map in (c) and the semantic-
aware edge map in (d) show the benefit of our segmentation
improvement scheme. Edges between objects which have
poor geometric characteristics (i.e., wall and picture in the
upper row and desk and paper in the bottom row) are
successfully merged to the edge map.

Similar to [6], segments of the semantic-aware edge map
B are properly extracted by means of a connected component
algorithm and utilized for incrementally propagating and
merging into the geometric 3D map with the estimated
camera pose Tt.

D. Probability fusion
Conventional methods assign class probabilities to each

element that composes the 3D map [4], [1], [2], [3], [10],

[8]. Conversely, we propose to assign class probabilities
to each segmentation label li associated to each region
constituting the geometric 3D map. With our approach, each
label li is assigned to a discrete probability distribution
P(c|I1...t) and to a probability confidence Γ. P(c|I1...t)
is initialized to 0 over all class probabilities and Γ is also
initialized to 0. Therefore, the space complexity for storing
class probabilities is O(N ·Nl), where Nl denotes the number
of segmentation labels, in contrast to conventional methods
[4], [1] which require O(N ·Ns), where Ns is the number of
elements of the 3D map (e.g., the number of surfels). This is
an important difference in terms of scalability since typically
Ns � Nl. This also appears as a more natural approach,
since it could be argued that humans recognize objects by
assigning semantic labels in a region-wise manner rather than
element-wise.

In order to fuse the output of the Low-Res CNN properly
with the 3D map, we update class probabilities assigned
to each segmentation label li using a confidence-based ap-
proach. Firstly, we render the updated geometric 3D map
onto the current image plane using the estimated camera
pose Tt and the 3D position x(k) associated with each
surfel sk. The rendered segmentation map L(u), where
each component is associated to a segmentation label li,
is generated with L(π(T−1

t x(k))) = li(k) by denoting the
segmentation label li of a surfel sk with li(k). Here, L(u)
takes φ on the pixel u which is not filled with a label li.

Although the CNN-based semantic segmentation used in
our framework is fast, its output S̃ has a low resolution.
Using the rendered segmentation map L whose size is
H ×W (i.e. the size of input image), detailed information
is introduced to S̃ to update the class probabilities of each
label li with the following update scheme.

First, a set Cv and a set Cv,li are defined as

Cv=(s,t) =
{
u = (x, y) ⊂ Z2|L(u) 6= φ∧

8s ≤ x < 8(s+ 1) ∧ 8t ≤ y < 8(t+ 1)
} (4)

and

Cv,li =
{
u ⊂ Cv|L(u) = li

}
. (5)



TABLE I: Quantitative results for the NYUv2 dataset [9]. These results were captured immediately after processing the
frame. All accuracy evaluations were performed at 320 × 240 resolution. We calculated these accuracies with the same
strategies as [1]. Ours-Geometric-Only denotes the method of building the geometric 3D map without our segmentation
improvement scheme.
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Hermans et al. [4] 68.4 45.4 83.4 41.9 91.5 37.1 8.6 35.8 28.5 27.7 38.4 71.8 46.1 48.0 54.3
RGBD-SF [1] 61.7 58.5 43.4 58.4 92.6 63.7 59.1 66.4 47.3 34.0 33.9 86.0 60.5 58.9 67.5
RGBD-SF-CRF [1] 62.0 58.4 43.3 59.5 92.7 64.4 58.3 65.8 48.7 34.3 34.3 86.3 62.3 59.2 67.9
Eigen-SF [1] 47.8 50.8 79.0 73.3 90.5 62.8 46.7 64.5 45.8 46.0 70.7 88.5 55.2 63.2 69.3
Eigen-SF-CRF [1] 48.3 51.5 79.0 74.7 90.8 63.5 46.9 63.6 46.5 45.9 71.5 89.4 55.6 63.6 69.9
Li et al. [2] 64.9 34.6 72.0 67.5 90.5 65.0 17.2 67.3 59.3 41.3 60.0 85.1 57.0 60.3 70.3
Ours-Geometric-Only 83.7 6.4 32.0 52.8 83.1 73.5 40.0 4.3 75.3 56.6 53.1 75.0 50.2 52.8 66.9
Ours 83.7 15.6 24.4 56.7 83.3 76.1 52.5 40.8 77.7 53.0 57.3 75.3 64.4 58.5 70.7

Fig. 4: Example definition of set Cv and Cv,li .

In words: Cv is a set of coordinates to which the labels are
assigned in the region of L(u) corresponding to S̃(v), while
Cv,li is a set of coordinates to which the label li is assigned
(See Fig. 4).

When the set Uv of labels li which is included in the
region of L(u) corresponding to S̃(v) is defined as

Uv=(s,t) =
{
li = L(x, y) ⊂ Z|8s ≤ x < 8(s+ 1)∧

8t ≤ y < 8(t+ 1)
}

,
(6)

the class probabilities P(c|I1...t) and the probability confi-
dence Γ of each element l ⊂ Uv are updated through

P(c|I1...t)←
1

Z
· ΓP(c|I1...t−1) + γP(c|It)

Γ + γ

Γ← Γ + γ, γ =
|Cv,l|
|Cv|

(7)

which is applied to all class probabilities. Here, the constant
Z is for normalizing class probabilities to a proper distribu-
tion. With this scheme, the weight of the probability which
cross over two or more segment regions (e.g., wall and object
in Fig. 4) is reduced. By applying the same strategy to all v
constituting S̃(v), we update class probabilities of all labels
included in the rendered segmentation map L(u).

Therefore, letting the size of S̃(v),H/8 ×W/8 be H̃ ×
W̃ , the time complexity for updating class probabilities is
O(H̃W̃ (8 × 8 + |Uv|N)), which means calculating set Cv ,
Cv,li , and Uv takes 8× 8 and updating all class probabilities
N assigned to each label in Uv takes |Uv|N . Note that
conventional methods [4], [1], [3], [10] take O(HWN) for

updating class probabilities of the 3D map with a frame-wise
recognition.

IV. EXPERIMENTS

A. Dataset and implementation

We evaluate our system on the common NYUv2 dataset
[9]. The dataset contains 206 test set video sequences,
however, for a fair comparison, we picked up 140 test
sequences having a frame-rate over 2Hz which is the same as
[1]. Since our Low-Res CNN outputs semantic segmentation
with the size of W/8×H/8, we resized the ground truth Sgt
to S̃gt by filling S̃gt(v) with the label which mostly occupies
the area of Sgt(u) corresponding to S̃gt(v). After training
our Low-Res Net with the MS COCO dataset [31] for 10
epochs, we fine-tuned the network with the training dataset of
the NYUv2 dataset [9] for 50 epochs. These evaluations are
conducted on an Intel Core i7-5557U 3.1GHz CPU, GeForce
GTX 1080 GPU, and 16GB RAM.

B. Accuracy

In this section, we experimentally demonstrate the accu-
racy of our method by quantitatively comparing the accuracy
with other state-of-the-art methods through Table I. Addition-
ally, Fig. 5 and Fig. 6 show qualitative results of our dense
semantic mapping.

As shown in Table I, our method achieves 0.8% higher
average pixel accuracy compared to SemanticFusion [1] and
0.4% higher average pixel accuracy compared to Li et al.
[2]. As it can be noted, our method is particularly capable of
outperforming other semantic mapping methods for object
categories characterized by a big size. For the class bed,
there is a significant accuracy increase of 15.3% over the
state of the art; while, for the class furniture and sofa,
we achieve 11.1% and 18.4% improvement, respectively.
The reason why we achieve high accuracy especially on
such categories is that our segmentation strongly relies on
geometric information, and geometric boundaries associated
to these categories (e.g., bed and wall and floor and furniture)
are often quite clear.



Fig. 5: Qualitative results of our dense 3D semantic mapping on two scenes (left: bedroom 0112, right: dining room 0017).
See Table I for class colors.

Fig. 6 shows the benefit of the segmentation improve-
ment from the viewpoint of accuracy compared with “Ours-
Geometric-Only”, where we build the geometric 3D map
without our segmentation improvement scheme. Particularly
in the upper three rows, the paintings and the window
on the wall, which are difficult to distinguish only with
the geometric-based segmentation, are also segmented and
annotated correctly. The geometric 3D map in Fig. 5 also
shows the validity of the segmentation improvement espe-
cially on the above-mentioned regions. The example results
of building a geometric 3D map with/without segmentation
improvement are in Fig. 3 (e) geometric 3D map of Tateno et
al. [6] and (f) geometric 3D map of our method. We achieved
semantic-aware representation rather than the geometric-
only incremental segmentation method [6]. This improved
segmentation scheme allows achieving higher accuracy in
terms of pixel average than state-of-the-art methods. As
shown in Table I, the accuracies of the class painting and
window are significantly improved for 36.5% and 14.2%,
respectively, and 3.8% for overall categories between “Ours”
and “Ours-Geometric-Only”.

The lower two rows of Fig. 6 show failure cases. Since
our method mainly extracts edges from the vertex and normal
map obtained from the incoming depth image, it is difficult
to successfully segment distant objects where depth values
tend to be unstable (i.e., the third row of Fig. 6) and manage
scenes where many small objects are lined up where vertices
and normals are cluttered (i.e., the fourth row of Fig. 6). In
Table I, this is the same reason why the categories of small
objects such as book and objects score low accuracies. We
leave the exploration of improving these limitation to future

TABLE II: Comparison of run-time performance. FQ denotes
the frequency to perform a recognition of the input frame and
update class probabilities of the 3D map.

Method 3D map FQ FPS
Hermans et al. [4] Dense every 6 frames 3.9 - 4.6 Hz
SemanticFusion [1] Dense every 10 frames 25.3 Hz
Yang et al. [3] Dense every frame 2 Hz
Li et al. [2] Semi-Dense every key-frame 10 Hz
Ours Dense every frame 30.9 Hz

TABLE III: Average time spent on each processing stage.
processing for segmentation are in line 2-4 and processing
for recognition are in 5-7. Note that the processing with *
and the processing with ** can be processed simultaneously.

Component Consumed time
SLAM * 8.13 ms
Generate a binary geometric edge map Bg * 1.04 ms
Segmentation improvement 0.39 ms
Update the geometric 3D map 8.74 ms
Low-Res CNN ** 19.32 ms
Generate a rendered segmentation map L 2.52 ms
Probability fusion 1.37 ms
Total 32.34 ms

work.

C. Computational cost

In this section, we demonstrate the advantage of reducing
the computational complexity, i.e. one of the main contribu-
tions of this method. We quantitatively compare the run-time



Fig. 6: Qualitative results for the NYUv2 dataset [9]. As with Table I, Ours-Geometric-Only denotes the method of building
the geometric 3D map without our segmentation improvement scheme. See Table I for class colors.

performance with state-of-the-art approaches through Table
II.

As shown in Table II, we achieved real-time performance
(i.e., over 30Hz) while performing all processing components
on every input frame. As analyzed in the last paragraph of
Sec. III-D, the time complexity for updating class probabil-
ities of the 3D map (i.e., Probability fusion) is O(H̃W̃ (8×
8 + |Uv|N)). Considering the average number of |Uv| was
1.28 through the experiments, the average time complexity
O(H̃W̃ (8× 8 + |Uv|N)) turns into O(H̃W̃ (8× 8 +N)) =
O(HW + H̃W̃N) in contrast to the one of conventional
methods O(HWN) [4], [1], [3], [10]. Therefore, as shown
in Table III, updating class probabilities of the 3D map
only took 1.37ms on average, whereas SemanticFusion [1]
spent 41.1ms for the processing. Furthermore, the processing
for 2D recognition (i.e., Low-Res CNN) only took 19.32ms
while maintaining high accuracy in the end, as mentioned in
Section. IV-B.

Lastly, we discuss about the results of reducing the space
complexity through Fig. 7. As shown there, the memory
usage of our method is significantly reduced compared to
the one of SemanticFusion [1] over all frames. The average
memory usage of our method is 0.08% of the one of Seman-
ticFusion [1]. The reason for this significant improvement
is that, as mentioned in Sec. III-D, the space complexity
of our method is O(N ·Nl) whereas SemanticFusion takes
O(N ·Ns), where Nl and Ns were 1032 and 844260 in the
end of the scene respectively.

V. CONCLUSION

In this paper, we proposed an efficient semantic mapping
approach by assigning class probabilities to each region
of the geometric 3D map which is incrementally built
up through a robust SLAM framework and a geometric-
based incremental segmentation. Through our experiments,
we demonstrated that our approach notably compressed the
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of the NYUv2 dataset [9].

computational complexity in terms of both of time and space
while achieving comparable accuracy against state-of-the-art
approaches without any post-processing to the semantic 3D
map. Furthermore, we confirmed that our strategy improved
the incremental segmentation framework beyond the geomet-
ric only to the semantic-aware representation.
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“Incremental dense semantic stereo fusion for large-scale semantic
scene reconstruction,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 75–82, IEEE, 2015.

[11] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1520–1528, 2015.

[12] S. Sengupta, E. Greveson, A. Shahrokni, and P. H. Torr, “Urban
3d semantic modelling using stereo vision,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 580–585, IEEE,
2013.

[13] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3d point clouds for indoor scenes,” in Advances in neural
information processing systems, pp. 244–252, 2011.

[14] Z. Zhao and X. Chen, “Building 3d semantic maps for mobile robots
using rgb-d camera,” Intelligent Service Robotics, vol. 9, no. 4,
pp. 297–309, 2016.

[15] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1352–1359, IEEE, 2013.

[16] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Prob-
abilistic data association for semantic slam,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 1722–1729,
IEEE, 2017.
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