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VI

Verteilte BVM-Organisation

Prof. Dr. Thomas M. Deserno, Sven Neumann, Aaron Wiora, Jamie-Céline
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Vorwort

In diesem Jahr wird die Tagung Bildverarbeitung für die Medizin (BVM 2019)
vom Institut für Medizinische Informatik an der Universität zu Lübeck aus-
gerichtet. Nach der erfolgreichen Durchführung der BVM 2001, 2011 und 2015
findet diese zentrale Tagung zu neuen Entwicklungen in der Medizinischen Bild-
verarbeitung in Deutschland nun zum vierten Mal in der traditionsreichen Hans-
estadt Lübeck statt.

Die medizinische Bildverarbeitung ist eine Schlüsseltechnologie in verschiede-
nen medizinischen Bereichen wie der Diagnoseunterstützung, der OP-Planung
sowie der bildgeführten Chirurgie und Strahlentherapie. Methodisch haben hier-
bei in den letzten Jahren insbesondere Deep Neural Networks deutliche
Fortschritte in Bezug auf Genauigkeit und Geschwindigkeit der Bildverarbeitungs-
verfahren ermöglicht, wobei das Potenzial maschineller Lernverfahren und Meth-
oden der künstlichen Intelligenz im Bereich der Medizinischen Bildverarbeitung
bei weitem noch nicht ausgeschöpft ist.

An der Universität zu Lübeck bilden die Medizinische Bildgebung und
Bildverarbeitung einen zentralen universitären Forschungsschwerpunkt, der in
den letzten Jahren systematisch ausgebaut wurde. Zudem bildet die Medizi-
nische Bildverarbeitung in den Bachelor- und Masterstudiengängen Medizinische
Informatik, Medizinische Ingenieurwissenschaften und Mathematik in Medizin
und Lebenswissenschaften eine wichtige Vertiefungsrichtung. Vor diesem Hin-
tergrund ist es eine besondere Freude, die BVM 2019 in Lübeck ausrichten zu
dürfen.

Die BVM hat sich als ein zentrales interdisziplinäres Forum für die Präsen-
tation und Diskussion von Methoden, Systemen und Anwendungen im Bereich
der Medizinischen Bildverarbeitung etabliert. Ziel der Tagung ist die Darstellung
aktueller Forschungsergebnisse und die Vertiefung der Gespräche zwischen Wis-
senschaftlern, Industrie und Anwendern. Die BVM richtet sich ausdrücklich auch
an Nachwuchswissenschaftler, die über ihre Bachelor-, Master-, Promotions- und
Habilitationsprojekte berichten wollen.

Die BVM 2019 wird unter der Federführung von Prof. Dr. rer. nat. habil.
Heinz Handels, Direktor des Instituts für Medizinische Informatik der Univer-
sität zu Lübeck, ausgerichtet. Die Organisation ist wie in den letzten Jahren
auf Fachkollegen aus Berlin, Braunschweig, Erlangen, Heidelberg, Lübeck und
Regensburg verteilt, so dass die Organisatoren der vergangenen Jahre ihre Er-
fahrungen hier mit einfließen lassen können.

Anhand anonymisierter Bewertungen durch jeweils drei Fachgutachter wur-
den aus 87 eingereichten Beiträgen 28 Vorträge, 45 Poster und 2 Software-
demonstrationen zur Präsentation ausgewählt. Die Qualität der eingereichten
Arbeiten war insgesamt sehr hoch. Die besten Arbeiten werden auch in diesem
Jahr mit BVM-Preisen ausgezeichnet. Die schriftlichen Langfassungen der
Beiträge sind im Tagungsband zusammengefasst, der auch dieses Jahr wieder
im Springer Verlag in der Reihe Informatik aktuell zur BVM erscheint. Das Pro-
gramm wird durch eingeladene Gastvorträge zu aktuellen Themen des Deep
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Learnings in der Medizinischen Bildverarbeitung sowie zur Beleuchtung und
Diskussion der Sicht des Radiologen auf die aktuellen Entwicklungen abgerundet.

Die Internetseiten des Workshops bieten ausführliche Informationen über das
Programm und organisatorische Details rund um die BVM 2019. Sie sind abruf-
bar unter der Adresse:

http://www.bvm-workshop.org

Am Tag vor dem wissenschaftlichen Programm werden drei Tutorials ange-
boten, bei denen in diesem Jahr verschiedene Aspekte der Deep Learnings in der
Medizinischen Bildverarbeitung beleuchtet werden: Prof. Dr.-Ing. habil. Andreas
Maier von der Friedrich-Alexander-Universität Erlangen-Nürnberg hält gemein-
sam mit seinen Mitarbeiterinnen und Mitarbeitern ein Tutorial zum
Thema

”
Deep Learning: Fundamentals“ ab. Hier wird eine Einführung in die

grundsätzlichen Methoden des Deep Learnings und Ihre Anwendung auf medi-
zinische Bilder gegeben. Fortgeschrittene Methoden des Deep Learnings in der
Medizinischen Bildverarbeitung stehen im zweiten Tutorial mit dem Titel

”
Ad-

vanced Deep Learning Methods“ im Vordergrund, das von PD Dr. Klaus Maier-
Hein und seinem Team vom DKFZ Heidelberg durchgeführt wird. Ergänzt wird
dieses Angebot durch das dritte Tutorial

”
Hands-on Deep Learning in Pytorch“,

das von Prof. Dr. Mattias Heinrich von der Universität zu Lübeck und seinem
Team durchgeführt wird. Hier erhalten die Teilnehmenden Anleitungen zum
praktischen Einsatz von neuesten Deep Learning Netzwerken und zur Hand-
habung der hierzu benötigten Softwarewerkzeuge.

Die Herausgeber dieser Proceedings möchten allen herzlich danken, die zum
Gelingen der BVM 2019 beigetragen haben. Den Autoren für die rechtzeitige
und formgerechte Einreichung ihrer qualitativ hochwertigen Arbeiten, dem Pro-
grammkomitee für die gründliche Begutachtung, den Gastrednern und den Re-
ferenten der Tutorials für Ihre aktive Mitgestaltung und inhaltliche Bereicherung
der BVM 2019. Unser besonderer Dank gilt dem lokalen Organisationsteam
in Lübeck, bestehend aus Dr. Jan Ehrhardt, Prof. Dr. Heinz Handels, Prof.
Dr. Mattias Heinrich, Susanne Petersen und Dr. Jan Wrage, sowie den übrigen
Mitarbeiterinnen und Mitarbeitern des Instituts für Medizinische Informatik in
Lübeck, die durch ihren engagierten Einsatz die Organisation und Durchführung
der BVM 2019 in der vorliegenden Form erst möglich gemacht haben. Weiterhin
möchten wir den Helferinnen und Helfern an den Instituten in Berlin, Braun-
schweig, Erlangen, Heidelberg und Regensburg für Ihre Unterstützung bei der
Organisation der BVM 2019 in Lübeck danken. Für die finanzielle Unterstützung
bedanken wir uns bei den Fachgesellschaften und der Industrie.

Wir wünschen allen Teilnehmerinnen und Teilnehmern der BVM 2019 lehr-
reiche Tutorials, viele anregende Vorträge, Gespräche an den Postern und in der
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Industrieausstellung sowie interessante neue Kontakte zu Kolleginnen und Kol-
legen aus dem Bereich der Medizinischen Bildverarbeitung.

Januar 2019 Heinz Handels (Lübeck)
Thomas Deserno (Braunschweig)

Andreas Maier (Erlangen)
Klaus Maier-Hein (Heidelberg)
Christoph Palm (Regensburg)

Thomas Tolxdorff (Berlin)
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V2 Hofmann J, Böge M, Gladysz S, Jutzi B : Automatic Detection of
Blood Vessels in Optical Coherence Tomography Scans . . . . . . . . . . . . 2
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The problem of false positives in fiber tractography is one of the grand
challenges in the research area of diffusion-weighted magnetic resonance imag-
ing (dMRI). Facing fundamental ambiguities especially in bottleneck situations,
tractography generates huge numbers of theoretically possible candidate tracts.
Only a fraction of these candidates is likely to correspond to the true fiber
configuration, posing a difficult sensitivity-specificity trade-off. Current meth-
ods address this issue either by focusing exclusively on well-known fiber bundles
using prior knowledge or by using tract filtering techniques based on the image
signal. Currently, the link between these two choices of purely data driven and
prior knowledge based approaches is missing.

We propose a novel concept that rigorously exploits prior knowledge about
the existence of anatomically known tracts (anchor tracts) to reduce the degrees
of freedom of a successive data-driven filtering of the remaining candidate tracts:
anchor-constrained plausibility (ACP). This approach is based on the hypothesis
that information about the presence or absence of each anchor influences the
plausibility of the candidates and thereby reduces the ambiguities in the problem.

We demonstrate the potential of this concept in a series of phantom experi-
ments: ACP significantly improved the tractography sensitivity-specificity trade-
off in such controlled settings (AUC 0.91). The direct assessment of false-positive
reduction rates requires a ground truth, which does not exist in vivo. In vivo, we
therefore concentrated on assessing the capabilities of ACP in a structured and
objective tractogram analysis of 110 subjects of the Human Connectome Project
(HCP) young adult study, providing detailed data-driven insights into what we
might be missing when focusing only on anatomically known tracts. This work
has previously been published at MICCAI 2018 [1].
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Abstract. The aim of this research is to develop a new automated blood
vessel (BV) detection algorithm for optical coherence tomography (OCT)
scans and corresponding fundus images. The algorithm provides a robust
method to detect BV shadows (BVSs) using Radon transformation and
other supporting image processing methods. The position of the BVSs
is determined in OCT scans and the BV thickness is measured in the
fundus images. Additionally, the correlation between BVS thickness and
retinal nerve fiber layer (RNFL) thickness is determined. This correlation
is of great interest since glaucoma, for example, can be identified by a
loss of RNFL thickness.

1 Introduction

Since optical coherence tomography (OCT) offers a noninvasive method for an
ophthalmology diagnosis in the fundus area of the eye, this imaging method is
of increasing importance. Glaucoma, for example, can be identified by a loss of
retinal nerve fiber layer (RNFL) thickness, visible in OCT scans.

The aim of this research is to develop an automated blood vessel (BV) de-
tection algorithm for OCT scans and corresponding fundus images. Recent re-
searches showed reliable results using shadowgraphs to find lateral position and
diameter of BVs in 2D OCT-scans. By adding Doppler information, 3D orienta-
tion was also obtained [1]. Supervised pixel classification [2] enabled lateral BV
detection in OCT 3D volumes. Except manual parameter setting, unsupervised
segmentation [3] offered a fully automated segmentation algorithm. Model-based
approaches [4, 5] then extended the detection to axial BVs. Efficient automated
detection was demonstrated using a deep learning algorithm [6] trained on a
specific training data set.

In this research a new automated BV detection algorithm is described without
the need of an additional model, training or supplementary data. BVs are visible
as vertical shadows in OCT images. This is caused by light absorption through
a BV during the OCT procedure. Since the Radon transformation is based on
line integrals, vertical lines can be easily reinforced with this method. Together
with supporting image processing methods, the approach offers a robust, au-
tomated BV shadow (BVS) detection in OCT images. For medical interest a
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correlation between BV thickness and RNFL thickness is determined to define
a new glaucoma metric.

2 Materials and methods

The data consists of OCT images and corresponding fundus images for each
eye. They are recorded as circular and linear scans. Besides the recording mode
(circular/linear), the recording density of the single scans (B-scan) can be varied.
In this study circular scans and sparse linear OCT images (with 37 B-scans) from
16 participants and dense linear OCT images (with 193 B-scans in the recording
area and a density of 30 μm) from 12 participants are included.

2.1 Methodology

The different data types are processed with the same operational sequence (Fig. 1)
which was developed for 2D data. The processing steps are described in this sec-
tion. Afterwards, a description of the process in case of 3D data is given.

Fig. 1. Flowchart of the proposed approach.
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Preparatory steps for the radon transformation The first process step
is the layer segmentation (1). For background elimination (2) all values above
the top layer, Inner Limiting Membrane (ILM), are set to the maximum gray
value to ensure maximum contrast for the BVSs. For alignment (3) each column
(A-scan) in the OCT image is shifted up or down according to the Retinal
Pigment Epithelium layer (RPE) as baseline. This step simplifies cropping of
the image to the area of interest, which suppresses the influence of noise from
surrounding areas. Layer segmentation and alignment are applied with functions
created by Mayer et al. [7]. At this point in the process BVSs have low gray values
which are hard to reinforce. For this reason, a negative image (4) is produced to
enable an amplification of the bright BVSs. Border expansion (5) and contrast
optimization (6) are part of the boundary problem step. They will be explained
after the Radon transformation.

Radon transformation Since the BVSs in OCT scans are vertical lines, a
line detection algorithm is beneficial for this application. The Radon transfor-
mation (7) is a linear integral transformation defined by Johann Radon [8]. For
the transformation to Radon space, each pixel will be represented in polar coor-
dinates (ρ, θ). The rotation and translation starts from the origin of the image
coordinate system. For each angle θ and each distance ρ the intensities of the
image are summed up. The result is r(ρ, θ), consisting of the column gray value
summations in all orientations. We assume that the BVSs are the only vertical
lines in the OCT images. They can be seen in Radon space in the zero degree
column. For easier and more robust BVS detection, the BVSs are reinforced. To
enhance the contrast of BVSs in the original image, all values in the first column
in Radon space are squared. The following columns are attenuated by multiply-
ing all values with a sloping function. BVSs might not be exactly vertical and
therefore to maintain slightly slant shadow areas, small angles are less attenu-
ated than line integrals of higher angles. We found that the sloping exponential
function was most suitable for reinforcement. It falls very steeply which causes
stronger attenuation in the columns of higher angles. After the relevant columns
in Radon space are amplified, the image is transformed back to the image format
with the inverse Radon transformation.

Boundary problem The inverse Radon transformation causes artifacts at the
border areas of the image which leads to false BVS detections. The origin of this
can be explained using the concept of spatial frequency Fourier transformation.
Frequencies are expected to be infinite and the border areas of the finite image
can therefore not be reconstructed with the inverse Radon transformation. To
avoid this, a border expansion (5) by flipping the whole image on both sides
is applied. Also, a threshold is used to optimize contrast (6) and get rid of
disturbing insignificant values. Darker values on the right boundary arise during
the OCT recording and cause falsely detected BVSs. To remove this trend (9) a
15 x 15 pixel window is shifted along the graph. The mean values of the window
values are subtracted from the original summation values.
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Blood vessel shadow detection After these image processing steps, the BVSs
can be detected in the trend-regulated gray value summation graph. For the BVS
detection a quantile threshold is calculated from the graph.

Thickness measurement The BVSs visible in the OCT data do not necessarily
correspond to the real BV thickness. Often the scan corresponds to a diagonal
cut through the BV. The position of a BVS is therefore transferred to the fundus
image. Here, a diameter measurement is performed by generating a BV-filling
circle around the detected position.

Pseudo-3D processing - fusion after bidirectional processing The acqui-
sition density of the B-scans corresponding to the dense linear data is too sparse
to allow a true 3D processing. For that reason, a pseudo 3D processing (fusion)
is applied to approximate a volumetric processing and gain an anisotropic de-
tection. For a volumetric approximation all dense linear scans consecutively are
approximated as a cube (Fig. 2). The dense linear scans are concatenated and
A-sheets are generated. The A-sheets consist of the same A-scan column in each
B-scan. In the x-, y-, z-coordinate system (Fig. 2), they consist of one y-z plane
for each x. The pixel size varies between B-scans (4 × 4 μm) and A-sheets (30 ×
4 μm) according to the acquisition density of 30 μm. After the generation of the
A-sheets, the whole non-fused approach is performed separately for all B-scans
and all A-sheets. This way the processing is performed for two directions giving
two resultant cubes. The cubes are fused with pixel-wise averaging of the pixel
values. After the fusion, the BVS detection is applied similarly to the non-fused
approach (Fig. 1).

Evaluation A comparison of BVS detections to ground truth is presented.
Manual detections by an expert ophthalmologist are used as ground truth in
all evaluations. The consistency of the BVS thickness measurements between
ground truth and the developed approach was validated using the root mean
square error (RSME). This metric defines the deviation between the expected

Fig. 2. Coordinate system of
the OCT images.
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Table 1. Table of results and comparison values.

Radon Radon OCTSeg OCTSeg

approach approach (all data) (dense scans)

(all data) (dense scans)

Detection rate 90% 90% 89% 90% 85%

RMSE (pixel) 5.16 5.32 5.44 3.25 8.24

value and the measurement. It provides information about the accuracy of the
measurements.

Glaucoma causes RNFL thinning. It might also effect BV thickness. For this
reason the correlation of the layer thickness and BV thickness is of interest for
ophthalmology. It is tested if the correlation generated from patients suffering
from glaucoma shows significant differences in comparison to the correlation
obtained from healthy eyes. Only ground truth layer segmentation and BVS
detections of sparse OCT scans are used for the correlation estimation to avoid
influence of false detections. Correlation can only be determined for detected
BVSs without transfer to the fundus image (Sec. Thickness measurement), since
for glaucomatous eyes, only OCT scans and not fundus images are available in
the data set.

3 Results

The experiments involved sparse linear scans and circular scans from 16 partic-
ipants and 241 dense linear scans.

The detection rates and thickness accuracies are given in Tab. 1. All detec-
tions were compared to the approach of Mayer [7] (OCTSeg). The proposed algo-
rithm is able to achieve the same detection rate as OCTSeg. On the dense linear
scans the Radon approach even outperforms the fusion approach and OCTSeg.
Regarding all data, OCTSeg achieves the best thickness measurement accuracy.
On the dense linear scans the Radon approach performs best. As shown in Tab. 3,
the RNFL thickness for the healthy eyes is immensely higher than for glaucoma-
tous eyes. As expected, the RNFL thickness is a significant criteria for glaucoma
identification. The measured BV thickness maxima on the other hand only differ
3 μm. The BV thickness or the correlation between BV thickness and RNFL
thickness is therefore not beneficial as glaucoma metric.

Maximum RNFL thickness Maximum BV thickness

(μm) (μm)

Glaucomatous eyes 72 38

Healthy eyes 252 41

Table 2. Correlation of RNFL thickness and BV thickness.
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4 Discussion

The advantage of the proposed BV detection algorithm is that no model, train-
ing or supplementary data is needed. The results described in this paper show
that a sufficient BVS detection rate is enabled with the non-fused, and also the
fusion approach. Since the resolution varies according to the recording direction,
the fusion detection is not as dense as the radon approach and therefore achieves
a lower detection rate. With the transfer to the fundus image (Sec. Thickness
measurement) a reliable BV thickness measurement is demonstrated. A met-
ric for glaucomatous eyes could be found, even if the RNFL thickness is more
significant for glaucoma than the BV thickness. Here, an additional data acqui-
sition of OCT scans with corresponding fundus images on glaucomatous eyes
should be performed to enable a meaningful correlation of layer thickness and
BV thickness. Layer segmentation in the approach influences the detection. In
the future, a greater independence from the layer segmentation approach (here
taken of OCTSeg) will be sought. In further research, the approach could be
compared with OCT Angiography to additionally prove the effectiveness.
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Abstract. Liver function analysis is crucial for staging and treating
chronic liver diseases (CLD). Despite CLD being one of the most preva-
lent diseases of our time, research regarding liver in the Medical Image
Computing community is often focused on diagnosing and treating CLD’s
long term effects such as the occurance of malignancies, e.g. hepatocellu-
lar carcinoma. The Child-Pugh (CP) score is a surrogate for liver func-
tion used to quantify liver cirrhosis, a common CLD, and consists of 3
disease progression stages A, B and C. While a correlation between CP
and liver specific contrast agent uptake for dynamic conrast enhanced
(DCE)-MRI has been found, no such correlation has been shown for
DCE-CT scans, which are more commonly used in clinical practice. Us-
ing a transfer learning approach, we train a CNN for prediction of CP
based on DCE-CT images of the liver alone. Agreement between the
achieved CNN based scoring and ground truth CP scores is statistically
significant, and a rank correlation of 0.43, similar to what is reported for
DCE-MRI, was found. Subsequently, a statistically significant CP classi-
fier with an overall accuracy of 0.57 was formed by employing clinically
used cutoff values.

1 Introduction

Assessing liver function is crucial for staging and treating chronic liver diseases
(CLD) [1]. Due to its various functions, there exist a multitude of tests to assess
liver state [2], some of them based on imaging. A very common clinical scor-
ing system of liver function is the Child-Pugh score (CP) [3]. It scores several
important indicators such as e.g. ascites and subsequently aggregates them. CP
classes are then gained by applying the following thresholds: CP A 5-6 points,
CP B 7-9 points, and CP C 10-15 points. The CP score is clinically used to
assess the prognosis of liver cirrhosis, a CLD responsible for more than 1 million
deaths annually [4], and monitor its transition to the end stage.

In the Medical Image Computing community, research on CP so far has been
focused on Dynamic Contrast Enhanced-MRI (DCE-MRI). Here, Motosugi et
al. [5] have shown an association between CP score and accumulation of liver
specific contrast agent, as confirmed by further literature [6, 7]. Moreover, a
successful prediction of liver fibrosis was performed by Yasaka et al. [8], again



Prediction of Liver Function 9

based on the accumulation of liver specific contrast agent in DCE-MRI. To the
best of our knowledge, successful evaluation of liver function based on DCE-CT
has not been reported yet, irrespective of the widespread use of DCE-CT in
clinical practice as a routine examination.

The main contribution of our work is an approach for predicting CP scores
based on DCE-CT imaging alone, using a combination of state-of-the-art convo-
lutional neural networks (CNN) with transfer learning.

2 Methods

2.1 Dataset

In total, the dataset comprises 259 subjects (76 CP score A, 120 CP B, 63 CP C ).
For each subject, a radiologist with more than 3 years of experience in abdominal
imaging reviewed automatic liver delineation in the venous phase generated by
Philips Intellispace.

CT imaging was performed by using helical CT scanners (Somatom Defi-
nition Flash and Somatom Definiton AS, Siemens Medical Sysems, Forchheim,
Germany). The scans were acquired in a craniocaudal direction by using a de-
tector configuration of 128 or 40 x 0.6 mm, a tube current of 120 kVp, quality
reference of 240 mAs, and online dose modulation in all phases (pitch 1.0), during
a single breath-hold helical acquisition of roughly 10 seconds (slightly varying
due to the differing liver sizes). For all imaging, the gantry rotation speed was
2 Hz. The contrast-enhanced images were created with a weight-adjusted ap-
plication of iodinated contrast material (1.5 mL per kilogram of body weight;
Iopramide 370 mg/mL, Ultravist, Shering, Germany) administered at a rate of
3 mL/s by power injector. Subsequently the non-enhanced (native) as well as
arterial and venous phases were acquired. The acquisition of the arterial phase
started 6 seconds after the automatic detection of peak aortic enhancement at
the level of the coeliac trunk with a threshhold of 140 HU; portal venous phase
was scanned 55 seconds after the start of the contrast injection. Image recon-
struction was performed with axial 1-mm images, an increment of 0.7mm, and
a B30f convolutional kernel for all phases (Fig. 1, representative axial slices).

(a) non-contrast enhanced (b) arterial enhancement (c) venous enhancement

Fig. 1. Representative images of a contrast enhanced liver CT-scan. Images were re-
constructed with a B30f kernel in soft-tissue-window.
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2.2 Pre-processing

First, native and arterial phases were registered to the venous phases with a rigid
registration algorithm under the assumption that liver shape would be constant
in all three phases. Registration itself was performed using SimpleElastix [9]
with default parameters. Subsequently, voxel intensities were linearly mapped to
a soft tissue window (center 40 HU, width 400 HU).

Next, axial patches of 224x224 in-plane dimension were extracted around the
centerpoint of the liver along 20% to 80% of its craniocaudal extension. This
approach has the advantage of incorporating the context around the liver in a
patch, and may thus capture effects such as ascites. Furthermore, it reduces the
need for resizing, as axial patch dimensions are concordant with the input shape
expected by the pretrained model. In total, 12492 patches were extracted in this
manner to be used for model finetuning.

2.3 Model architecture and training

For the model architecture, a ResNet18 [10] pretrained on ImageNet [11] was
used in a transfer learning approach [12]. At its core, ResNet consists of residual
blocks, where deviations from an identity mapping are learned by the model.
This has been shown to sucessfully tackle the problem of vanishing gradients
inherent to deep CNNs. While model depth of a ResNet architecture can be
arbitrary, we use a depth of 18, minimizing the number of trainable parameters
and therefore risk of overfitting.

The output of the pretrained ResNet18 model was adapted to our ordering
problem, giving a single continous value for every slice. By stacking the three
phases of the CT scan, the number of input channels satisfy the number of
channels as required by the pretrained model. While modifications to the axial
dimensions are not necessary, on-the-fly data augmentation was used to reduce
overfitting of trained models. These consisted of rotation, scaling, as well as elas-
tic deformation and were performed by the batchgenerators framework1. Model
finetuning on the CT images itself was performed using an L2-regularized Adam
optimizer with initial learning rate of 0.0005 and a decay rate of 0.5 every 10
epochs and L2-penalty of 0.001. All layers were trained simultaneously, employ-
ing the MeanSquareError (MSE) metric for training and the accuracy metric
for validation. MSE was chosen over a classification loss function, such as e.g.
CrossEntropy, to reflect the ordinal nature of the CP score. For this, class labels
were assigned based on the clinically used thresholds: [5, 6] for CP A, [7, 9] for
CP B and [10, 15] for CP C. As the output of the model is continuous, values
are rounded to the nearest integer to yield CP class predictions.

The model was trained using 10 fold cross-validation. For each fold, patches
are split into training, validation and test set such that patches from a single
patient are exclusively included in either training, validation or test set. The
splitting ratios were 0.63, 0.27 and 0.1 for training, validation and test sets,

1 https://github.com/MIC-DKFZ/batchgenerators
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respectively. Total number of training epochs were 20 epochs per fold, and vali-
dation was performed after every epoch. The model state with highest validation
score was subsequently used to predict the test set. All experiments were imple-
mented using PyTorch on a workstation equipped with Intel i7-7700K processor
and Nvidia GTX 1080 Ti GPU.

2.4 Prediction generation and statistical evaluation

As the CP score is an ordinal score, Kendall’s τ statistic was used to quantify
rank correlation betweeen CNN-based CP scoring and groundtruth values [13].
Agreement was considered to be statistically significant when p < 0.05.

Although the CP score is ordinal in nature, its clinical use corresponds to
a classification problem. To yield class predictions, the same clinical thresholds
were used for the test set as during model validation. To quantify performance of
the classifier, comparison against the No Information Rate (NIR) was performed
with a one-sided binomial test. Here, again p < 0.05 was considered significnant.

3 Results

To obtain subject-level classification results from slice-level predictions, slice-
level prediction was performed and subsequently averaged. Continuous CP pre-
diction results over all 10 splits are given in Fig. 2a. The computation time for
training a single fold was 15 min. Inference for a single subject can be performed
in 1.5 s.

In total, a statistically significant agreement could be seen between model
and groundtruth values for CP ranking (p = 3.23 · 10−16). Correlation denoted
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Fig. 2. Cross validated prediction of the CP score with a CNN.
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by τ was 0.43 (Fig. 2a). Using the cutoff values, an overall classification accuracy
of 0.57 was achieved (Fig. 2b). When compared to NIR (0.46), this classification
performance is statistically significant (p = 3.11 · 10−4).

4 Discussion

We developed and presented a transfer learning based approach to predict CP
based on DCE-CT.

When assessing model performance in predicting CP values based on DCE-
CT images, a statistically significant agreement was found between CNN predic-
tions and groundtruth scores with a rank correlation of 0.43 (Fig. 2a). Moreover,
overall achieved classification accuracy was statistically significant compared to
the NIR (Fig. 2b). Motosugi et al. [5] performed a similar analysis in DCE-MRI,
but found a statistically significant correlation with insufficient predictive value
between CP and contrast agent enrichment in liver parenchym. While predictive
models between DCE-MRI and CP have not been established in literature, corre-
lations are well reported [6, 7]. Apart from the connection between CP score and
liver CTs/MRIs, CNNs have been used to perform liver fibrosis staging, again
based on DCE-MRI [8]. In this study, a Spearman rank correlation of 0.63 was
reported between predicted and true fibrosis scores. The authors, however, ex-
plicitly state that their model cannot be used to perform liver function analysis,
as performed by CP scoring assessed in our work.

Therefore, achieved values are within reason, but further research is required
to facilitate clinical use. Nonetheless, to the best of our knowledge, we are the
first to report such a correlation in DCE-CT images, with CT being the more
frequently used routine diagnostic tool that is more readily available compared
to DCE-MRI.

To further increase performance, the next steps would be to sample contrast
agent kinetics in finer detail, similar to other fields such as tumor classification
[14]. Additionally, an increase in study population size may further improve
generalizability of generated models. This would also enable the use of 3D-CNNs,
which require larger datasets than 2D-CNNs. Also, use of multimodal models
comprising both clinical as well as image features should be assessed in future.

5 Conclusion

In this work, we investigated whether a predictive relationship between DCE-
CT image features and CP score can be established. To adress the limitation
of small datasets that is often encoutered when dealing with medical images,
our CNN was pretrained on natural images and only fine tuned on our dataset
in a transfer learning approach. Experiments revealed statistically significant
correlation of rankings generated by the model and groundtruth CP scores, which
were subsequently used to form a statistically significant classifier of CP score.
While the classifier is overall significant, further research is needed to improve
discrimination between individual CP classes.
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Deep learning has been widely adopted as the solution of choice for a plethora
of medical imaging applications, due to its state-of-the-art performance and fast
deployment. Traditionally, the performance of a deep learning model is evaluated
on a test dataset, originating from the same distribution as the training set.
This evaluation method provides insight regarding the generalization ability of
a model. However, in medical imaging scenarios, especially in cases when a deep
learning framework is utilized by a physician for a real-world application, the
samples forwarded into the model might belong to a distribution different from
the one of the training dataset, or might suffer from noise which cannot usually
be modelled by a known distribution, thus raising the need for an evaluation
scheme that investigates the robustness of a model, i.e. its performance on data
originating from a manifold different from the training one.

To this end, we recently proposed [1] to utilize adversarial examples [2], im-
ages that look imperceptibly different from the originals but are consistently
missclassified by deep neural networks, as surrogates for extreme test case sce-
narios, like the ones mentioned above. Extensive evaluation was performed on
state-of-the-art classification and segmentation deep neural networks, for the
challenging tasks of fine-grained skin lesion classification and whole brain seg-
mentation, leveraging a variety of methods to generate adversarial examples.
The results showcased the significant difference in the performance of the uti-
lized networks on clean and on adversarial images. Specifically, networks that
performed equally well regarding their generalizability had an astounding 20%
difference in robustness, highlighting the need for the proposed, more thorough
evaluation technique to uncover which neural network was able to grasp a deeper
understanding of the training data and when deployed in real-world applications
can showcase a higher robustness to out-of-distribution test samples.
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Abstract. While developing medical image applications, their accuracy
is usually evaluated on a validation dataset, that generally differs from
the real clinical data. Since clinical data does not contain ground truth
annotations, it is impossible to approximate the real accuracy of the
method. In this work, a cGAN-based method to generate realistically
looking clinical data preserving the topology and thus ground truth of
the validation set is presented. On the example of image registration of
brain MRIs, we emphasize the necessity for the method and show that
it enables evaluation of the accuracy on a clinical dataset. Furthermore,
the topology preserving and realistic appearance of the generated images
are evaluated and considered to be sufficient.

1 Introduction

The validation of medical image processing algorithms relies on the availability
of datasets with a dedicated ground truth, but translation into clinical practice
is often significantly hindered by the fact that available validation datasets differ
from real clinical data in the acquisition parameters and presence of pathologies,
artifacts or noise. For example, a validation using images of healthy subjects
possibly underestimates image registration errors for clinical images containing
pathologies. On the other hand, the generation of ground truth data is tedious
and costly and therefore not feasible for all kinds of clinical data. However, reli-
able error estimates are crucial for the application of automated image processing
in many medical applications, e.g. radiotherapy or surgical planning.

Therefore, we propose to automatically generate realistically looking clinical
data with ground truth annotations, based on the validation dataset at hand.
With the recent development of image generation methods, especially GANs
[1], their application for various medical image processing tasks gets considered
more frequently, like image domain translation and denoising [2] or unsupervised
detection of anomalies [3]. Works like [4, 5] show that GANs can also be used
to translate between image domains. In this work we lay our focus on paired
style transfer based on the pix2pix network [5], used to generate realistically
looking clinical data constrained on the topology of the validation data and thus
preserving ground truth segmentations, achieving the possibility to evaluate the
error of algorithms applied on clinical images



16 Uzunova et al.

2 Materials and methods

GANs are generative models that learn to map a random noise vector z to
an output image y using a generator function G : z → y [1]. An extension
of regular GANs are the conditional GANs, that learn the mapping from an
observed image x additionally, G : {x, z} → y To ensure that the generator
produces realistically looking images that cannot be distinguished from real ones,
an adversarial discriminator, D, is enclosed in the training process, aiming to
perfectly distinguish between real images and generator’s fakes.

2.1 Style transfer using conditional generative adversarial networks

One possible application of cGANs is style transfer. In this case the genera-
tor takes an image x as input and trains to generate its corresponding style-
transferred image G(x) ≈ y The discriminator takes a pair of images as input: x
and G(x) (fake) or x and y (real) and is trained to determine whether the pair
is real of fake. Thus the objective of the fully conditional GAN can be expressed
as

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (1)

where G tries to minimize this objective and an adversarial D tries to maximize
it. Also to encourage the generator to produce realistic images more directly, it is
beneficial to use an L1 loss: LL1(G) = Ex,y,z[||y−G(x, z)||1] The final objective
is then

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (2)

One popular style transfer representative is pix2pix [5] and it requires strictly
paired data for training. In [5] the authors show that they are able to transfer
contours of an object to the photographic image of the object itself. Also if
trained on a certain domain A the cGAN will generate images with the style of A
even if the contours belong to a different image domain B, however the topology
of the contours of B remains. Those properties are interesting for our work, since
we seek contour-to-gray-value topology-preserving translation of medical images.

2.2 Medical image style transfer

Assume there is a validation dataset of healthy patients images with ground
truth segmentations or landmarks of the anatomically significant parts, V , and
a clinical dataset of possibly pathological images containing only segmentations
of the pathologies, C. Since the focus of our work lies on applying image regis-
tration, pathologies would lead to strongly decreased registration accuracy and
ground truth anatomical annotations are crucial for its evaluation. However, the
presented method is not restricted to this application.

Aiming to generate realistically looking data from the clinical domain, but
preserving the topology and thus the segmentation masks of the healthy valida-
tion data, the cGAN described in 2.1 is used as follows. G is trained to generate
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clinical images ci ∈ C conditioned on the edges extracted from the images e.g.
by using a Canny filter, such that G(xi, z) ≈ ci ∈ C where xi = edges(ci) Then
in test phase only the edges of the validation images edges(vj) are inputed and
G(edges(vj)) ∈ C outputs an image looking like clinical data but preserving
the topology of the validation image vj and thus the ground truth segmenta-
tions apply. Still, edges(vj) does not contain any pathologies and the generator
would most likely generate a healthy image. However, one can explicitly sim-
ulate pathologies on the images, since we assume that their segmentations are
available in C.

2.3 Network architecture

Contrary to pix2pix [5], here ResNet blocks [6] are used for the generator, as in
our experience, they show better reconstruction abilities. The generator down-
scales the input image first by using three 2D strided convolutions (conv2D) each
followed by batch normalization (BN) and a ReLU, resulting in 256 channels.
Then nine ResNet blocks with 256 channels each are applied, and the image is
upsampled to the original size using two transposed conv2Ds each followed by a
BN and a leaky ReLU (lReLU), and at last a conv2D layer followed by the Tanh
function.

The discriminator takes as input a two-channel image composed of a gray
value image and its corresponding contour image. The input is then send through
the architecture: conv2D → lReLU → (conv2D → BN → lReLU)×3 → lReLU
→ conv2D, that first iteratively downscales the image and produces 512 channels
and the last convolution reduces the overall size to one neuron (real/fake).

3 Results

3.1 Data and setup

Our experiments simulate an atlas-to-patient registration scenario for brain MRI
images. The LPBA40 data [7] containing 40 healthy whole-head T1 MRIs with
56 labeled anatomic regions is chosen as validation dataset. The clinical data is
represented by a subset of the BRATS 2015 challenge data [8], which contains
220 brain MRI T1c images with high-grade glioblastomas. The BRATS data
differs from LPBA40 by different gray value ranges as well as the presence of
skull stripping artifacts and pathologies (Fig. 1(left)). For both datasets 2D slices
on the same positions are extracted and the BRATS images are cropped around
the center to a size of 181 × 217 matching the size and approximate alignment
of the LPBA40 images.

The network described in Sec. 2.3 is trained to generate images in the style
of BRATS from their corresponding edge images. The edge images are generated
using a Canny filter. Our experience showed that better results are achieved when
using gradient magnitude weighted edges rather than binary ones. Furthermore,
we want to explicitly integrate the tumor structures in the training process, to
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prevent the network from hallucinating pathologies [9]. Therefore, segmentation
masks of the pathologies available to the BRATS data are combined with the
edge images. For the test phase, the extracted LPBA40 edge images are combined
with 4 different tumor masks picked at random from the BRATS dataset (affine
pre-registration undertaken to ensure that the masks are placed inside the brain)
resulting in 5 generated images pro input image (4 with tumors and 1 without).
The generated images then have the appearance of BRATS with predefined
pathology availability but follow the contours of the LPBA40 images.

To validate the atlas-to-patient registration, one subject of the LPBA40 data
is selected as atlas and registered to the remaining 39 subjects using the varia-
tional registration method presented in [10]. Label overlap measures (Dice) are
used as surrogate for registration accuracy. The cGAN-based style transfer now
allows for the replicated validation using the generated data.

3.2 Experiments and results

Visual evaluation In first place it is important to determine whether the
images generated by the cGAN are realistic for the particular domain at all.
Fig. 1 shows a few generated images and in our experience they generally have
a realistic appearance.

Topology preservation An important point of the method presented here,
is the assumption that the topology of the LPBA40 image is being preserved,
allowing for the segmentation labels to be transferred directly (Fig. 1 (right)).
To evaluate this quantitatively, the contours of the input LPBA40 images and
the contours of the corresponding generated BRATS images are extracted (here

Real
BRATS

Input
LPBA

Edges
LPBA

Generated
BRATS

Labels
LPBA

Labels
Generated

Fig. 1. Examples of two generated images. From left to right: Real BRATS image
containing the tumor; LPBA image; Contours of LPBA image and tumor mask serving
as input in test phase; Generated image; LPBA labels overlayed over the real LPBA;
LPBA labels overlayed over the generated image (best viewed in color).
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Table 1. Mean Dice coefficients ± standard deviation over all labels and reference im-
ages before (Initial) and after VarReg (Results comparable to [10]). NN: Normal LPBA
atlas to Normal LPBA images; NG: Normal LPBA atlas to generated image without tu-
mors; GG: Generated atlas to generated images without tumors; NGT: Normal LPBA
atlas to generated image with tumors; GGT: Normal LPBA atlas to generated image
with tumors. AL: All labels; OL: Labels outside the tumors. Subscripts indicate statis-
tical significance in a t-test(p � 0.001): � – compared to NN; � – compared to GG; †
– compared to GGT.

Initial NN (AL) NG (AL) GG (AL) NGT (OL) GGT (OL)

0.610± 0.07 0.735± 0.02 0.700± 0.03�� 0.708± 0.03� 0.707± 0.02�† 0.714± 0.02�

the contours of the tumor are used for evaluation instead of its mask) and the
measured average symmetric contour distance (ACD) reaches 0.58±0.07 mm,
indicating sub-pixel accuracy. The worst result with ACD 0.83mm is still in sub-
pixel space and is achieved for the image shown in the second row of Fig. 1,
still the well aligning labels show that the topology is sufficiently preserved and
the relatively large distance occurs caused by the edge extracting method. As
baseline serves the ACD between the LPBA40 image contours and their best
matching images from the real BRATS dataset yielding 1.75±0.13mm. This of
course cannot be used as a direct comparison, but shows that the ACD values of
the generated images are clearly in favor of the topology preserving assumption.

Atlas-to-patient registration scenario To underline the need for an evalu-
ation using realistic clinic-like data, the following registrations are considered:
1) NN: normal LPBA40 atlas to all normal LPBA40 images; 2) NG: normal
LPBA40 atlas to all generated images (with the BRATS style) without tumors;
3) GG: First translating the LPBA40 atlas to the BRATS domain and then
registering the generated atlas to all the generated images without tumors; 4)
and 5) Analogous to 2) and 3) respectively, but with simulated tumors on the
generated images.

Tab. 1 shows the Dice overlaps resulting from the registration experiments.
When tumors are contained in one of the images, only the labels outside the
tumors are evaluated, otherwise all labels are considered. The results strongly
emphasize the need to generate ground truth clinical data for error approxi-
mation, since the registration results for the validation dataset are significantly
better and cannot be generalized to application on clinical data. Unfortunately,
it is impossible to determine whether the results on the generated dataset corre-
spond to the registration results on the real BRATS data, since no anatomical
annotations are available. Furthermore, we show that, despite histogram nor-
malization, the registration results get significantly better, when the atlas image
is also translated to the same image domain. The presented cGAN method is
flexible enough in its application to easily transfer the style of the atlas without
additional training or optimization, which enables further possibilities like better
registration between different image modalities.
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4 Discussion and conclusion

We presented a cGAN-based method to combine the topology of validation im-
ages and appearance of clinical images, preserving the ground truth segmenta-
tions and enabling the evaluation of image processing algorithms on clinic-like
data.

The evaluation shows that the presented method indeed generates realisti-
cally looking data and the topology of the validation images stays unchanged.
The need for such methods is underlined on the example of image registration.
On a healthy patients validation dataset containing ground truth segmentations,
the registration method works significantly better than on the generated clinical
dataset containing pathologies, implying that it is crucial to be able to generate
clinical ground truth data for the reliable evaluation of algorithms. Currently this
method is limited to 2D images, so future work will consider a computationally
feasible extension to 3D images.
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In computed tomography, image reconstruction from an insufficient angular
range of projection data is called limited angle tomography. Due to missing data,
reconstructed images suffer from artifacts, which cause boundary distortion, edge
blurring, and intensity biases. Recently, deep learning methods have been applied
very successfully to this problem in simulation studies. However, the robustness
of neural networks for clinical applications is still a concern. It is reported that
most neural networks are vulnerable to adversarial examples.

In this paper, we aim to investigate whether some perturbations or noise will
mislead a neural network to fail to detect an existing lesion.

Our experiments demonstrate that the trained neural network, specifically
the U-Net, is sensitive to Poisson noise. While the observed images appear
artifact-free, anatomical structures may be located at wrong positions, e.g. the
skin shifted by up to 1 cm. This kind of behavior can be reduced by retraining on
data with simulated Poisson noise. However, we demonstrate that the retrained
U-Net model is still susceptible to adversarial examples. We conclude the paper
with suggestions towards robust deep-learning-based reconstruction [1].
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The U-Net was presented in 2015. With its straight-forward and success-
ful architecture it quickly evolved to a commonly used benchmark in medical
image segmentation. The adaptation of the U-Net to novel problems, however,
comprises several degrees of freedom regarding the exact architecture, prepro-
cessing, training and inference. These choices are not independent of each other
and substantially impact the overall performance. The present paper [1] intro-
duces the nnU-Net (“no-new-Net”), which refers to a robust and self-adapting
framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case
for taking away superfluous bells and whistles of many proposed network designs
and instead focus on the remaining aspects that determine the performance and
generalizability of a method. We evaluate the nnU-Net in the context of the
Medical Segmentation Decathlon challenge, which measures segmentation per-
formance in ten disciplines comprising distinct entities, image modalities, image
geometries and dataset sizes. Most importantly though, algorithms submitted
to this challenge are required to work out of the box for any of these datasets
without manual intervention or fine tuning. The challenge is divided in two dis-
tinct phases: phase I comprises seven datasets and is mainly intended for model
development while phase II comprises three previously unknown datasets in-
dented for model evaluation. nnUNet successfully adapted itself to all of these
datasets without user interaction and, with the sole exceptions being class 1 in
the BrainTumour and the Spleen datasets, achieved the highest dice scores out
of all participating algorithms (phase I leaderboard: https://decathlon.grand-
challenge.org/evaluation/results/). In the final evaluation it won the Medical
Segmentation Decathlon challenge with a margin.
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Abstract. Deep learning approaches have been very successful in seg-
menting cardiac structures from CT and MR volumes. Despite con-
tinuous progress, automated segmentation of these structures remains
challenging due to highly complex regional characteristics (e.g. homoge-
neous gray-level transitions) and large anatomical shape variability. To
cope with these challenges, the incorporation of shape priors into neu-
ral networks for robust segmentation is an important area of current
research. We propose a novel approach that leverages shared informa-
tion across imaging modalities and shape segmentations within a unified
multi-modal encoder-decoder network. This jointly end-to-end trainable
architecture is advantageous in improving robustness due to strong shape
constraints and enables further applications due to smooth transitions in
the learned shape space. Despite no skip connections are used and all
shape information is encoded in a low-dimensional representation, our
approach achieves high-accuracy segmentation and consistent shape in-
terpolation results on the multi-modal whole heart segmentation dataset.

1 Introduction

Accurate multi-organ segmentation is an important prerequisite for image-guided
interventions and CAD. Despite its remarkable advances, accurate and robust
approaches for segmenting multiple organs with large shape variability, e.g. heart
structures, are still scarce. A particular difficulty arises from the complex regional
characteristics and large shape variability. To cope with these challenges and
enable meaningful analysis of shape variations, model-based approaches, that
restrict shape variations to a compact linear shape space, have been frequently
used in the past [1]. However, due to its linear nature and decoupling of feature
learning and shape fitting, are limited in segmentation accuracy and nonlinear
representation-learning abilities of deep networks [1].

Recently, new state-of-the-art segmentation accuracies have been achieved us-
ing fully-convolutional architectures that heavily rely on skip connections [2, 3].
While these frameworks are useful for quantifying exact volumetric measure-
ments, their skip connections disconnect the final prediction from the shape
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space encoding and thus limit prediction smoothness, further physiological anal-
ysis and shape retrieval. Some recent work tried to address these shortcomings
by incorporating shape priors into deep networks [4, 5, 6]. In particular, [4, 5]
trained an additional convolutional auto-encoder (CAE) to project predictions
and ground truth labels into its shape space and apply a soft penalty on their
discrepancies during training, so that models are guided to follow global anatom-
ical shape properties. However, these models are not end-to-end trainable and
still rely on skip connections resulting in the aforementioned limitations.

In this work, we propose a new and more elegant approach inspired by the
work in computer vision of Jetley et al. [6], who directly regressed input images
to their shape encodings by �1-distance minimization. In addition, we propose a
novel approach for improving image regression into the common shape space by
utilizing a fixed decoder to minimize a cross-entropy (CE) loss between predic-
tions and ground truth labels.

2 Materials and methods

Our model (Fig. 1) follows a traditional CAE structure with a contracting en-
coder and expanding decoder part. CAEs are optimized for an intermediate
representation that best reconstructs the input itself. The space of intermediate
representations is referred to as shape space (Fig. 1) and is of low-dimensional
nature to force the network to capture the most salient features of the underlying
anatomy. In our model, the encoder E is of multidomain nature and projects dif-
ferent inputs (CT, MR volumes and segmentations) into a joint 1584 dimensional
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Fig. 1. Our proposed all-convolutional model providing 624K trainable parameters. E
projects its input into the 2 · 8 · 9 · 11 = 1584 dimensional shape space. “Conv(3x3x3
-s1-10C)” stands for a conv layer with 3× 3× 3 kernel, stride of 1 and 10 channels.
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shape space resulting in very smooth shape predictions (Fig. 2.1 a). The first
conv layer of our network is the only one that differs for grayscale images and
segmentations since multi-organ integer labels are converted to multi-channel
one-hot encodings, while MRI and CT are single-channel inputs and are there-
fore passed through the same conv layers. Besides, every conv layer is followed
by batch norm and LeakyReLU except the last layer being followed by softmax.

2.1 Joint training

Our learning approach alternates between mini-batches of segmentations Si and
grayscale images Ii (MRI and/or CT). When segmentations are seen at the input,
the network represents a CAE. Input shapes are encoded in the low-dim. shape
space (by E) and mapped through D for reconstruction. E and D are jointly
optimized by minimizing the CE-loss between predictions and input shapes.

When CT and MR images are considered as inputs, we do not follow the
classical approach (e.g. as in [6]) to directly regress them to the correspond-
ing shape encodings of their manual segmentations by minimizing their �1-
distances ||E(Ii) − E(Si)||1 Instead, we further propagate grayscale encodings
E(Ii) through a fixed decoder and then minimize the CE-loss between predic-
tions and ground-truth labels. Despite potential vanishing gradient issues, this
procedure provides several advantages: Firstly, the embedding is optimized for
the optimal shape code in the current shape space instead of its (suboptimal)
shape encoding. Secondly, CE is a more qualitative loss than �1, and thirdly, it
helps to produce balanced updates of E for segmentation and grayscale inputs
(rather than �1- and CE-loss-updates) improving the stability of the model.

On the one hand, E is trained to improve reconstruction quality of segmenta-
tions, and on the other hand, E simultaneously learns to transfer shape as well
as multi-modal image features into a common shape space trying to yield an
equal representation of each domain. Since D is only optimized for reconstruc-
tion quality of segmentations and E for extracting domain-invariant, high-level
features, we let E provide about three times as many conv layers (and therefore
abstractational depth) as D. Interestingly, we found that five conv layers suffice
for D to map from the shape space in the segmentation domain with a high
representation ability.

Besides, keeping the decoder fixed for grayscale inputs is necessary to avoid
two separate feature extraction paths for grayscale images and segmentations
throughout the entire network, thus resulting in two different shape spaces (as
shown in [7]). Since D is only optimized for segmentation reconstruction yield-
ing one common shape space, close spatial correspondence of shape and image
encodings is still achieved through CE-loss minimization despite not being ex-
plicitly optimized for that (Fig. 2.1 b).

2.2 Implementation details and experiments

The model is trained using Adam on random mini-batches of size 3 containing
either CT and/or MR data, or solely segmentations, in an alternating order for
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1000 epochs. Learning rates start at 0.002 for the label and 0.004 for the gray-
scale optimizer and are reduced by 0.9 every 30th epoch. Weight decay and affine
transformations for data augmentation were used. It is also important to note
that we use instance normalization during evaluation to compensate for the fact
that batch statistics differ strongly between label- and grayscale- mini-batches.

We evaluate our approach (referred to as CE-Reg) on the MM-WHS training
dataset which consists of 40 multi-modality whole heart images (20 CT and 20
MRI). Our preprocessing pipeline starts with data resampling into isotropic voxel
sizes of (1.5mm)3 We then crop bounding boxes with sizes of 144 × 122 × 168
around the ROI and finally apply Z-normalization on the cropped patches.

We further compare our approach with the following variants: �1-Reg us-
ing �1-loss between grayscale and shape encodings for image regression into the
shape space; 2E-D : decoupled variant of our approach consisting of two separate
encoders (one for segmentation and the other for grayscale image inputs) each
with half the number of feature channels in every conv layer; E-D : traditional
encoder-decoder network being solely trained on MR and CT data, and finally
U-Net : E-D with skip connections. The models share equal training and archi-
tectural properties. To measure the segmentation accuracy, we perform 5-fold
cross-validation and report mean Dice scores.

3 Results

Tab. 1 lists quantitative segmentation accuracies of the evaluated models. Our
model significantly outperforms �1-Reg underlining improvements to image re-
gression when using the CE-loss. Furthermore, both regression models �1-Reg
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Fig. 2. a) shows rather noisy ground-truth labels as well as its satisfyingly smoothed
prediction. (b) displays the t-SNE visualization of the embedding after training our
model on the MM-WHS dataset (patient no. displayed). b) displays the t-SNE visu-
alization of the embedding (patient no. displayed). As desired, corresponding shape
codes lie in close proximity to one another.
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Table 1. Dice scores of the evaluated approaches. CE-Reg is our proposed model, �1-
Reg uses �1-loss between image and corresponding shape encodings for image regression
into the shape space. 2E-D is a decoupled variant of CE-Reg with two separate encoders
one for segmentation and the other for grayscale image inputs. Besides, E-D is an
encoder-decoder model being trained solely on MR and CT volumes and U-Net its
variant using skip connections.

LV Myo RV LA RA aorta PA ∅

CT data

CE-Reg 0.888 0.822 0.848 0.874 0.848 0.724 0.874 0.840

�1-Reg 0.877 0.796 0.840 0.846 0.841 0.676 0.863 0.819

2E-D 0.850 0.760 0.846 0.806 0.820 0.602 0.811 0.785

U-Net 0.921 0.824 0.872 0.879 0.885 0.800 0.944 0.875

E-D 0.848 0.746 0.822 0.822 0.792 0.596 0.812 0.777

MR data

CE-Reg 0.882 0.746 0.832 0.816 0.836 0.704 0.734 0.793

�1-Reg 0.877 0.722 0.822 0.793 0.831 0.678 0.731 0.779

2E-D 0.866 0.702 0.806 0.768 0.796 0.562 0.718 0.745

U-Net 0.923 0.796 0.881 0.871 0.883 0.778 0.769 0.843

E-D 0.860 0.704 0.784 0.780 0.794 0.622 0.684 0.747

Shape space interpolationDecoded shapesShape embedding

Fig. 3. Visualization of the shape embedding, its decoded shapes and shape interpo-
lations along the dotted line. Note the smoothness of the decoded shapes, the realistic
shape deformations as well as the smooth transitions in the compact shape space.
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and CE-Reg clearly outperform their decoupled variant 2E-D as well as tradi-
tional encoder-decoder networks E-D. The former indicates that segmentation
performance can greatly benefit from shared information across the domains,
whereas the latter shows that, even if these encoder-decoder networks might also
learn a qualitative shape space, regressing grayscale images into a learned shape
space yields considerably better performance. In comparison, skip connections
(U-Net) yields performance increases, which are, however, only relevant for pix-
elwise segmentation and more importantly, lack smoothness of predictions and
explainability of shape variations.

Furthermore, Fig. 3 illustrates the learned shape space. It shows plausible
shapes decoded from a compact shape space with smooth and realistic tran-
sitions. These properties, that can only be achieved without skip connections,
enable further applications including object-mask registration or robust multi-
modal registration by projecting multi-modal data into a common shape space,
followed by the sampling of intermediate shape interpolated versions.

4 Conclusion

First, we have presented a novel architecture for deep encoder-decoder networks
that jointly learns shared features within a single end-to-end trainable model
without skip connections, and second, we introduced a novel approach to im-
prove image regression into the shape space. Our approach reaches excellent ac-
curacies for multi-label CT and MRI whole heart segmentation, while simultane-
ously restricting the underlying shape representation to be low-dimensional and
consistent between shapes and corresponding grayvalue scans. We empirically
demonstrate a highly effective use of shared information across grayscale images
and segmentations outperforming disjoint networks with the same number of
channels. In addition, our approach offers attractive further use of anatomical
information that is impossible with conventional skip connection models, such
as modality-invariant feature learning and smooth interpolation in shape space.
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In this paper, we derive a neural network architecture based on an analytical
formulation of the parallel-to-fan beam conversion problem following the concept
of precision learning [1]. Up to now, this precision learning approach was only
used to augment networks with prior knowledge and or to add more flexibility
into existing algorithms. We want to extent this approach: we demonstrate that
we can drive a mathematical model to tackle a problem under consideration and
use deep learning to formulate different hypothesis on efficient solution schemes
that are then found as the point of optimality of a deep learning training pro-
cess. The network allows to learn the unknown operators in this conversion in a
data-driven manner avoiding interpolation and potential loss of resolution. The
concept is evaluated in the context of Hybrid MRI/X-ray imaging where trans-
formation of the parallel-beam MRI projections to fan-beam X-ray projections is
required. The proposed method is compared to a traditional rebinning method.
The results demonstrate that the proposed method is superior to ray-by-ray
interpolation and is able to deliver sharper images using the same amount of
parallel-beam input projections which is crucial for interventional applications.
Based on the reconstruction problem and the problem description, we derived
a network topology which allows to learn the unknown operators. We believe
that this approach forms a basis for further work uniting deep learning, signal
processing, physics, and traditional pattern recognition.
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While the major white matter tracts are of great interest to numerous stud-
ies in neuroscience and medicine, their manual dissection in larger cohorts from
diffusion MRI tractograms is time-consuming, requires expert knowledge and is
hard to reproduce. Tract orientation mapping (TOM) is a novel concept that
facilitates bundle-specific tractography based on a learned mapping from the
original fiber orientation distribution function (fODF) peaks to a list of tract
orientation maps (also abbr. TOM). Each TOM represents one of the known
tracts with each voxel containing no more than one orientation vector. TOMs
can act as a prior or even as direct input for tractography. We use an encoder-
decoder fully-convolutional neural network architecture to learn the required
mapping. In comparison to previous concepts for the reconstruction of spe-
cific bundles, the presented one avoids various cumbersome processing steps
like whole brain tractography, atlas registration or clustering. We compare it
to four state of the art bundle recognition methods on 20 different bundles
in a total of 105 subjects from the Human Connectome Project. Results are
anatomically convincing even for difficult tracts, while reaching low angular er-
rors, unprecedented runtimes and top accuracy values (Dice). Our code and
our data are openly available at https://github.com/MIC-DKFZ/TractSeg and
https://zenodo.org/record/1285152, respectively. This work has previously been
published at MICCAI 2018 [1].
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Abstract. This study’s objective was to segment vertebral metastases
in diagnostic MR images by using a deep learning-based approach. Seg-
mentation of such lesions can present a pivotal step towards enhanced
therapy planning and implementation of minimally-invasive interventions
like radiofrequency ablations. For this purpose, we used a U-Net-like ar-
chitecture trained with 38 patient-cases. Our proposed method has been
evaluated by comparison to expertly annotated lesion segmentations via
Dice coefficients, sensitivity and specificity rates. While the experiments
with T1-weighted MRI images yielded promising results (average Dice
score of 73.84%), T2-weighted images were in average rather insufficient
(53.02%). To our best knowledge, our proposed study is the first to
tackle this particular issue, which limits direct comparability with re-
lated works. In respect to similar deep learning-based lesion segmen-
tations, e.g. in liver MR images or spinal CT images, our experiments
with T1-weighted MR images show similar or in some respects superior
segmentation quality.

1 Introduction

Life expectancy has been steadily increased over the last decades, promoting
age-related diseases like cardiovascular diseases, as well as cancer and cancer
induced malicious metastases. Beside liver and lungs, osseous metastases are
the third most likely and up to two thirds of them are located in the spine [1].
Radio-frequency ablation (RFA) has been used to reduce lower back pain caused
by facet osteoarithritis or osteoid osteoma and was introduced more recently to
treat osseous spinal metastases [2]. Segmentation of vertebral metastases is a
pivotal step towards RFA therapy planning and implementation due to the im-
portance of assessing extent, shape and spatial relations of the metastases with
risk structures, as well as to assign state-dependent tissue parameters for numeri-
cal heat dissipation simulations [3]. Additionally, pre-interventionally segmented
metastases as image overlays onto the intra-operatively acquired images can en-
hance and speed-up RFA needle placement during interventions and therefore,
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may have a beneficial effect on the treatment outcome. However, segmentation of
spinal metastases is time-consuming and fatiguing considering the number of im-
age slices and sequences acquired per patient. Computer-assisted methods could
relieve the workload of radiologists and reduce the time required for the therapy
planning. Beside well established segmentation methods like threshold-based,
region-based, classification or model-based approaches, deep learning techniques
like deep convolutional neural networks (CNN) have been introduced more re-
cently to lesion and metastasis segmentation tasks [4]. The latter focussed mainly
on liver [5, 1] and brain [6, 7] lesions, both in CT and MR imaging. Recently, a
deep learning-based approach for vertebral metastasis segmentation in CT imag-
ing has been published [8].
The main objective of this work was to develop a deep learning-based method
for segmenting vertebral metastases in MR imaging. Since bone tumours and
metastases typically replace focal bone marrow, which can be visualized in MR
imaging, we focussed on diagnostically acquired MR images of patients who
underwent RF ablations of spinal metastases. These metastases are of both,
sclerotic or lytic type and therefore, affect vertebrae in their shape and visibility
differently. While bony structures emit similar signals in T1- and T2-weighted
MRI sequences, metastases could differ considerably in image intensities. This
tremendously complicates automatic segmentation methods. Due to its wide-
spread applicability in medical image segmentation, we propose a U-Net-like
architecture [9] to cope with the huge variety of shape, extent and appearence
of the metastastic lesions.

2 Materials and methods

2.1 Image data and pre-processing

34 patients who underwent RF-ablations of both, single or multiple vertebral
metastases, were chosen retrospectively. Overall, 38 metastases were assembled
for this work, originating from rena cell, prostate, cervical, kolon, pancreatic,
breast, bladder, stomach, lung, caecal, urothelial and spinocellular carcinoma.
For diagnostic purposes spine MR imaging was performed pre-interventionally,
including sagittal native T1- and T2-weighted MRI sequences. The resolution
of the scans varied in-plane from 0.47 to 1.25mm, as well as in depth (3.3 to
4mm). The acquired MRI data was pre-processed by registering cohesive MR
sequences patient-wise to the respective T1-weighted images via an automatic
mutual information-driven rigid transformation, as well as by resampling each
image volume to a total number of 64 sagittal slices. This was due to produce
a rather isotropic spatial resolution, while maintaining a fixed image matrix
size to simplify any further processing. Subsequently, each metastasis has been
contoured manually by a field expert trained by neuroradiologists. Starting from
the center of each segmentation, a volume of interest (VOI) with the size of
128× 128× 64 voxels was set up and extracted from the original MR images as
well as the binary ground truth images. Furthermore, every VOI was whitened by
subtracting the mean intensity from every voxel value and a subsequent division
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by the standard deviation. Since our data set is comparably small for a deep
learning-based approach, each of the 38 metastases has been augmented 25 times,
yielding in total 950 samples. In detail the images were rotated between ±25◦

around the center of volume in z-direction. Furthermore, each image was enlarged
or shrunk within a range of ±30% as well as translated in all directions by a
random value between ±42 pixels in x- and y-direction and ±21 pixels in z-
direction, thus approximately a third of each dimension’s extent. Finally, random
flips were applied with a 75% probability overall and 50% for each direction,
i.e. horizontal, vertical and in depth.

2.2 Network architecture

We used a smaller version of the U-Net [9] network architecture with 15 convolu-
tional layers and only 3 instead of 4 poolings (Fig. 3). Furthermore, we replaced
up-convolutions by simplified upsampling layers, which have been found to be
equally effective, while being less computationally expensive [10]. Each convolu-
tion had a kernel size of 3× 3× 3 with the exception of last one, which applies
an 1 × 1 × 1 kernel to reduce the dimensionality to the desired output size, i.e.
the size of the input image. A Rectified Linear Unit (ReLU) was used as the
activation function for all convolutional layers, except the last one again, where
a sigmoid function was applied to provide values between 0 and 1. Training was
done for 25 epochs and a fuzzy Dice coefficient was used as a loss function. Fur-
thermore, we used Adam as an optimizer with a starting learning rate of 0.001
and a mini batch size of 2 samples. Finally, a threshold of 0.5 was applied to
produce binary output images. The CNN hyperparameters were set empirically
by preliminary experiments.

Fig. 1. U-Net-like architecture for segmentation of vertebral metastases in T1- or T2-
weighted MR images. The dimension of each layer is defined as width, height, depth
and channels.
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2.3 Evaluation

Expertly annotated lesion segmentations were produced considering both regis-
tered MR sequences of each patient within a synchronized viewer. Due to compa-
rability with related segmentation works and the similarity to clinical evaluation
methods, we chose Dice coefficients as a volume overlapping measure of automat-
ically segmented structures and expertly contoured lesions, as well as sensitivity
and specificity rates. For evaluation purposes 8-fold-cross validation was per-
formed. Each subset contained 4-5 original volumes as well as their patient-wise
augmentation. Overall 8 runs with varying subsets were carried out yielding Dice
scores, calculated on the original image data.

3 Results

The Dice scores of automatic and expert segmentations were average 73.84 ±
16.94% for the T1-weighted and 53.02 ± 24.33% for the T2-weighted data, re-
spectively (Fig. 4). Overall the metastases segmentation in T1-weighted MRI
sequences yielded significantly better results with average 20.51% higher Dice
scores and only one sample (case 23) with < 1% lower quality. For the experi-
ments with T1-weighted image data the average sensitivity rate was 77.8±16.5%
and the specificity rate was 98.5±1.3%, while the results for T2-weighted images
yielded overall more inaccurate results with 65.1± 30.3% (sensitivity rate) and
95.5± 4.7% (specificity rate).

4 Discussion

Representative cases are shown in Fig. 3, displaying good results as well as com-
mon segmentation errors of our experiments. Among the latter, false positive

Fig. 2. Dice scores for each patient and MRI sequence. Our data set contained lytic
and sclerotic metastases, which influences their appearance, e.g. intensity and texture,
especially within T2-weighted images.
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classified pixels, often most prominent in the marginal space, which contains
multiple tissues and therefore, varying intensities and inaccurate segmentations
at the transverse and spinous processes are the most common. A greater loss of
quality was produced by exceptionally shaped metastases, especially if they were
not roughly starconvex. This was very likely due to the fact that the required
level of shape variance was not represented by the training set. Compared to the
network that has been fed with T1-weighted images, our experiments with T2-
weighted MR data performed worse most of the time. We assume this was caused
by the metastases appearances in this particular modality. While in T1-weighted
images the metastases presented themselves hypointense compared with surroud-
ing non-metastatic bone tissue, they appeared either hypo-, iso- or hyperintese
and even with mixed intensity and texture distribution in the T2-weighted se-
quences. Again, this level of appearance variance may not been represented by
our comparatively small training set.

It is rather difficult to compare our results with related works, since there are
to our best knowledge no studies regarding vertebral metastases segmentation
in MR imaging. Thus, comparison is rather indirect and refers to CNN-based
segmentation approaches for instance of liver and brain tumors, as well as a re-
cently published work by Chmelik et al. [8] for spinal CT data. Depending on the
used data sets, CNN-based brain tumor segmentations in MR images achieved
Dice scores up to 88% [6] or 84.7% [7]. Segmented liver tumors in MR images
achieved Dice values of 69.7% [5], in CT images up to 72.2% [11]. Overall, our
results on T1-weighted spinal MR images are similar to the related segmentation
accuracies of liver lesions, although our data base was comparatively small (34
patient cases vs. 200 cases in [11]), which is also reflected in the rather high stan-
dard deviation of our results. Chmelik et al. [8] were one of the first to adapt a

Fig. 3. Comparison of the expertly annotated data (green) with our automatically
produced segmentations on T1- (blue) and T2-weighted MR images (red) for exemplary
cases. Case 3 and 16 represent our best results, which were achieved with T1-weighted
images. Most of our insufficient results (like case 17 and 32) indicated, that the weaker
the shape or appearance variance is represented in the training set, the more likely the
accuracy of the segmentation decreases.
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CNN to vertebral metastases segmentation in CT images. They achieved a voxel-
wise sensitivity rate of 74% for sclerotic and 71% for lytic lesions as well as a
specificity rate of 88% (sclerotic) and 82% (lytic). In comparison, our results
with the T1-weighted images are somewhat better, though the experiments with
T2-weighted images lack accuracy. Nevertheless, it is important not to neglect
the differences in spatial resolution (slice thickness of 0.67mm vs. our average
3.50mm) and the effects of high spatial anisotropy.
To summarize, we presented a CNN-based segmentation approach for metastases
of the spine in diagnostic MR images. Although, only an approximate classifi-
cation of our results with reference to related work is possible, our experiments
yielded a quality similar for instance to the state-of-the-art in liver lesion seg-
mentation. Our results with T1-weighted MR images indicate good potential to
automatically segment cancerous structures in spinal MR images, while the re-
sults on T2-weighted MR data were not satisfactory. In further experiments we
will investigate the influences of the combination of different MR sequences.

Acknowledgement. This work was supported by the German Ministry of Ed-
ucation and Research (13GW0095A) within the STIMULATE research campus.
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Abstract. Medical imaging is often burdened with small available an-
notated data. In case of supervised deep learning algorithms a large
amount of data is needed. One common strategy is to augment the given
dataset for increasing the amount of training data. Recent researches
show that the generation of synthetic images is a possible strategy to
expand datasets. Especially, generative adversarial networks (GAN)s are
promising candidates for generating new annotated training images. This
work combines recent architectures of Generative Adversarial Networks
in one pipeline to generate medical original and segmented image pairs
for semantic segmentation. Results of training a U-Net with incorporated
synthetic images as addition to common data augmentation are showing
a performance boost compared to training without synthetic images from
77.99% to 80.23% average Jaccard Index.

1 Introduction

In many imaging domains and especially medical imaging only limited number of
segmented and annotated data is available. In case of supervised machine learn-
ing this often leads to restricted performance of algorithms. Particularly, deep
learning algorithms require big training datasets to perform well on unseen data.
One effective way for extending a given training dataset is image augmentation,
which has given a significant performance boost in deep learning [1]. Recent
methods like generative adversarial networks (GANs) [2] for generating new im-
age data become more popular. Frid-Adar et al. [3] have proven that synthetic
generated images by GANs can lead to improved accuracy in classification tasks.

The contribution of this work is extending the idea of generating synthetic
images for classification by generating an image pair of ground truth segmenta-
tion and corresponding image for segmentation tasks. These image pairs can be
used as training samples for deep learning algorithms in addition to traditional
data augmentation. The used dataset is a dataset of fluorescence microscopy
images of esophagus of a monkey containing 137 training and 37 test images.
Segmentation of esophagus is defined by segmenting the appearing tissue sec-
tions (Fig. 1). The spatial resolution of the images is 4656 times 3692 pixel and
is down sampled to 512 times 512 pixel for segmentation.
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Fig. 1. Samples of esopha-
gus in first row and cor-
responding human annotated
segmentation in second row.
The segments are longitudi-
nal muscle (blue), circular
muscle (red), muscularis mu-
cosae (dark green), eptihelium
(pink).

2 Materials and methods

The used pipeline consists of combination of wasserstein GAN [4] and Stack-
GAN [5] for creating synthetic microscopy images and ground truth segmentation
masks. The last step of the pipeline is a pix2pixHD GAN [6] for Image-to-Image
translation of ground truth segmentation to esophagus microscopy images.

2.1 Generative adversarial networks

Goodfellow et al. [2] introduced Generative Adversarial Networks as two net-
works, namely generator (G) and discriminator (D) which are trained against
each other. The generator gets an input noise variable pz(z) as input and tries
to generate samples which are close to the ground truth data distribution pdata.
The discriminator is a two class classifier which either gets an original or gen-
erated image as input and is trained to separate fake and original images. This
can mathematically be defined as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

and states a two-player minimax game. The second term Ez∼pz(z)[log(1−D(G(z)))]
can saturate in early training stages due to high confidence of D while G gener-
ates samples near random noise. Therefore instead of minimizing log(1−D(g(z)))
maximizing log(D(G(z))) is leading to much stronger gradients in early stages
of training.

Wasserstein GANs [4] are an extension to GANs which stabilizing the training
procedure of GANs. It can be shown, that the optimal generator is minimizing
the Jensen Shannon Divergence [2]. The JSD as divergence function is not a good
cost function when learning data distributions supported by low dimensional
manifolds [4]. Therefore the wasserstein distance or earthmover distance (EM)
W (Pr,Pg) = inf

γ∈
∏

(Pr,Pg)
E(x,y)∼γ [||x− y||] can be used instead. With help of the

Kantorvich-Rubinstein duality the EM can be derived to Wasserstein loss

max
||f ||L≤1

Ex∼Pr
[f(x)]− Ex∼Pθ

[f(x)] (2)

which can be used as loss function for GANs. Notice that now f has to be 1-
Lipschitz. To enforce this Lipschitz constraint weight clipping is one possible
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solution, but can result in long training times or vanishing gradients. The dis-
criminator can be trained without unstable training since the EM is continuous
and differentiable always everywhere. Since weight clipping leads also to capac-
ity underuse of parameters and is not the most sufficient way to enforce the
Lipschitz constraint, Gulrajani et al. [7] are introducing a gradient penalty term
without these major drawbacks.

2.2 StackGAN

StackGAN [5] is a Framework of two separate GANs which operates on two
stages. It transforms text descriptions into photo-realistic images. Therefore in
the first stage a text embedding of the description is combined with the latent
vector and given into the generator. The generator will create a low resolution
image of the description. Respectively, the Stage-I discriminator aims to classify
fake and real images on low resolution. In Stage-II the Generator will get the low
resolution image as input as well as the text embedding and create through down-
and upsampling operations a high resolution image. The Stage-II discriminator
now aims to distinguish between high resolution fake and real images. The Stage-
II helps to refine the low resolution image and leads to much finer details.

2.3 Pix2pixHD GAN

Pix2pixHD GAN [6] is a GAN for image-to-image translation tasks. Therefore
the generator of this GAN does not need a latent vector pz(z), instead it is
conditioned on an input image. The generator is trained to transfer an image
from one domain to another, such as label maps of segmentations to photo-
realistic images. The generator consists of two networks, one which operates on
full input resolution, called the local enhancer network, and one which operates
on half input resolution, called the global generator network. Both networks are
built of a convolutional front-end, residual blocks, and a convolutional back end.
The input of the residual blocks of the local enhancer network is the element-
wise sum of the last feature map of the global generator network and the feature
map of the local enhancer network. The discriminator now gets two images as
input, one from source domain and one from target domain. The image from
target domain can either be fake or real which has to be discriminated. Also,
multi-scale discriminator is used, therefore three separate discriminators which
have the same architecture are operating on different image scales.

3 Results

Generating synthetic training data for semantic segmentation requires label
maps, with 6 labels in our case, and corresponding real world domain images.
Therefore a pipeline of two sequential networks was build. The first network is a
StackGAN-like network which generates synthetic label maps. The second net-
work is the pix2pixHD GAN which is trained to generate esophagus microscopy
images from label maps.
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Fig. 2. StackGAN results with
the low resolution image and
refined high resolution image.

3.1 Generating label maps for esophagus

The Stage-I generator gets an 100 dimensional latent vector pz(z) as input and
upsamples the spatial resolution by repeating convolutional blocks consisting of
Transposed Convolutional Layer, Batchnorm and ReLU activation. The initial
filter size is 2048 which is halfed in every convolutional block. The result of the
first convolutional block has spatial resolution of 4x4 pixel. Every other con-
volutional block doubles the spatial dimension until 256x256 pixel are reached.
Hence, 7 convolutional blocks were used. The activation function of the last
block is tanh. The discriminator is a classical deep convolutional network with
convolutional layer and LeakyReLU as activation function.

The generated 256x256 pixel label map serves as input for the Stage-II gener-
ator. The input image is down sampled by four convolutional blocks of Convolu-
tional Layer, Batchnorm and LeakyReLU as activation to a spatial size of 16x16
pixels. The result will be processed by four residual blocks and up sampled by
4 convolutional blocks consisting of transposed convolutional layer, batchnorm
and ReLU activation followed by a last transposed convolution with tanh as ac-
tivation. All down sampling operations are resulting in halved spatial dimension
and doubled filter size, all up sampling operations in double spatial resolution
and halved filter size. The result is a 512x512 pixel label map representating the
ground truth label maps of the dataset (Fig. 2). Also, the discriminator of the
Stage-II is a classical deep convolutional network.

Both networks were trained separately on the 137 training images, first the
Stage-I GAN was trained until convergence. Afterwards, the Stage-II GAN was
trained, as it uses the results of the first GAN as input. The wasserstein loss [2]
with gradient penalty [7] was used as loss function.

3.2 Transfer of label maps to esophagus microscopy images

To create training data for semantic segmentation the label maps have to be
transferred into real world domain, in this case to esophagus microscopy images.
Therefore the reference implementation of pix2pixHD GAN [6] was used to train
the image-to-image translation network on the 137 training images which were
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augmented by flipping, zooming and affine transformations. The result is cor-
responding pairs of generated ground truth label maps and microscopy image
which can be used for training (Fig. 3).

3.3 Training a U-Net with synthetic image pairs

Since the synthetic image pairs shall be used as an addition to standard image
augmentation, the images are used as additional training images for a neural
network for semantic segmentation. Therefore a U-Net [1] was trained to segment
the 6 classes (Fig. 1) only on the original data with augmentation and separately
with original data with augmentation combined with synthetic data. The batch
size was set to four and for each experiment, a prior rate of synthetic images
per batch was set, namely 0%, 25%, 50%, 75% and 100%. The original data
got online augmented in all experiments, as well as the synthetic images are
generated online if used.

For comparing the segmentation the average Jaccard Index on the 37 test
images is evaluated over several training runs for each rate of synthetic images
in a batch. The average Jaccard Index is defined as

avgJC =
1

n

n∑
i=1

true positivei
true positivei + false positivei + false negativei

(3)

for each class. The results are given in (Fig. 4). Training the U-Net with tradi-
tional image augmentation (0% synthetic rate) leads to an average Jaccard Index
of 77.99%. Additionally adding synthetic image pairs (25% and 50% synthetic
rate) improve the segmentation performance to 80.23% and 79.75% respectively.
Too many synthetic images (75% and 100% synthetic rate) are leading too much
poorer segmentation results.

Fig. 3. Synthetic training image pairs of semantic label maps and corresponding mi-
croscopy images of esophagus.
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Fig. 4. Results of average Jaccard Index of
a U-Net trained on different rates of origi-
nal and synthetic training images for semantic
segmentation.

4 Discussion

We presented a pipeline for synthesizing image pairs in a medical domain for
improving the data amount of small datasets for supervised learning. Compar-
ing the synthetic (Fig. 1) and real (Fig. 3) images reveal that the label maps are
generated with valid topology of tissue and characteristic shapes. The generated
fluorescence microscopy images contain artifacts, but also contain typical struc-
tural features but are clearly distinguishable for human eyes. Incorporating the
image pairs into training of neural networks results in improved performance.
However, using too many synthetic images results in poorer performance than
training without synthetic images.
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Abstract. While deep learning strategies for semantic segmentation in-
creasingly take center stage, traditional approaches seem to take a back-
seat. However, in the domain of medical image processing, labeled train-
ing data is rare and expensive to acquire. Thus, traditional methods
may still be preferable to deep learning approaches. Many of these con-
ventional approaches often require initial localization of the structure of
interest (SOI) to provide satisfactory results. In this work we present a
fully automatic model initialization approach in MRI, that is applicable
for anatomical structures that contain a near-spherical component. We
propose a model, that encapsulates the difference between intensity dis-
tribution within the SOI’s spherical component and its proximity. We
present our approach on the example of femoral model initialization and
compare our initialization results to a diffeomorphic demons registration
approach.

1 Introduction

In modern medicine, especially in the domain of orthopedics and trauma surgery,
3D models are helpful tools to aid in preoperative planning and to design pros-
thetics, tailored specifically to the patient’s needs. The human hip joint in par-
ticular is a structure of interest, as it carries a major portion of the body weight,
therefore being naturally prone to physical deterioration. Patient-specific models
allow simulations of joint movements and the detection of possible points of fric-
tion. For these kind of simulations, first the 3D models need to be generated by
segmenting the anatomical structures of interest (SOI). While deep learning ap-
proaches are current topics of research, usually a large amount of training data
is required to train them. Even in the context of transfer learning, one needs
to consider the availability of pretrained models and the additional amount of
fine tuning data. Therefore we argue, that Active Shape Models, Active Ap-
pearance Models, and Active Contours such as Snakes and Level Set methods
are still relevant traditional approaches for solving the segmentation problem.
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The segmentation quality of these methods, however, heavily depends on their
initialization. While these methods have been extended for better segmentation
results in numerous ways, research regarding model initialization has been re-
ceiving reasonably less attention. Li et al. [1] propose a Poisson inverse gradient
approach, which is however restricted to the initialization of Active Contours.
Younes et al.’s approach [2] in first detecting the SOI by primitive shapes recog-
nition in 3D CT data to apply deformable shape models afterwards, is similar
to our requirement of the SOI containing a spherical component. Pham et al. [3]
propose an appearance model, in which the intensity distribution of the SOI in
the euclidean space is combined with the boundary appearance in polar space
in an axial slice-wise manner. In this work we present a 3D localization strategy,
taking into account the highly correlated nature of the 2D slices, and propose
an appearance model based initialization approach, applicable for anatomical
structures that contain a near-spherical component.

2 Materials and methods

In the following, our proposed initialization approach by means of the based
Expanding Spherical Appearance Model (GESAM) is described. Afterwards, the
evaluation details are outlined.

2.1 GESAM

We propose a three stage model initialization method, that robustly approxi-
mates the location of the SOI’s near-spherical component and expands to the
SOI’s remaining area, estimating the orientation of the SOI. The first stage con-
sists of training the based Expanding Spherical Appearance Model (GESAM)
in a Principal Component Analysis manner, whereas the second stage uses the
trained model to robustly localize the near-spherical component of the SOI. In
the final stage, the estimated location is used as the initial region to expand to
the remaining SOI by a simple Level Set approach, which is, however, restricted
by the MRI’s gradient information.

Training LetA1, . . .AN denoteN atlases, where the i-th atlas consists of a MRI
volume Ii with voxel size (1×1×1)mm3 and a label volume Li, i.e. Ai := (Ii,Li)
For each atlas the near-spherical component is approximated by a sphere. Let
ri be the radius of the fitted sphere in Li, then an encapsulating spherical outer
neighborhood of the sphere can be extracted, such that the volume of the outer
neighborhood is equal to the sphere volume. The outer neighborhood can be vi-
sualized as the volume difference between a larger sphere, surrounding the fitted
smaller sphere. With this outer boundary, the normalized intensity distributions
with a fixed amount of nbins intensity values inside and outside of the sphere
can be modeled by means of two vectors win

i , wout
i ∈ [0, 1]nbins To reduce the

effects of global intensity changes, the derivatives of inner and outer intensity
distributions are considered and concatenated to a joint feature vector w̃i of
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length 2(nbins − 1) With the feature vectors of all training data, dimensionality
reduction by means of Principal Component Analysis (PCA) yields a matrix
Eṽ := (ṽ1, . . . , ṽnPCA

) containing nPCA < nbins eigenvectors and a set with the
corresponding eigenvalues Sλ := {λ1, . . . , λnPCA

}With the mean inner and outer

derivative intensity distribution w := 1
N

∑N
i w̃i, the maximal and minimal ra-

dius rmax, rmin in mm of the fitted spheres, and the standard deviation σr of
the sphere radii, the Spherical Appearance Model is defined as

M := (Eṽ,Sλ, w, rmax, rmin, σr)

Localization The next stage of our proposed method deals with the initial
localization of the near-spherical component. We propose a RANSAC like fitting
scheme, i.e. a hypothesis-verification strategy, in which the number of samples,
which generate the hypothesis, is kept minimal. In this case the hypothesis is
a distinct sphere candidate, specified by a minimal sample set of four image
coordinates. For computational efficiency we constrain the sample domain to
those voxels with a feasible gradient magnitude, after regularizing with a simple
Gaussian filter. Let I denote the 3D MRI, then the constrained sample domain
is implied by the binary volume

I∇ :=

{
1, if |∇{I ∗ G}| ≥ m

0, else

where ∇ is the gradient operator, G denotes a Gaussian kernel, and m represents
the mean value of all positive values in |∇{I ∗ G}| Since anatomical structures
that contain spherical components are the objects of interest, it is possible to
further restrict the sampling domain, by only keeping those image points, that
are most likely part of the SOI’s spherical component. We propose applying 2D
Hough transforms on each axial, frontal, and sagital image slice to extract the
ncircles most probable circles, respectively. The intersection of circles with differ-
ent spatial orientation yields voxel coordinates that presumably address spherical
structures. For the 2D circle detections the minimal and maximal radii, and the
standard deviation rmin, rmax, σr from the GESAM can be used to limit the ra-
dius range of the 2D Hough transforms to [rmin − σr

2 , rmax + σr

2 ] Let I◦ denote
the binary volume, containing the most probable aforementioned intersections.
Then the Hadamard product I∇,◦ := I∇ · I◦ contains image points that both
have a strong gradient and also probably contribute to a feasible sphere hypoth-
esis. We will refer to any image point p in I∇,◦ that has value I∇,◦(p) = 1 as
feasible sample point. With the drastically reduced sample set in I∇,◦, we propose
a structured sampling approach, to ensure the suggestion of promising sphere
candidates. For each ksample-th feasible sample point p, with ksample ≥ 1, a 3D
sampling cube with width rmax + σr

2 is spanned around p. From this restricted
sampling cube three additional feasible sample points are randomly chosen to
propose a sphere candidate. This process is repeated until at least a minimal
number of spheres nsp ≥ 1 with a radius within the range [rmin− σr

2 , rmax+
σr

2 ] is
proposed. If this is not possible, a maximum number of subsequent non-sufficient
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proposals nnsp ≥ 1 ensures termination. In the same manner as for the GESAM,
a feature vector w can be computed by means of concatenating the derivatives of
inner and outer intensity distributions for each of the sphere proposals. Instead
of only using the feasible sample points within an ε-environment of the sphere
(inliers) as selection criterion, we propose utilizing the weighted distance s of

the feature vector w to w in eigenspace, i.e. s :=
∑nPCA

i=1
1
λi

(
ṽTi · (w − w)

)2
This

distance can be incorporated into a weighted cost function, which may also con-
sider additional features such as homogeneity, variance and further statistics of
the volume intensities within the sphere. However, the distance s in eigenspace
should be strongly weighted to exploit the discriminative property of the GESAM
for multiple near-spherical objects within the image. In our experiments we use
homogeneity and variance and weight s with a factor of 10. The sphere with
minimal cost is finally selected as the localization approximation of the SOI’s
near-spherical component.

Expansion The third stage deals with the expansion of the detected near-
spherical component into the remaining SOI to determine its spatial orientation.
This is achieved by a simplified region based Level Set approach [4], in which
gradient information of the volume is used to heavily restrict the expansion
to stay within the SOI. Instead of applying the standard Chan Vese Level Set
approach on the original MRI data set, we propose utilizing a dilated version of
I∇. This simplification of the image volume ensures the expanded area to stay
within the bounds of the SOI. Thus, strong gradients serve as boundaries of the
expansion, strengthened by the previous dilation. The located sphere from the
localization stage serves as initial contour of the Level Set approach. To increase
computational efficiency, I∇ can be resized to a smaller resolution and reducing
the initial contour’s radius ensures initialization within the SOI.

2.2 Evaluation

We evaluated our method on the example of femoral model initialization and
compared our results to the initializations achieved by a 3D multi-atlas diffeo-
morphic demons registration (MADDR) [5] implementation in MATLAB. The
respective ground truths have been validated by clinical experts. In the T1-
weighted MR images only the proximal part of the femur is captured with partly
very different field of views (FOVs). We denote the data sets as P1, . . . ,P6 and
label the post operative data sets as P1PO and P2PO. In a leave-one-out cross
validation manner for each patient data set, the atlases of the respective other
patients were used for training the GESAM and for the multi-atlas approach. We
use the Dice Similarity Coefficient (DSC) to measure and compare the localiza-
tion quality. In the multi-atlas approach simple majority voting was conducted
on the normalized summation of the transformed label images. For each data
set, the threshold t ∈ {0.1, 0.2, . . . , 1.0} resulting in the best DSC was chosen to
compare to our GESAM results. In the training stage, we set nbins to 20. For
preprocessing in the localization stage we set ncircles to 10 circles in each slice.
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Table 1. DSCs from multi-atlas initialization method (MADDR) compared to the
proposed GESAM approach before (GESAM1) and after expansion (GESAM2).

P1 P1PO P2 P2PO P3 P4 P5 P6 ∅
DSC [%]

MADDR 30.99 28.99 30.35 26.11 29.67 27.99 21.98 28.84 28.11±2.06

GESAM1 42.05 45.83 49.89 46.74 43.35 48.90 40.68 38.05 44.44±3.40

GESAM2 73.34 74.76 76.87 75.10 76.34 76.26 72.82 75.10 75.07±1.08

Time [s]

MADDR 638.35 729.52 801.42 954.86 798.38 798.45 960.68 961.78 830.43±96.51

GESAM2 96.87 109.18 101.75 122.81 115.36 112.83 125.47 109.30 111.69±7.42

For the proposed structured sampling method we determined ksample, such that
about 500 feasible sample points remain in I∇,◦ and we found nsp = 10 and
nnsp = 10 to be sufficient termination parameters. In the expansion stage we re-
duced the volume resolution to a factor of 0.5 in each dimension for the Level Set
approach, and initialized with the located sphere reduced to half of the estimated
radius.

3 Results

Tab. 1 shows the resulting DSCs and the measured computation time for each
data set, comparing the multi-atlas localization quality with the achieved results
of our proposed GESAM approach before and after the expansion stage. An
average DSC of 28.11± 2.89% is achieved by the multi-atlas approach, which is
surpassed by the GESAMwith a mean DSC of 44.44±4.12% before the expansion
stage and 75.07±1.08% after expansion. It is noticeable that in all data sets the
multi-atlas approach is already outperformed by our proposed GESAM method
before expansion. We measured an average computation time of 830.43±119.32s
for the multi-atlas approach and a mean computation time of 111.69± 9.70s for
the complete GESAM including expansion stage. It can be observed that while
the registrations show a high variance in computation time, depending on the
data set, the GESAM approach’s localization time is comparatively consistent.

4 Discussion

The results show a significant improvement regarding computation time and
initialization quality, as can be also observed in the exemplary initialization re-
sults in Fig. 1. While the initialization region of the registration approach fails
to approximate the location of the proximal femur (Fig. 1(a)), the localization
stage of our method already proposes a close estimation of the femur’s spherical
component (Fig. 1(b)). The following expansion stage gives additional informa-
tion about the spatial orientation of the femoral bone (Fig. 1(c)). Using gradient
information to restrict the expansion area to stay within the SOI boundary,
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Fig. 1. From left to right: Exemplary initializa-
tion results of the multi-atlas approach (blue)
and the GESAM approach before (yellow) and
after (orange) expansion stage, each overlayed
with ground truth (green).

however, results in the SOI never being completely captured by the expansion
stage. Nevertheless, since the aim is merely a rough approximation of the fe-
mur location, not capturing the whole SOI is preferred to leaking into other
anatomical structures. The multi-atlas method’s poor performance may be due
to the different FOVs of the MRI data sets. This hypothesis is supported by
Fig. 1(a), in which it is clearly visible that the registration result still resembles
the femoral bone, which is missing a large portion of the femur shaft, as the
inconsistency of the FOV might increase the difficulty of the registration prob-
lem. In this contribution, we present an appearance model approach, namely
the GESAM, that incorporates modeling the normalized intensity distributions
of the SOI’s spherical component and its proximity. After locating the spheri-
cal component with a structured sampling strategy, a Level Set based expansion
stage, restricted by the MRI’s gradient information, is finally applied to estimate
the remaining area of the SOI. The resulting area can then be used to fit a model
template into the 3D MRI. The fitted template can be utilized for subsequent
segmentation techniques, e.g. Active Contours. On the example of femoral model
initialization, we validated that our proposed method outperforms a non-rigid
multi-atlas demons registration approach on whole MRI volumes, especially in
the context of strongly varying FOVs. In the future, we would like to investi-
gate our approach on the application of other anatomical structures that show
near-spherical components, such as humerus, bladder, spleen or prostate. We are
aiming to improve the robustness of the localization stage by incorporating more
expert knowledge into the structured sampling process and involving a learning
based cost function for the localization stage.
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Abstract. In this contribution, we propose a 2D deep segmentation
refinement approach, that is inspired by the U-Net architecture and
incorporates result-dependent loss adaptation. The performance of our
method regarding segmentation quality is evaluated on the example of
hip joint segmentation in T1-weighted MRI data sets. The results are
compared to an ordinary U-Net implementation. While the segmenta-
tion quality of the proximal femur does not significantly change, our
proposed method shows promising improvements for the segmentation
of the pelvic bone complex, which shows more shape variability in the
2D image slices along the longitudinal axis.

1 Introduction

In orthopedics and trauma surgery, bone segmentations can aid in diagnosis,
preoperative planning, and patient-specific prosthetics design. Although bones
are often more distinguishable from their background in CT scans, segmenta-
tion approaches in MR images need to be further investigated, as CT scans
require patients to be exposed to radiation, which can be harmful, especially
for young patients. The human hip joint is a particular structure of interest, as
it carries a major portion of the body and is at risk to physical deformations,
such as femoroacetabular impingements. As manual segmentation is usually a
tedious and time consuming task, where expert knowledge is required, auto-
mated approaches are a fast and cost-efficient alternative. Regarding hip joint
segmentation there have already been several contributions. Chu et al. [1] em-
ploy random forests for landmark detection, and multi-atlantes and articulated
statistical shape models for segmentation, yielding a fully automatic hip joint
segmentation approach for CT scans. Xia et al. [2] compare multi-atlas-based
methods to Active Shape Model based approaches for hip joint segmentation
from MR images, and Chandra et al. [3] extend Active Shape Models to Focused
Shape Models. This is a weighted shape learning approach, in which predefined
areas of importance are weighted more heavily than unimportant shape regions,
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ordering the shape representation towards these relevant areas, in order to seg-
ment the hip joint with focus on cartilage from 3D MR images. With the success
of deep learning approaches in the biomedical domain, Klein et al. [4] take a
broader approach and investigate the general bone segmentation capabilities of
deep learning methodologies by slightly modifying Ronneberger et al.’s U-Net
architecture [5] for whole body segmentations in CT images. Regarding deep
segmentation refinement, our contribution shows similarity to Ravishankar et
al.’s work [6] in the architectural aspect, as their construction also yields two
Encoder-Decoder modules, which are nevertheless trained separately. Newell et
al. [7] propose a similar concept of stacked hourglass modules for human pose
estimation. Main differences regarding architecture lie in the arbitrary number
of hourglass modules, their use of residual blocks and the. The use of inter-
mediate supervision between modules is comparable to our approach. To this
end, we propose a 2D end-to-end double U-Net architecture, that is trained by
minimizing a result dependent loss function.

2 Materials and methods

In the following, our proposed deep refinement approach by means of a double
U-Net architecture is described. Afterwards, the evaluation details are outlined.

2.1 Deep segmentation refinement

Our proposed network topology is based on Ronneberger et al.’s successful U-Net
architecture [5]. As can be seen in Fig. 1, our network is a Fully Convolutional
Network, consisting of two U-Net modules. The first U-Net module aims at seg-
menting the input image, whereas the second module’s task is to refine the first
module’s segmentation output. The segmentation module is only a slight alter-
ation of the original U-Net, as it uses two subsequent Convolutional Layers in

Fig. 1. Our double U-Net architecture consists of a first U-Net module for segmentation
and a second U-Net module for refinement, that additionally receives skip connections
from the previous module.
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each resolution level, and starts with 16 convolutional kernels in the first reso-
lution level instead of 64. Furthermore, we use padded convolutions to receive
segmentation outputs, that are of the same size as the input. We choose a kernel
size of 10× 10 for every convolutional layer and 2× 2 max-pooling. The second
module is composed in the same way as the segmentation module, except for
the decoding component. By means of additional skip connections from the first
module’s encoder, we equip the refinement decoder component with the hierar-
chical features, extracted from the input image by the segmentation module. We
argue that this extension allows the second module to learn more context-aware
refinements. We use the Dice Similarity Coefficient (DSC) to formulate a loss
function Lunet for the segmentation output of the first U-Net module and a loss
function Lrefine for the segmentation output of the refinement module. For both
loss functions the respective module outputs Ounet and Orefine are evaluated by
means of the DSC and the corresponding ground truth (GT ). The resulting DSC
is subtracted from 1, leading to loss values in the range [0, 1], i.e

Lunet/refine := 1−
2 ·
∑

p GT (p) ·Ounet/refine(p) + ε∑
p GT (p) +

∑
p Ounet/refine(p) + ε

(1)

where ε > 0 is a small number and p depicts a point in the output/ground truth
image. The two loss functions are combined to an overall loss function

Ltotal := αLunet + (1− α)Lrefine (2)

where α ∈ [0, 1] is a weighing factor. For a result-dependent learning behavior,
we let α vary during the training process. In the beginning, it is more crucial
to adapt the weights contributing Lunet whereas optimizing the network weights
contributing to Lrefine becomes relevant, once feasible segmentation results can
be expected from the segmentation module. Instead of relying only on time-
dependency, we introduce a result-dependent weighing scheme, by setting α to
the current loss of the first module Lunet The better the segmentation of the first
module, the more important becomes minimizing Lrefine i.e. achieving a sufficient
refinement result. When taking the gradient of Ltotal during training, the U-Net
within α is not considered in our implementation.

2.2 Evaluation

We evaluated our architecture on the example of hip joint segmentation in T1-
weighted MRI and compared our results to segmentations, achieved by a sepa-
rately trained U-Net topology. We used eight hip joint MRI data sets, approved
by our institution’s ethics committee, comprising six different patients. For two
of these patients, MRI scans were obtained before and after a surgical proce-
dure. The MR images were recorded using a Siemens Magnetom Area 1,5 Tesla
MR tomograph and each volume consists of 40 to 44 axial slices. The respective
ground truths have been validated by clinical experts. We denote the data sets as
P1, . . . ,P6 and label the post operative data sets as P1PO and P2PO. We resized



52 Pham et al.

Table 1. DSC, precision and recall from a standard U-Net compared to the proposed
refinement architecture for the segmentation of the proximal femur.

P1 P1PO P2 P2PO P3 P4 P5 ∅
DSC [%]

U-Net 85.09 82.32 87.39 87.71 88.25 90.35 87.45 86.94±1.85

Ref-Net 84.78 78.55 78.74 91.01 90.70 91.90 87.53 86.17±4.70

Precision [%]

U-Net 79.35 80.23 92.10 91.70 85.69 86.58 89.76 86.49±4.05

Ref-Net 82.88 68.32 95.08 94.11 88.04 90.05 81.27 85.68±7.02

Recall [%]

U-Net 91.73 84.52 83.13 84.05 90.97 94.45 85.25 87.73±3.99

Ref-Net 86.77 92.38 67.19 88.11 93.52 93.83 94.85 88.09±6.35

the MRI slices to an input size of 128×128 The experiments were conducted in a
leave-one-out cross validation manner, in which one data set is kept for testing,
and the remaining data sets were used for training. In case of P1, P1PO, P2,
and P2PO only those data sets were used for training, which do not correspond
to the same patient. P6 was used as arbitrary validation data set to monitor the
training process. We increased the number of slices by augmenting the training
data by means of rotation and translation. Our architecture is implemented in
Tensorflow and we ran our experiments on a NVIDIA GTX 1080 ti GPU. For
training we used the Adam optimizer with a learning rate of 10−3 and a batch
size of 4 slices, and trained our model for 40 epochs. For evaluation we use the
Dice similarity coefficient (DSC), Precision, and Recall as quality metrics. These
refer to the 3D segmentations, achieved by stacking the 2D outputs of our net-
work. Since our proposed architecture outputs a multi label segmentation, we
evaluate the segmentation quality of the proximal femur and the pelvic bones
separately.

3 Results

Tab. 1 shows the resulting DSCs, Precision and Recall values for the segmenta-
tion of the proximal femur, comparing the standard U-Net approach with the
achieved results of our proposed refinement architecture. An average DSC of
86.94± 1.85% is achieved by the standard U-Net approach, whereas our refine-
ment architecture results in a slightly lower mean DSC of 86.17 ± 4.70% The
mean precision of the U-Net is 86.49± 4.05% and the mean recall 87.73± 3.99
while our approach results in a lower average precision of 85.68 ± 7.02% and a
slightly higher mean recall of 88.09 ± 6.35% The refinement architecture does
not seem to have great impact on the segmentation quality of the femur, as the
slightly worse results do not show any major differences to those, achieved by
U-Net. Tab. 2 on the other hand allows insight into the cross-validation results
for the segmentation of the pelvic bones, also comprising DSC, precision and
recall. The average DSC is 77.31 ± 5.09% for the standard U-Net with a mean
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Table 2. DSC, precision and recall from a standard U-Net compared to the proposed
refinement architecture for the segmentation of the pelvic bones.

P1 P1PO P2 P2PO P3 P4 P5 ∅
DSC [%]

U-Net 73.43 65.53 83.27 83.40 78.19 82.20 75.17 77.31±5.09

Ref-Net 76.86 75.70 83.46 83.87 81.28 87.84 78.19 81.03±3.52

Precision [%]

U-Net 73.87 63.49 88.61 87.30 72.21 81.81 76.49 77.68±7.05

Ref-Net 76.36 78.93 89.05 88.23 79.42 83.51 71.70 81.03±5.06

Recall [%]

U-Net 72.98 67.71 78.55 79.83 85.26 82.60 73.89 77.26±4.91

Ref-Net 77.37 72.73 78.52 79.92 83.22 92.63 85.98 81.48±4.97

precision of 77.68 ± 7.05% and a mean recall of 77.26 ± 4.91% Our proposed
architecture with its result-depending learning capability yields in a mean DSC
of 81.03 ± 3.52%, an average precision of 81.03 ± 5.06% and a mean recall of
81.48 ± 4.97 which shows improvement in all three metrics compared to the
U-Net results. It is noticeable, that in contrast to the proximal femur segmen-
tations, our approach results in better pelvic bone segmentations for each data
set regarding the DSC.

4 Discussion

For the segmentation of the proximal femur, our proposed architecture does not
yield any improvements compared to the U-Net, as the U-Net does not seem to
have much difficulty to extract the femur from the 2D axial slices. This may be
due to the fact, that the femoral components in the axial image slices are mostly
of near-spherical nature. Therefore, our refinement architecture fails to achieve
further refinement to improve the segmentation. However, regarding pelvic bone
segmentation, our proposed network seems to contribute to a better segmenta-
tion result, improving mean DSC, precision and recall by approximately 3−4%.

(a) (b) (c) (d)

Fig. 2. (a) Exemplary axial MRI slice, (b) Ground Truth, (c) U-Net segmentation of
femur (magenta) and pelvic bone (white), (d) Our segmentation of femur (magenta)
and pelvic bone (white).
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The pelvic bones show more variance in shape and texture appearance along the
longitudinal axis, rendering the segmentation of pelvic bones a more challenging
task. Fig. 2 shows exemplary segmentation results from the U-Net and our ar-
chitecture, respectively, for both femur und pelvic bone. As can be observed, the
femur segmentations do not show significant differences. For the pelvic bones,
however, the U-Net tends to oversegment, which does not occur to this extend in
our refinement architecture. The lower tendency to oversegmentation becomes
also apparent in the better precision values in most data sets.

4.1 Conclusion

In this work we present a 2D end-to-end deep learning architecture with a result-
dependent loss adaptation scheme. We introduced skip connections from the first
segmentation module to the refinement module in our double U-Net architecture
for more context-aware refinement and proposed a loss function for adaptive loss
weighing. In our evaluation we could not register significant differences to the
U-Net results regarding femur segmentation. However, the segmentation perfor-
mance for more complex pelvic bones shows promising improvements compared
to the U-Net with respect to DSC, precision and recall. In the future, we intend
to incorporate this result-dependent learning approach to multi task networks
for performance adaptive loss weighting of end-to-end architectures.

References

1. Chu C, Chen C, Liu L, et al. FACTS: fully automatic CT segmentation of a hip
joint. Ann Biomed Eng. 2015;43(5):1247–1259.

2. Xia Y, Fripp J, Chandra SS, et al. Automated bone segmentation from large field
of view 3D MR images of the hip joint. Phys Med Biol. 2013;58(20):7375.

3. Chandra SS, Xia Y, Engstrom C, et al. Focused shape models for hip joint segmen-
tation in 3D magnetic resonance images. Med Image Anal. 2014;18(3):567–578.

4. Klein A, Warszawski J, Hillengaß J, et al. Towards whole-body CT bone segmen-
tation. Proc BVM. 2018; p. 204–209.

5. Ronneberger O, Fischer P, Brox T; Springer. U-net: convolutional networks for
biomedical image segmentation. Proc MICCAI. 2015; p. 234–241.

6. Ravishankar H, Venkataramani R, Thiruvenkadam S, et al.; Springer. Learning
and incorporating shape models for semantic segmentation. Proc MICCAI. 2017;
p. 203–211.

7. Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation.
Proc ECCV. 2016; p. 483–499.



Abstract: Automatic Estimation of Cochlear
Duct Length and Volume Size

Ibraheem Al-Dhamari1, Sabine Bauer1, Dietrich Paulus1, Rania Hilal2,
Friedrich Lissek3, Roland Jacob3

1Koblenz and Landau University, Koblenz
2Germany Ain Shams University, Cairo, Egypt

3Military Hospital, Koblenz, Germany

idhamari@uni-koblenz.de

The exact cochlear length and size are required is an important factor of
selecting the suitable cochlear implant. We present a fast cochlear length and
volume size estimation method from clinical multi-modal medical images. The
method utilizes atlas-model-based segmentation to estimate a transformation
from a model to an input volume. The result is used to transform a well-defined
segmentation and a points-set of a scala tympani to the input image that seg-
ments and estimates the scala tympani length in a few seconds using standard
hardware e.g. a laptop. The method is based on automatic cochlea image regis-
tration (ACIR) [1]. The error is estimated using the known length of the cochlear
implants. A dataset of 71 3D images of 21 patients from various age and gen-
der groups is used. The estimated average scala tympani length was 29.54 mm,
with 0.27 mm standard deviation. The average scala tympani volume size was
41.56 mm3, with 0.19 mm3 standard deviation (Fig. 1). The method is available
as an open source 3D Slicer plug-in. The source code and the data can can be
downloaded from a public server as described in [2].

Fig. 1. Samples of segmentation results, left: CBCT, middle: MR and right: CT.
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Abstract. Interactive image segmentation bears the advantage of cor-
rectional updates to the current segmentation mask when compared to
fully automated systems. Especially in the field of inter-operative med-
ical image processing of a single patient, where a high accuracy is an
uncompromisable necessity, a human operator guiding a system towards
an optimal segmentation result is a time-efficient constellation benefit-
ing the patient. There are recent categories of neural networks which can
incorporate human-computer interaction (HCI) data as additional input
for segmentation. In this work, we simulate this HCI data during training
with state-of-the-art user models, also called robot users, which aim to
act similar to real users given interactive image segmentation tasks. We
analyze the influence of chosen robot users, which mimic different types
of users and scribble patterns, on the segmentation quality. We conclude
that networks trained with robot users with the most spread out seeding
patterns generalize well during inference with other robot users.

1 Introduction

The trans-catheter arterial chemoembolization (TACE) [1] is a minimally inva-
sive procedure to treat hepatocellular carcinoma (HCC). During the treatment,
volumetric cone-beam C-arm computed tomography (CBCT) [2] images of the
patient’s abdomen are generated. The physician maximizes the efficacy of the op-
eration selecting all cancerous cells while reducing the toxicity of the treatment
by omitting surrounding healthy tissue during lesion segmentation. Therefore, a
crucial step during the intervention is the accurate segmentation of liver lesions
in order to precisely isolate the conspicuous tissue’s cells from the oxygen supply
of the liver.

In recent years, fully-automatic segmentation systems based on convolutional
neural networks (CNN) like the U-net [3] outperformed more traditional learning
based approaches to medical image segmentation. In 2017, interactive CNNs were
published [4, 5] which, to some degree, include guidance from a human user for
their final segmentation result. The guidance is provided by post-processing the
current segmentation result. In that year, Amrehn et al. [6, 7] and Wang et al. [8]
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demonstrated the potential of rule-based seed drawing robot users and feasibility
of a combination of interaction input data with traditionally fully-automatic
CNN segmentation systems.

All of these systems model the user in a specific way via a set of fixed rules.
Kohli et al. [9] described a way to realistically simulate some groups of users.
However, most often, the similarity analysis of a simulated user to actual humans
interacting with the system is omitted when a new interactive method with
its custom interacting robot user are presented. In this work, we quantify the
similarity between proposed robot users and illustrate their differences.

2 Materials and methods

The network topology used is a fully convolutional neural network based on
U-net [3] with 3.12 · 107 trainable parameters as depicted in Fig. 1. The network
utilized 19 convolutional layers. The proposed network utilizes three input chan-
nels, with size of 2562 pixels each, to encode gray-valued image data as well as
user provided seed information. Convolution operations are performed utilizing
3× 3× n kernels, where n ∈

{
26, 27, 28, 29, 210

}
depending on the depth of the

network. A 2× 2 neighborhood is used for pooling. Three input channels encode
the gray-valued C-arm CT image data as well as user provided seed informa-
tion. The seeding channels consist of background respective foreground seeds
transformed by the Euclidean distance function. A distance transform as a pre-
processing step on the sparse seed images decreases the necessary size of the
network’s minimum receptive field, which is especially important for its initial
layers to capture the seed information as context to the gray-valued input image.
Utilizing a distance transform, the seed formation is spread over the whole input
channel and seed information is preserved even with small kernel sizes.

The robot user mimics the interaction of a real user. It is assumed, that
a human user sets additional seed points during segmentation based on the
structures seen on the gray-valued input image, the previously set foreground
and background seeds, the current segmentation mask image, as well as a notion
of the segmentation ground truth which the physician has from their domain
knowledge. These five inputs are also commonly used for a rule-based robot

Fig. 1. Schematic representation of a U-net convolutional neural network topology. The
input channels include foreground (FG) and background (BG) seed information. Skip-
connections are depicted as links in gray. Before each convolution, batch normalization
(BN) is applied. The outcome is a dense segmentation mask of size 2562 pixels (green).
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user, as depicted in Fig. 2. In the following analysis, five different robot users
are evaluated.

2.1 Random sampling over whole image (rand)

Seeds are placed at random on the seed input channels. Here, a fraction of rrand =
0.1 of seeds are drawn with the label inverted i. e. these seeds are misplaced.

2.2 Random sampling from GT (rand gt)

This robot user samples seed point positions at random and copies labels from
the ground truth. Note that rand gt equals rand with rrand = 0.0. Here, the
number of seeds per interaction is nrand gt ∈ {1, 5, 10}.

2.3 Robot user by Kohli et al. (kohli12)

Proposed in [9] and selected for user simulation in [5], this robot user utilizes
the current segmentation image and the ground truth in order to place one seed
point in the center of the largest, wrongly labeled image area.

2.4 Robot user by Xu et al. (xu16)

The robot user proposed in [4] samples fxu16 ∈ {1, 5, 10} foreground and
bxu16 ∈ {1, 5, 10} background seed points at random constrained by a minimum
distance to established seeds (such that 2 ≤ nxu16 ≤ 20). Possible background
seed locations are either sampled inside a 20 pixel wide margin around the GT
object’s contour line (called strategy 1 in the original paper), or in the entire
background region (strategy 2), depending on parameter sxu16 ∈ {1, 2}.

2.5 Robot user by Wang et al. (wang17)

In [8, 6] the robot user utilized places seed points at random on wrongly labeled
image areas. This behaviour is similar to kohli12 , but not limited to the center

Fig. 2. A robot user bases its seed placement decision process on up to five different
inputs (gray): the gray-valued input image, the previous foreground and background
seeds, the current segmentation mask, and the ground truth segmentation mask. The
outcome of a robot user system is a new set of proposed seed points (green).
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of the image areas. Whether a region is ignored during placement of additional
seed points is determined by an area size threshold twang17 ∈ {10, 20, 30, 40} in
pixels.

When training a new network with robot user interaction input, a classical
chicken or the egg causality paradox emerges. A fully trained network would
be needed in order to segment the input image. Thereafter, additional correct-
ing seed points may be selected by a robot user, which leads to an updated
segmentation result. This interaction data may be used for training the new
network. However, a fully trained network would need exactly these steps to
be trained first. Therefore, in this work, we initialize the new network with
user interaction training data acquired by interaction with a non-learning-based
method. Here, robot user interactions are recorded via iterative segmentation
utilizing GrowCut [10]. In preliminary experiments, we determined that segmen-
tation methods like GrabCut, which are more robust and therefore more inde-
pendent of user input patterns do not qualify for the proposed initialization of
a new network. The GrowCut method is chosen due to its well known tendency
to benefit from careful placement of large quantities of seed points. The figure
of merit for segmentation quality is a Dice score, also known as intersection over
union (IoU), generated after each GrowCut iteration step, as depicted in Fig. 3.

rand, rand gt, kohli12 [9, 5], xu16 [4, 6], wang17 [8]

Fig. 3. The mean Dice scores per robot user over all input images and per interaction
is depicted. Each robot user provides seeds during interactive segmentation. A segmen-
tation’s quality is measured as Dice score after each GrowCut [10] iteration step.
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3 Experiments

The data utilized in the experiments are 2-D slices of volumetric CBCT images
of liver lesions depicting HCC. The lesions in the volumetric images are fully
annotated by medical experts. Subsequently, the image data are cropped to a
volume of interest (VOI), with voxel resolutions from 0.463 mm3 to 0.683 mm3.
All annotated lesions are smaller than 1173 mm3 which allows for a (VOI) of
2563 voxels depicting the largest lesion outlines. For training and testing, 90
slice images are drawn from the 38 3-D VOI images of 38 individual patients.
90% of images are used for training, 10% for testing.

One network Mi is trained for every robot user and every parameter con-
figuration tested for a robot user as described in Sec. 2, where i ∈ [0, 27). The
quality of their segmentation outcome is analyzed via the Dice score for the cur-
rent segmentation mask with the ground truth. It is analyzed, which robot user
input patterns during training will generate networks able to generalize to other
input patterns during inference.

4 Results

For the evaluation, 27 CNN models were trained with seeding data from one
of the 27 robot user configurations each. The Dice scores for the test set are
depicted in Fig. 4. Each of the 27 models m(i) are trained only on robot user i’s
seeding training data. A mean Dice score is computed for each of the 27 trained
segmentation models m(.) after segmenting the 9 test images with seed input
data from one of the 27 robot users.
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Fig. 4. Each of the 27×27 cells on the left represents the segmentation quality in Dice
score given a trained segmentation model m(.) (row) and a robot user’s (column) seed
input data for the test set. Each model m(i) was trained beforehand only on robot user
i’s seeding training data. On the right, the rows are sorted by sum of Dice scores per
row descending.
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5 Discussion and outlook

It becomes apparent from Fig. 4 (right), that (1) CNNs trained with robot
users based on rules to place seeds almost at random (rand, rand gt, xu16)
yield similar segmentation results when other user input patterns are utilized
during inference. (2) Robot user input with more distinct seeding patterns like
wang17 generates trained networks which are better adjusted to their seeding
(Fig. 4 wang17, on the left), but not generalizing well to other input patterns.

An interpretation of this result is, that when improving on randomized seeds
for training, it is not feasible to train on generalized user input patterns for all
use cases, due to (1). Therefore, it is a necessity to train on personalized seeding
patterns formalized as individual robot users (2), where a high similarity to the
input patterns of the real user operating the system is imperative.

Disclaimer. The concept and software presented in this paper are based on
research and are not commercially available. Due to regulatory reasons its future
availability cannot be guaranteed.

Acknowledgement. Thanks to PD Dr.-Ing. habil. Stefan Steidl for helpful con-
versations and feedback during the time of writing.
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Abstract. Three-dimensional (3D) polarized light imaging (PLI) is able
to reveal nerve fibers in the human brain at microscopic resolution. While
most nerve fiber structures can be accurately visualized with 3D-PLI, the
currently used physical model (based on Jones Calculus) is not well suited
to distinguish steep fibers from specific fiber crossings. Hence, streamline
tractography algorithms tracing fiber pathways get easily misdirected in
such brain regions. For the presented study, we implemented and applied
two methods to bridge areas of fiber crossings: (i) extrapolation of fiber
points with cubic splines and (ii) following the most frequently occurring
orientations in a defined neighborhood based on orientation distribution
functions gained from 3D-PLI measurements (pliODFs). Applied to fiber
crossings within a human hemisphere, reconstructed from 3D-PLI mea-
surements at 64 microns in-pane resolution, both methods were demon-
strated to sustain their initial tract direction throughout the crossing
region. In comparison, the ODF-method offered a more reliable bridging
of the crossings with less gaps.

1 Introduction

The human brain contains about 100 billion nerve cells (neurons), whose long
projections intricately connect brain regions with each other [1]. Three-dimensio-
nal (3D) polarized light imaging (PLI) utilizes the birefringence of of myelinated
axons (here, referred to as fibers) to determine their local orientations in serial
unstained histological brain sections. To track fiber tracts within a 3D recon-
structed volume of orientations, deterministic tractography algorithms based on
Runge-Kutta procedures can be used [2]. However, 3D-PLI cannot easily provide
unambiguous fiber orientations in all types of fiber crossings, in particular, in
cases of equally distributed perpendicular fibers within a voxel. As a result, sim-
ple streamline tractography methods are not able to correctly bridge such areas.
Two methods have been implemented to continue tractography within crossing
regions. The first method interprets a fiber tract as a space curve and extrap-
olates the further course using parametric cubic splines. The second method
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analyzes the neighborhood surrounding the fiber crossing in order to determine
most frequently occurring orientations using orientation distribution functions
(ODFs). Both methods have been applied to selected fiber crossings within a
subsample of a human hemisphere, which was reconstructed from 3D-PLI mea-
surements with a resolution of 64× 64× 60μm.

2 Materials and methods

3D-PLI determines local fiber orientations based on signal changes resulting from
the birefringence of myelin sheaths which surround most nerve fibers. The 3D-
PLI workflow as developed at the Institute of Neuroscience and Medicine (INM-
1) starts with the preparation of the brain. Postmortem brains are formalin-
fixated, deep-frozen and cryo-sectioned at 60 μm thickness. During sectioning
en-face (blockface) images are taken from above the cryo-block. 3D reconstructed
blockface images provide an undistorted reference volume in order to reconstruct
PLI images in 3D [3]. Each section is then measured in a customized polarimeter
by passing polarized light through the sample [4]. The birefringence of the myelin
sheaths changes the light intensity measured by a camera above the section [5].
An analysis of the 3D-PLI signal allows to determine local fiber orientations
per voxel [3]. The voxel sizes used for the presented study are 64 × 64 × 60μm.
Fiber orientation maps, which represent color coded fiber orientations for one
section each, can be seen in Fig. 1(a) and (d). By means of the 3D reconstructed
blockface volume, the 3D-reconstruction process results in a 3D vector field of
fiber orientations.

Various methods to interpret orientations fields in terms of connectivity are
already well established in Diffusion Magnetic Resonance Imaging and are re-
ferred to as tractography apporaches [6]. Depending on the acquired data types
and the study aims, tractography algorithms can be broadly classified into
streamline, probabilistic and global methods [7, 8]. In our study, a streamline-
based approach was selected.

To realize streamline tractography for 3D-PLI data, Runge-Kutta methods
were used. Similar to tracking the main directions of diffusion tensors for DTI
data, the tracking directions 3D-PLI data were determined by trilinear interpo-
lation in the 3D volume of fiber orientations. Runge-Kutta methods of first (Eu-
ler method), second and fourth order (classic Runge-Kutta) were implemented.
While these streamline techniques provided plausible results in areas with ho-
mogeneous fiber structures, they were not able to correctly represent fibers in
crossing regions due to the interpolation of ambiguous fiber orientations.

Therefore, additional crossing algorithms have been developed which tem-
porarily interrupt the standard tractography and continue the fiber tracts in a
different way. The first algorithm interprets the previously followed fiber path
as a space curve, which is artificially continued until leaving the crossing region.
For this purpose, parametric cubic splines are applied, which interpolate the last
fiber points passed through by the current fiber tract. The continuation of the
generated function is done by extrapolating the last spline function, whereby the
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distance of the extrapolated fiber point to the last fiber point corresponds to the
average distance of the support points used for the splines.

This raises the question of how crossing areas can be identified. Two meth-
ods have been tested: (i) Consider angles between successively traced directions.
When a previously defined threshold value is exceeded, a fiber crossing is as-
sumed. (ii) Crossing areas are labeled manually based on the fiber orientation
maps. The dashed rectangles in Fig. 1(b) and (c) represent the selected areas for
one section, respectively.

The second implemented crossing algorithm calculates most frequently oc-
curring fiber orientations by ODFs. To determine most frequently occurring ori-
entations for a given voxel, the surrounding neighborhood is analyzed. Therefore,
a supervoxel is defined, which can be described as a cube with edge length n that
contains a set of n× n× n voxels. If the crossing is labeled, only voxels outside
of the labeled area are used for the calculation. The orientation histogram is
approximated by spherical harmonics, representing the pliODF [9]. The maxima
of the pliODF are interpreted as the most frequently occurring orientations. For
their estimation, a discrete sample of direction vectors in the unit circle is tested.
In order to preferably follow different nerve fibers and not assign multiple fiber
tracts to the same fiber, the minimum angle between most frequently occurring
directions is defined. Like the first algorithm, it can work with or without a
labeling of the crossing region. An adequate labeling prevents ambiguous fiber
orientations from being taken into account to calculate ODFs.

3 Results

The tractography algorithms have been applied to different fiber crossings in
a human hemisphere. The entire dataset includes 228 sections, each containing
1350 × 1950 voxels. To apply the algorithms, sub-volumes of 55 × 57 × 31 and
66× 66× 30 voxels were selected. For all implemented Runge-Kutta methods a
standard streamline approach just following local fiber orientations was not able
to correctly reconstruct the transitions into and out of the crossing regions. As
can be seen in Fig. 1(e) and (j), the fiber tracts did not bridge the investigated
regions.

For extrapolation with cubic splines, in case of crossing detection via angle
determination, ambigous signals from within the crossing region influenced the
extrapolation curve. This can be noticed by the gaps in the crossing areas of
the tractography results (Fig. 1(f) and (k)). With an adequate labeling, the
extrapolation with splines led to smooth transitions into and out of the crossing
regions and a lot of fiber tracts were able to cross them. The applied masks
for one section are illustrated in Fig. 1(b) and (c) by the dashed rectangles.
Using them for crossing detection, the number and size of gaps were smaller.
This difference was noticeable especially by the tractography results depicted in
Fig. 1(l).

For tracing the most frequently occurring orientations with ODFs, the fiber
tracts were able to bridge crossing regions, independently of whether the crossing
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Fig. 1. The different tractography methods are demonstrated at two different human
hemispheric sections (a,d) at two selected crossing regions (b,c). The results of the
standard streamline tractography show that the tracking algorithm stops shortly after
entering the crossing area (e,j). Extrapolating fiber points with cubic splines has been
done with crossing detection via angle determination between successive directions
(f,k), which results in abrupt transitions around the crossing area. The method has
also been applied with a manual labeling of the crossing region, illustrated by the
dashed rectangles (b,c), resulting in smoother transitions (g,l). Following the most
probable directions calculated by ODFs has been done globally, taking every voxel of the
examined volumes into account, providing a gap-free tractography result throughout
the volumes (h,m). Adequate labelings improve this results because highly inclined
fiber orientations are not taken into account (i,n), but sharp borders can arise (n).
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areas had been labeled or not. Furthermore, in comparison with the results
regarding the extrapolation with splines, there were no more gaps visible in
the crossing region because every fiber orientation that was one of the most
frequently occurring directions, according to the ODF, was traced. Fig. 1(h) and
(m) illustrate the corresponding tractography results.

The orientations inside of manually labeled areas were not taken into account
for the calculation of pliODFs. Thus, adequate labelings led to the fact that the
fiber tracts sustained their initial direction throughout the region. They were
able to bridge the labeled crossings, given the supervoxels were large enough. The
corresponding results can be seen in Fig. 1(i) and (n). However, in some cases
there were sharp borders within the tractography results. They arised because
the main directions followed on the two sides of this borders were very different.
This effect is also illustrated in Fig. 1(n), where the border is visible at the top
of the volume, marked by the white arrow. In this case, on the left side of the
border an approximately vertical main orientation is most strongly represented,
while on the right side only a nearly orthogonal orientation is considered most
frequently occurring.

4 Discussion

A validation of the tractography results inside crossing regions based on 3D-
PLI data requires the ground truth in form of the local nerve fiber architecture,
which is not available. Therefore, the results were compared visually. The two
implemented crossing tractography methods enabled fiber tracts to cross the
examined fiber crossings.

For the extrapolation with splines, an adequate labeling of the crossing helps
to smooth out transitions into and out of the crossing region. Without such a la-
beling, ambiguous 3D-PLI orientations can lead to undesired effects to the space
curve. The major problem is that the orientations in specific crossing regions
are often misinterpreted as highly inclined fiber structures. That means that the
z-component is unusually large in comparison to the x- and y-components. Thus,
the space curve is deflected vertically out of the volume.

Following the most likely orientations calculated by ODFs always provided
smooth transitions, but labelings of the crossing regions prevented highly inclined
fiber orientations from getting taken into account for the calculation. Therefore,
Fig. 1(i) and (n) show the tractography results with the smallest number of
highly inclined fiber tracts. However, labeling crossing areas for ODFs can result
in sharp borders, as can be seen in Fig. 1(n). On one side of the line, a lot of
fiber tracts were traced in one main orientation and the other orientations were
considered to be irrelevant, while on the other side fiber tracts with a different
orientation were more dominant and the previous orientation was not relevant
enough anymore to be traced. The best overall results from a visual point of
view were achieved by following most frequently occurring directions calculated
by ODFs, where a labeling of the crossing regions had been done beforehand.
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However, a detailed validation with help of neuroanatomical experts and sim-
ulations of the fiber architecture will be performed in near future. Furthermore,
for an automatic detection of fiber crossings confidence levels will be used, which
can be evaluated duringthe 3D-PLI signal analysis [10]. Classification of crossing-
and non-crossing voxels is then done by defining a threshold regarding the local
confidence level. Alternatively, instead of dividing voxels into this two classes,
they could all get taken into account when calculating ODFs, but weighted by
their individual confidence level. Evaluating the effectiveness of using confidence
levels requires further investigations.
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Abstract. Tissue loss in the hippocampi has been heavily correlated
with the progression of Alzheimer’s Disease (AD). The shape and struc-
ture of the hippocampus are important factors in terms of early AD
diagnosis and prognosis by clinicians. However, manual segmentation of
such subcortical structures in MR studies is a challenging and subjective
task. In this paper, we investigate variants of the well known 3D U-Net,
a type of convolution neural network (CNN) for semantic segmentation
tasks. We propose an alternative form of the 3D U-Net, which uses dilated
convolutions and deep supervision to incorporate multi-scale information
into the model. The proposed method is evaluated on the task of hip-
pocampus head and body segmentation in an MRI dataset, provided as
part of the MICCAI 2018 segmentation decathlon challenge. The exper-
imental results show that our approach outperforms other conventional
methods in terms of different segmentation accuracy metrics.

1 Introduction

Neurodegenerative brain disorders are a major cause of disability, and early
mortality, in many developed and developing countries worldwide. Alzheimer’s
disease is a type of dementia that affects 20 % of the population over 80 years of
age, worldwide [1]. Currently, AD is typically only diagnosed in patients present-
ing with symptoms of cognitive impairment, and behavioural changes [2]. With
high-resolution MRI structural changes in the brain which accompany the onset
of AD, can be recognized in vivo [3]. Early disease stages classified as mild cog-
nitive impairment that occur prior to AD, can also be identified in some cases,
and the associated structural changes within the brain can subsequently be used
as biomarkers to predict the risk of conversion to AD. Additionally, the rate of
tissue atrophy of the hippocampus can be used as a temporal marker to mon-
itor the progression of AD. The current clinical protocol to detect volumetric
changes in the hippocampus is manual segmentation, which is time-consuming,
observer-dependent and challenging [2]. Consequently, an automated approach
to hippocampus segmentation is imperative to improve the efficiency and ac-
curacy of the diagnostic workflow. Several automatic and semi-automatic seg-
mentation approaches have been proposed, which utilize T1-weighted structural
MRIs, to segment the hippocampus. A multi-atlas segmentation approach was
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proposed in [4], to jointly localize and segment the hippocampi using the average
of all registered atlases. In [5], robust segmentation approach was proposed, us-
ing subject-specific 3D optimal local maps, with a hybrid active contour model
to automatically segment hippocampus.

In recent years, convolution neural networks (CNNs) have achieved state-of-
the-art performance in a variety of medical image segmentation tasks. Specifi-
cally, the U-Net [6], an encoder-decoder network, has received tremendous atten-
tion within the medical imaging community. Expanding the U-Net to process 3D
volumes rather than 2D slices was proposed in [7] using 3D convolutions (3D U-
Net). This was modified in [8] by increasing the channels in the center part of the
network (V-Net). In this paper, we propose a CNN for automatic segmentation
of the hippocampus. Our network is based on the 3D U-Net, with dilated convo-
lutions in the lowest layer between the encoder and decoder paths [9], residual
connections between the convolution blocks in the encoder path, and residual
connections between the convolution blocks and the final layer of the decoder
path. A schematic of the network is presented in Fig. 2. The main contribution
of this paper is the combination of dilated convolutions in the lowest part of
the network with the ensemble of the decoder outputs for the final prediction,
providing a mechanism for “deep supervision”. We evaluated the performance
of the network using the hippocampus dataset provided as part of the Medical
Segmentation Decathlon challenge1 hosted at MICCAI 2018, and compared it
to different 3D U-net based architectures.

1 http://medicaldecathlon.com/

Fig. 1. Network Architecture with residual connections in the encoder path, dilated
convolutions at the lowest layer and residual connections between the decoder stages
and the final layer.
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2 Methodology

Segmentation tasks often require integration of local and global context, in ad-
dition to learning multi-scale features. However, training segmentation networks
that incorporate these properties and act directly on volumetric data, is compu-
tationally intensive. We address this by including dilated convolutions within the
network to imbue greater global context during feature extraction and combine
the output of the decoder layers for the final mask prediction, thereby encour-
aging the learning of multi-scale features, while providing a means for efficient
backpropagation of gradients through the network. Beyond that, this modifica-
tion yields the benefit of residual connections to the decoding part while retaining
the same number of model parameters.

The proposed network consists of four encoder and decoder blocks, each
containing two 3D convolution layers with kernel size of 3x3x3, batch normal-
ization and leaky rectified linear units (leaky RELU) as activation functions.
The encoder blocks additionally use residual connections and 3D max-pooling
operations, as illustrated in Fig. 2. The decoder blocks use 3D up-sampling with
a factor of two. The four dilated convolution layers employed in the bottleneck
of the network are configured such that the first layer uses a dilation rate of one,
and each subsequent layer increases the dilation rate by a multiple of two, as
proposed in [9]. The output of each decoder block is up-sampled to match the
dimensions of the final mask predicted by the network, following which, they are
all concatenated.

2.1 Data acquisition

Images from 263 subjects were provided as part of the Medical Decathlon chal-
lenge 2018, for hippocampus head and body segmentation. The subjects were
scanned with a T1-weighted MPRAGE sequence (TI / TR / TE = 860 / 8.0 /
3.7ms) and manually annotated with the left and right, anterior and posterior,
hippocampus by Vanderbilt University Medical Center. We split the data set
such that 90% were used for training and validating the network, via nine-fold
cross-validation, and 10% of the data-set was used for testing. As the data pro-
vided was already truncated to the region of interest around the hippocampus,
very little data pre-processing was necessary. Z-score normalization based on
mean and standard deviation of the intensities was applied to each patient scan.

2.2 Training procedures

Our model is trained from scratch and evaluated using the dice similarity coef-
ficient (DSC), Jaccard index (JI) and normalized surface distance (NSD). DSC
and JI measure the overlap of the ground-truth and model-predicted segmenta-
tions, while NSD is computed between the reconstructed surfaces. These were
the official metrics used to assess segmentation accuracy in the decathlon chal-
lenge as well. The dice coefficient loss is widely used for training segmentation
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Table 1. Segmentation accuracy evaluated in terms of DSC, JI and NSD for the V-Net,
3D U-Net, dilated 3D U-Net and the proposed method.

Training Validation Testing

Methods DSC DSC DSC JI NSD

V-Net 0.968 0.872 0.848 0.736 0.954

3D U-Net 0.965 0.858 0.865 0.740 0.960

3D U-Net + Dilation 0.977 0.878 0.879 0.785 0.960

Proposed method 0.984 0.882 0.882 0.790 0.962

networks [8]. We used a combination of binary cross entropy and DSC loss func-
tions to train all networks investigated in this study, as proposed in [9]. This
combined loss (Eq.1) is less sensitive to class imbalance and leverages the advan-
tages of both loss functions. Our experiments demonstrated better segmentation
accuracy when using the combined loss in comparison to employing either indi-
vidually

ζ(y, ŷ) = ζdc(y, ŷ) + ζbce(y, ŷ) (1)

In Eq.1 ŷ denotes the output of the model and the ground truth labels are
denoted by y. We use the two-class version of the DSC loss ζdc(y, ŷ) proposed in
[8, 9], the Adam optimizer with a learning rate of 0.0005, and trained the network
for 500 epochs. Additionally, the learning-rate was reduced gradually (using a
factor of 0.1), if the validation loss did not improve after 10 epochs. To prevent
overfitting and improve the robustness of our approach to varied hippocampal
shapes, we augmented the dataset with random rotations and flipping. Based on
our experiments, we found that augmenting with large rotation angles produced
worse segmentation masks, consequently, we reduced the rotation angles to be
in the range of ±10 degrees.

3 Results and discussion

In order to assess the performance of different networks, we used the Dice Co-
efficient Score (DSC), Jaccard index and Normalised Surface Distance (NSD)
with 4mm tolerance. The segmentation performance of our model, V-Net, 3D
U-Net and 3D U-Net with dilated convolutions are compared in Table 1. The
V-Net achieved mean DSC scores of 96.8%, 87.2% and 84.8%, for the training,
validation and test sets, respectively. The performance of the 3D U-Net is close
to the V-Net performance with mean DSC scores of 96.5%, 85.5% and 86.5%
respectively. 3D U-Net with dilated convolutions was able to improve the scores
to 97.7%, 87.8% and 87.9%, respectively. However, the proposed approach out-
performed the others with scores of 98.4%, 88.2% and 88.2% for the training,
validation, and test sets, respectively. Additionally, our approach consistently
outperformed the other state-of-the-art networks, in terms of the JI and NSD
metrics as well, as highlighted in Table 1.
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In Fig. 2 the segmentation quality of the proposed method is visually com-
pared with V-Net, 3D U-Net, and 3D U-Net with dilated convolutions. Here, red
represents the ground-truth, yellow, green and cyan represent the predictions of
V-Net, dilated 3D U-Net and the proposed method, respectively. In the second
column, the advantage of dilated convolutions is highlighted, in comparison to
the V-Net, which failed to segment the small disjoint parts of the mask in the
top right. However, the dilated 3D U-Net and the proposed method were able
to capture those areas due to the increased global context imbued in the learned
features. Fig. 3 depicts 3D surface meshes of two different patients. Columns
two and three illustrate the outputs of V-Net and our method, respectively. The
lower boundary of the red part (body) of the hippocampus in the ground-truth
surfaces, contains ridge-like structures which are typical of hippocampal struc-
ture. While the V-Net predicted surfaces are relatively smooth in this region, the
proposed approach is more successful in capturing these subtle shape variations.

Fig. 2. Each image represents a different MRI slice from a different patient. The cor-
responding segmentations are overlaid: Red contour represents ground-truth, yellow
V-Net, green 3D U-Net with dilated convolutions and cyan our proposed method.
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Fig. 3. Rows represent 3D surface visualizations for two different patients. Columns
from left to right are the ground truth surfaces, and those predicted by the V-Net and
our approach, respectively. Hippocampus head is visualized in green and body in red.
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4 Conclusion

We proposed a 3D U-Net based segmentation framework with dilated convolu-
tions in the deepest part of the network and deep supervision in the decoder
part of the network. The dilated convolutions capture global context due to
their larger receptive fields. Deep supervision helped further improve segmenta-
tion accuracy, by incorporating multi-scale information more efficiently during
the training process. We showed that our network consistently outperforms the
V-Net, 3D U-Net, and 3D U-Net with dilated convolutions, in terms of all metrics
evaluated. Future work will aim to use the proposed framework for segmenta-
tion in whole brain MRI volumes, and on different segmentation tasks in medical
imaging.
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Abstract. Intervention time plays a very important role for stroke out-
come and affects different therapy paths. Automatic detection of an is-
chemic condition during emergency imaging could draw the attention of
a radiologist directly to the thrombotic clot. Considering an appropriate
early treatment, the immediate automatic detection of a clot could lead
to a better patient outcome by reducing time-to-treatment. We present a
two-stage neural network to automatically segment and classify clots in
the MCA+ICA region for a fast pre-selection of positive cases to support
patient triage and treatment planning. Our automatic method achieves
an area under the receiver operating curve (AUROC) of 0.99 for the
correct positive/negative classification on unseen test data.

1 Introduction

Stroke is a cerebrovascular disease, which is among the leading causes of deaths
in the industrialized world [1]. Ischemic stroke is a condition where a blood clot
blocks the blood flow that provides brain cells with oxygen. The underperfusion
can lead to a necrosis of irreversibly damaged brain tissue if not treated within
hours of onset. In fact, time is one of the most important factors on the outcome
of a stroke [2], making the immediate detection of the clot a vital precondition
to successful tissue and patient salvation.

Thrombi can be detected through hyperdensities in fast native CT imaging,
but there might be several other causes for bright signals in the standard CT
such as normal hyper-dense structures of the brain (or head) and calcification
outside the brain arteries. While other parameters such as perfusion have been
investigated widely to predict clinical and tissue outcomes [3], these methods
assume that a subject has been already selected to be in a potentially critical
clinical situation.

The patients arriving at the emergency room can have various indications
and multiple diseases. If an ischemic stroke condition was automatically detected
after imaging, the attention of the physician could directly be drawn to the time-
critical treatment of such by marking positive cases with“red flags”. This enables
the doctor to choose the best therapy option through an early examination, e.g.
to decide for thrombolysis against mechanical thrombectomy.
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1.1 Related work

The computer-aided detection (CAD) of ischemic stroke depends on high-quality
brain CT acquisition, enhancing and detecting specific stroke signs, as well as the
appropriate analysis of these for automated detection of e.g. the common middle
cerebral artery (MCA) or internal carotid artery (ICA) occlusion. Traditional
methods have steadily improved the CAD pipeline, such as Inoue et al. [4] who
increased the contrast of standard CT using a specific reconstruction method
(IMR) with less noise to better diagnose acute MCA strokes.

The diagnosis itself can be based on several stroke signs. In this work we
focus on the hyperattenuating MCA sign of the thromboembolus in standard CT.
One existing method automatically detects the MCA dot sign using a multi-step
approach [5] and without deep learning. Hand-crafted features are computed on
candidate regions as a basis to eliminate false-positives and also anatomically
implausible outliers before a Support-Vector Machine eventually classifies the
remaining candidates.

Lisowska et al. [6] recently proposed a segmentation of vessel and ischemia
as a stroke sign detection by incorporating contextual information in the form of
atlas coordinates and bilateral comparison that enables the network to properly
detect the dense vessel (in which the thrombus can only occur) and ischemia as
a sign of stroke. However, there exists no combined approach for detection of
clots and their segmentation.

Ischemic clots lead to increased attenuation and intensity values in CT along
with other calcifications or hyper-dense brain structures. They can often be
observed as small dot- or tube-like structures within the MCA. This makes the
detection of such clots – to some degree – comparable with the task of lung
nodule detection in 3D volumes: The (variance in the) general appearance of
lung nodules is certainly different to the appearance of ischemic clots in the
MCA, but the problem remains to distinguish the small targets from similarly
appearing structures in the proximity.

Deep learning can help to recognize those subtle differences for e.g. the de-
tection of lung nodules, as proposed by Setio et al. [7] using a false-positive
reduction approach for their CAD system that employs a 2.5D neural network.
The detection by Sakamoto et al. [8] inputs only three consecutive 2D slices for
another false-positive reduction approach using a multi-stage neural network.
These methods perform detection without segmentation.

In this work, our contributions are the presentation of a novel approach em-
ploying a cascaded convolutional neural network (CNN) for the fully automated
detection of ischemic stroke clots (limited to the MCA+ICA region for which
we have ground truth data). The algorithm directly outputs the binary result
(stroke clot: yes/no) including the hemispheric side of the stroke and the clot
(candidates) segmentation in the case of a positive test result.
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2 Methods

We propose a cascaded neural network that consists of two sub-networks (Fig. 1),
each trained on a specific sub-task. The first network learns to segment potential
clots in the MCA+ICA region of interest (ROI), while the second network learns
to correctly classify those candidates as clot or not. Designing a cascaded network
follows the false-positive reduction principle (as described in several of the related
works above) in order to optimally use all available training data, in particular for
small clots. The training of the two networks is conducted sequentially, first the
segmentation network, and afterwards the classification network, each following
a different objective.

2.1 Clot candidates segmentation

The segmentation network aims to detect any potential clot in the MCA or ICA,
so that a true thrombus is among those candidates. The network learns a high
variety of thrombotic clots by training on the ROI (MCA+ICA area) of positive
training samples only. This should result in the true clot segmentation among
other false-positive candidates. A U-Net [9] architecture was employed for this
task with three resolution levels (two 2 × 2 max-pooling and max-unpooling
layers) and 13 convolution layers (each with 3 × 3 kernels), where the channel
numbers range from 32 to 256.

In the first layer, a dilation size of 3 is used to cover a larger receptive field,
which we empirically found to be useful. Further, the next resolutions levels
contain three instead of two consecutive convolutions as in the original paper.
The network expects the entire ROI image as input. A cross-entropy loss is
computed on the output layer and back-propagated to optimize the network
weights with AdaDelta.

2.2 Clot classification

The second network is trained with both positive and negative cases to learn the
decision boundary between clot and no clot and aims to reduce the potential clot
candidates to a final binary decision for the target being present among these
candidates or not. Again, we use a CNN architecture, but this time use the
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Fig. 1. The proposed cascaded network design for clot detection and segmentation.
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element-wise product of the native CT and the estimated clot candidates from
the first network as input. This provides the second network with location, shape,
density and volume of potential clots to decide if a clot is present. Instead of
using a U-Net architecture, three 3×3 convolutional layers are now interspersed
with two max-pooling layers, followed by an adaptive pooling layer that reduces
resolution of the intermediate feature map from 27× 24× 24 to 2× 2× 2 before
two linear layers predict the probabilities of the three output classes.

The overall design of our algorithm is split into two sub-tasks to ease the
learning of the clot classification by first learning to segment potential candi-
dates and to classify those in a separate step: The algorithm is guided to learn
the relationship between the clot label and the relevant hyper-dense regions in the
MCA+ICA area. Similarly, we simplified the classification task itself and made
the clot label more informative by learning a ternary classification: Distinguish-
ing between no clot , left clot , and right clot potentially enables the algorithm to
relate a positive label only to candidates in a single hemisphere during training.
The classification result can later be used at test time to remove false-positive
segmentation candidates from the opposite hemisphere.

3 Experiments

We run an evaluation on a single split with 60% of the data used for training, 30%
for validation during training, and 10% for testing (running a full 10-fold is very
time demanding and was left for future work). The prototype was implemented
in PyTorch 0.3 (Python) and trained on a GeForce GTX 1080. Inference of the
cascaded network for a full image takes about 25 seconds on CPU (Intel Xeon).

3.1 Data

The images must be co-registered in a common space, so that the algorithm
works within a valid ROI. There is consequently no need to skull-strip the image,
because the ROI for the MCA is directly extracted from the CT image. The ROI
has been computed on the training data as the minimum bounding box of all
MCA and ICA clot segmentations with an additional margin of 5 voxels in each
direction and is of size 118×98×98 voxels. FSL-FLIRT with a mutual information
cost function was used for the registration of the images onto a mean atlas image
provided with the dataset.

Our retrospectively collected non-contrast cerebral CT dataset consists of
108 positive cases with clot segmentation masks in the ICA or MCA and 108
negative cases. During training each case is laterally flipped to avoid preference
for either hemisphere side, leading to a total of 432 samples (the segmentation
network is trained only on the 216 positive cases).

3.2 Results

Our fully-automatic pipeline achieves a sensitivity of 0.86 at a specificity of 1
(Fig. 2, ROC). If a threshold of 0.13 or lower (instead of 0.5) was chosen to
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be exceeded by the combined clot probabilities (left + right), the method could
detect all positive cases at a very reasonable false-positive rate of less than 5%.
False-positives are more tolerable, because the algorithm is supposed to serve as
a pre-selection of urgent cases that have to be diagnosed in-depth by a physician.
Moreover, the hemisphere location is correctly detected for all true-positives.

The first network achieves a Dice overlap of 0.5 with the expert rater segmen-
tations (Fig. 2, DSC) when evaluated on the unseen test scans of our dataset.
Given that the network was trained on positive cases only and that the targets
are very small – which makes the partial volume effect a prominent factor for am-
biguities – this result is very promising (Fig. 3). The accuracy can be improved
by using the classification result of the second network to remove candidates
from the “wrong” hemisphere, which leads to a drastic reduction in outliers. The
median number of candidates is reduced from 6.5 to 3.5, while the Hausdorff
distance median decreases even more from 49mm down to 14mm (Fig. 2, HD).
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Fig. 2. Results on balanced test data (22 positive, 22 negative) from left to right: Final
clot/non-clot classification ROC curve with clot thresholds; Segmentation Dice (DSC),
Hausdorff distance in mm (HD), and number of candidates before and after removing
them from the opposite hemisphere. (Blue: Median, Green: Arithmetic mean).

Fig. 3. Example results on test data (top: CT image; bottom: segmentation overlays).
Left: True-positive with segmentation candidate (green) overlapping the true clot. Cen-
ter: False-negative, where clot (red) is segmented among the candidates. Right: True-
negative, where no clot was classified being present among the candidates (red).
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4 Discussion

In this work we could show that a deep-learning based highly sensitive segmen-
tation of clot candidates is suitable to classify patients as urgent-to-be-diagnosed
with respect to the occurence of hyper-dense acute ischemic stroke signs. If in-
tegrated into a radiology information system, the algorithm could automatically
pre-select highly probable acute stroke patients and mark them with a“red flag”.
Although the segmentation usually consists of multiple object instances (candi-
dates), these enable the physician to be pointed directly to the clot suspects in
a CT scan (around four candidates per patient) to verify the acute stroke.

In contrast to state-of-the-art lung nodule detection algorithms, which di-
rectly classify nodule ROI candidates as in [8], our approach performs localized
detection that implicitly outputs a corresponding segmentation mask for the en-
tire MCA+ICA area. Reducing the memory and computational demand of the
first network should be investigated more closely. It could be worthwhile to eval-
uate simpler and more efficient approaches (without expensive CNN networks)
for the candidate proposal in the first stage, so that more resources can be re-
served for the second network to be more sensitive. If also the training data was
augmented with affine transformations, the preprocessing the images with linear
registration could possibly omitted.
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Abstract. Convolutional neural networks are currently the best work-
ing solution for automatic liver segmentation. Generally, each convolu-
tional layer processes all feature maps from the previous layer. We show
that the introduction of sparsely connected convolutional layers into the
U-Net architecture can benefit the quality of liver segmentation and re-
sults in the increase of the dice coefficient by 0.32% and a reduction of the
mean surface distance by 3.84 mm on the LiTS data. Evaluation on the
IRCAD data set with the application of post-processing showed a 0.70%
higher Dice coefficient and a 0.26 mm lower mean surface distance.

1 Introduction

Exact delineation of the liver contour is an important step in computer-assisted
surgery and radiotherapy planning. It can also be used as a preprocessing step in
the tumor localization and is needed for volume measurements. Manual annota-
tion of Ct scans is time consuming and unfeasible with the increasing number of
scans produced in medical facilities. Therefore, the fast and reliable automatic
annotation of the organ contour becomes a more important topic.

In recent years, liver and liver lesion segmentation has been a subject of in-
tense research in the medical image processing community due to the availability
of the Liver Tumor Segmentation (LiTS) challenge [1] data set. All top scoring
automatic segmentation methods in the LiTS challenge used CNNs. The first
round of the LiTS challenge was won by Han [2]. This solution consists of two
cascading U-Net-like networks [3], of which the first extracted a coarse liver seg-
mentation. The second network refined the liver boundary and also delineated
the tumors. Han extended the U-Net with short range residuual connections.

Convolutions in CNNs are usually fully connected channel-wise, meaning
that each convolution kernel will always process all feature maps resulting from
the previous convolution. However, Changpinyo et al. showed that sparsely con-
nected convolutions can increase the network performance in classification tasks,
while simultaneously reducing the number of weights [4]. They theorized that
the sparse connection pattern leads to more diverse features. Another way to
interpret the change might be the introduction of parallel information pathways
which can also be found in Google’s inception modules [5].
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We suggest sparsely connected convolutions as a possible building block in
U-Net architectures. To show how the can benefit the segmentation, we com-
pare three networks: a dense version and two sparse versions with the proposed
modifications.

2 Materials and methods

2.1 Network

We base our networks on the architecture presented by Han. The architecture
of our networks is shown in 1. Each stage consists of n convolutional layers,
which are composed of a 3 × 3-convolution, batch normalization and rectified
linear units. The result of the first convolutional layer is added to the result
of the last forming a residual connection. At the end of each encoding stage
the feature maps are scaled down using 2× 2 max-pooling. The first two stages
have n = 2, the third has n = 3. Similarly, the bottom stage consists of three
convolutional layers. This stage is then followed by the decoding stages. In each
decoding stage the first operation is an upscaling via transposed convolution.
The resulting feature maps are then concatenated with the feature maps from
the according encoding stage, forming a skip connection. The first decoding stage
has n = 3, the following n = 2. The first stage has 32 channels, this number is
doubled with every encoding stage and the bottom stage. Each decoding stage
halves the number of channels. A final 1× 1 convolutional layer is appended to
the final stage to produce the logits.

In the dense version of the network all convolutions are connected to all
feature maps from the previous layer. For the two sparse versions of the network,
we restrict the connection pattern between convolutional layers. In the dense
network the number of weights |w| in a convolutional layer is defined as the
product of the number of input channels cin, the spatial kernel dimensions x and
y, as well as the number of output channels cout

|w| = cin · x · y · cout (1)

We introduce a cardinality parameter C, which controls the number of sub-
operations into which the convolution is split. The input channels are divided into
an according number of sets and for each set a convolution with cout/C output
channels is performed. The resulting feature maps from all sub-operations are
then concatenated. This way the operation produces the same number of output
channels while the number of weights is reduced in comparison to the dense
version

|w| = cin
C

· x · y · cout
C

=
cin · x · y · cout

C2
(2)

To evade the problem of checking for dead information pathways, which have
no connection to output or input, we only use sparsely connected convolutions
in every second convolutional layer. We refrain from using randomized channel
splitting as this would require several more slicing and concatenation operations,
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which we deem too time consuming. For a proof of principle we test C ∈ [2, 4].
Higher cardinalities would lead to a too small number of channels in the sub-
operations of the first stage.

2.2 Data

The LiTS [1] data set consists of 131 contrast-enhanced abdominal CT scans
from different clinical sites. The challenge provides reference annotations for the
liver contours as well as for liver lesions. The scans vary in in-plane resolution
and slice thickness. We aligned the directions of all images, but kept the different
resolutions, so that the networks are able to process a range of resolutions and
the results can be compared to the original labels.

For evaluation we additionally use the IRCAD data set [6]. It is composed of
CT-scans of 10 women and 10 men. As this data set is aimed at liver segmentation
the annotations have a higher quality than the LiTS.

2.3 Training

For the training we use patches of 256 × 256 voxels with a batch size of 16. To
counteract the class imbalance, we differentiate the slices from each scan into
one of two classes:

1. Liver: slice contains liver annotations.
2. Background: slice does not contain any annotations.

All liver slices are used for sample extraction. We select two patches from each
liver slice. The possible patch centers are constrained to μ + 3σ of the position
of the liver annotations along each axis. We use equal quantities of liver and
background patches, but from each background slice we only sample a single
patch to get a diverse representation of non-liver structures. The ratio we apply
for sampling was also used in the batches. We perform data augmentation in the

Fig. 1. Architecture: The U-Net is extended with sparsely connected convolutions.
Using C = 2, the feature maps are divided into two subsets and a kernel is learned for
each subset. The resulting feature maps are then concatenated.
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form of a rotation r around the cranial-caudal axis with r ∈ [−9 ◦, 9 ◦] to mimic
possible patient positions.

Training is performed with the Adam optimizer, applying a learning rate of
lr = 10−3. We use L2-regularization and minimize the Tversky loss function
between probabilities P and labels Y . Where Pl denotes the liver probability
and Pb the background probability, accordingly in Yl the liver is denoted by 1
and in Yb the background is 1. The weights are set to α = 0.3 and β = 0.7 as
suggested by Salehi et al. [7]

Tα,β (P, Y ) =

∑|Y |
i=0 pl,iyl,i∑|Y |

i=0 pl,iyl,i + α
∑|Y |

i=0 pl,iyb,i + β
∑|Y |

i=0 pb,iyl,i
(3)

2.4 Experimental design and evaluation metrics

The described networks were implemented using Tensorflow 1.10 1 and Python
3.5. We performed three-fold-cross-validation on the LiTS data. Each network
was trained for 25 epochs, which equaled 52500 iterations. Training and test-
ing were performed on an NVIDIA Quadro P5000 graphics card. We used two
metrics to compare the network predictions Ŷ to the labels Y . Firstly, the dice
coefficient to assess the overlap

D
(
Ŷ , Y

)
=

2 |Ŷ ∩ Y |
|Ŷ |+ |Y |

(4)

Secondly, the mean surface distance (MSD) which is more sensitive to shape and
alignment

MSD
(
Ŷ,Y

)
=

1

|Ŷ|

|Ŷ|∑
i=0

min(d(ŷi,Y)) (5)

We used the SimpleITK2 implementations. No postprocessing was performed for
the evaluation on the LiTS data set, therefore, the performance of the networks
can be directly compared. For the IRCAD data we performed a connected com-
ponent analysis on the network predictions to verify the performance without
the presence of outliers.

3 Results

3.1 LiTS

The dense network achieved an average D=0.940 and a MSD=22.738 mm.
Our network with sparsely connected convolutions and C = 2 accomplished
a D=0.9411 and MSD=22.738 mm. Using C = 4 resulted in a D=0.944 and

1 https://www.tensorflow.org/
2 http://www.simpleitk.org/
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MSD=19.893 mm. A visualization of the results across all test cases can be seen
in Fig. 4. As stated before, the splitting and concatenating operations are com-
putationally expensive, which leads to a slight increase in prediction time per
slice from 0.036 seconds to 0.039 seconds for C = 2 and to 0.043 seconds for
C = 4.

3.2 IRCAD

All networks trained on the LiTS data were applied to the IRCAD data set.
The densely connected U-Nets achieved an average D=0.953 and a MSD=1.820
mm. The C = 2 sparse networks accomplished a D=0.956 and MSD=1.820
mm. Using C = 4 resulted in a D=0.960 and MSD=1.560 mm. Slices from an
exemplary case with labels and predictions are shown in Fig. 3.

4 Discussion

Our experiments have shown that sparsely connected convolutions can be a
beneficial building block in segmentation networks. Our network benefits from
parallel information pathways, while maintaining a U-Net structure and using
less weights. The difference in quality low in the the Dice coefficient, but more
prominent for the MSD.C = 2 performed only slightly better than the dense -
Unet. However, on the IRCAD data the Dice coefficient achieved by our network
with cardinality C = 4 was 0.7% higher in comparison to a densely connected
U-Net. While the MSD was decreased by 14.2% mm. The sparse versions had a
slightly higher prediction time per slice. However, due to the enhanced quality
we deem this justifiable and recommend sparsely connected convolutions with
C = 4 for segmentation tasks.
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Fig. 2. Comparison of the LiTS segmentation quality across all three cardinalities.
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Fig. 3. IRCAD example case: The annotated ground truth is shown in green. Dense
U-Net prediction is shown in blue. Results from the sparsely connected U-Nets are
shown in red (C = 2) and magenta (C = 4).
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Abstract. In this paper, we investigate slice-wise manual segmentation
of knee anatomy. Due to high inter-rater variability between annotators,
often a high number of raters is required to obtain a reliable ground
truth consensus. We conducted an extensive study in which cartilage
surface was segmented manually by six annotators on three scans of the
knee. The slice-wise annotation results in high-frequency artifact that
can be reduced by averaging over the segmentations of the annotators.
A similar effect can also be obtained by smoothing the surface using low-
pass filtering. In our results, we demonstrate that such filtering increases
the consistency of the annotation of all raters. Furthermore, due to the
smoothness of the cartilage surface, strong filtering produces surfaces
that show differences to the ground truth that are in the same order of
magnitude as the inter-rater variation. The remaining root mean squared
error lies in the range of 0.11 to 0.14mm. These findings show that ap-
propriate pre-processing techniques result in segmentations close to the
consensus of multiple raters, suggesting that in the future fewer annota-
tors are required to achieve a reliable segmentation.

1 Introduction

The validity of medical image-based analyses often heavily depends on the accu-
racy of a segmentation of the underlying data. A medical application demanding
accurate segmentation is the analysis of articular knee cartilage of patients suf-
fering from Osteoarthritis. Particularly, imaging under natural weight-bearing
conditions is of interest, because it may further the understanding of this disease
and may lead to an improved early diagnosis. Scanning a person in a standing po-
sition is enabled by the usage of flexible cone-beam C-arm CT (CBCT) systems.
Contrast agent injected into the knee joint makes the contact surface between
femoral and tibial cartilage visible in the 3D reconstructions and enables its seg-
mentation. At the same time, the contrast agent poses additional challenges to
the segmentation problem, since it fills a whole region instead of marking a clear
cartilage border line, and over time diffuses into the spongy cartilage tissue.
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Segmentation of structures in medical images is often performed automati-
cally, since the advantages of automatic segmentations are manifold: On average,
they can be performed faster than manual segmentations, they are repeatable
and they follow predefined objective rules [1]. There exists a variety of automatic
segmentation algorithms, based on thresholds, edges or regions, and also more
complex methods like shape modeling [1]. More recent studies investigate deep
neural networks for segmentation tasks with promising results [2, 3].

In comparison, manual segmentations are time-consuming and subjective
with often high inter-rater variability. Still, many studies rely on this process.
Especially if the segmentation requires human assessment, or if the underlying
data shows quality differences that interfere with automated methods, manual
segmentation is often preferred. Both are the case when aiming at segmenting
cartilage surfaces in the presented case.

To obtain a stable consensus from manual segmentations of multiple raters,
many annotators are needed due to the high inter-rater variability. It is assumed
that on average, they are able to segment the true borders. Alternatively to av-
eraging over multiple raters, the issue of inter-rater differences can be tackled by
low-pass filtering. In this work, we evaluate the effect of low-pass filtering of seg-
mentations on datasets manually segmented by six experienced raters. Isotropic
and anisotropic smoothing kernels of varying size are applied. The unfiltered and
filtered segmentations of each rater are evaluated against a consensus computed
from an increasing number of other raters.

2 Materials and methods

In the following, the data acquisition and the segmentation process are described.
Afterwards, the smoothing process and comparison between raters are explained.

2.1 Data acquisition and segmentation

X-ray images were acquired according to an IRB-approved protocol using a
clinical C-Arm CT system (Artis Zeego, Siemens Healthcare GmbH, Erlangen,
Germany) with a flat panel detector. The knees of one healthy subject (male,
52 years) were scanned three times. Motion compensated filtered backprojection
[4, 5] resulted in 3D images of 5123 voxels with an isotropic voxel spacing of
0.2mm. The reconstructed volumes contained only the right knee.

The tibial bone and the contrast agent lines marking the border of tibial carti-
lage on the lateral and medial side were segmented by 6 experienced raters using
AMIRA software (AMIRA, Mercury Computer Systems, Berlin, Germany). Seg-
mentations were performed slice by slice on 2D images in the sagittal plane. For
further processing, only the part of the tibial surface below the segmented car-
tilage surfaces was stored, see gray surface in Fig. 1(c). In total, this resulted
in 3 (scans) ∗ 4 (medial/lateral tibia/cartilage) = 12 segmentations per rater.
For the comparison of the segmentations, only one z-value per (x,y)-combination
was segmented. If a rater marked multiple values per (x,y)-coordinate, only the
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upper value was stored. Fig. 1(a) shows an example grayscale image and one
rater’s segmentation as overlay, Fig. 1(b) depicts a magnified region. In Fig. 1(c)
surfaces reconstructed from the medial part of the segmentations are shown. The
three colors blue, green and pink mark segmentations of three raters, showing
high similarity with small fluctuations of their labeling.

2.2 Data processing

The X-ray images were acquired in-vivo, thus there was no possibility to measure
a ground truth for segmentation. For this reason, the agreement between raters
was evaluated in this work.

Smoothing. Since the raters all were instructed to segment the tibial surface
and cartilage surface, their resulting segmentations are similar. However, there
are small high-frequency differences in the extent of the surfaces and in the seg-
mented z-values. To tackle the former, only those (x,y)-coordinates in which all
six raters segmented a voxel were considered in the comparison of the raters. By
smoothing the segmentations in z-direction, the small variations in z-value can
be reduced and the segmentations are expected to be more similar afterwards.
The segmentations were smoothed with an isotropic mean and median filter of
size 3. Since the single lines caused by slice-wise segmentation are clearly visi-
ble in the unfiltered segmentations, (Fig. 1(c)) it makes sense to average over a
larger extent in the direction perpendicular to the lines to reduce this uneven-
ness. For this reason, anisotropic mean filters of size 7x3 and 11x9 were applied
to the segmentations. Furthermore, larger isotropic kernels of size 11, 15 and 21
were used to heavily smooth the segmentations. Finally, isotropic and anisotropic

(a)

(b)

(c)

Fig. 1. (a) Grayscale CBCT slice in sagittal plane, segmentations of one rater marked
in red. (b) The region in the yellow rectangle is magnified. (c) 3D surfaces created
from three raters’ segmentations (medial part) marked in blue, green and pink. The
segmentation direction is visible, here from the upper left to the lower right.
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Gaussian filter kernels with σ between 1 and 3 were evaluated, since they assign
larger weights to voxels closer to the kernel center, which may have a higher
influence on the considered voxel.

Evaluation. The original and smoothed segmentations of each rater were com-
pared to combinations of a growing number of segmentations of the other five
raters, that were formed by averaging the z-values of their original segmenta-
tions. Combining the segmentations of k raters, k ∈ [1; 5], from a total of N = 5
raters resulted in

(
N
k

)
combinations for comparison to the remaining rater.

The metric to describe the agreement between a rater and those combinations
was the root mean squared error (RMSE) of the point-wise z-value difference.
For each of the 12 segmentations of a rater, the RMSE to all combinations of
the other 5 raters was computed. As next step, the average RMSE over the 12
surfaces was computed, resulting in

(
N
k

)
mean RMSE values per rater. Lastly, the

mean with standard deviation of these
(
N
k

)
values is computed and is interpreted

as the overall mean RMSE between one rater and the others.

3 Results

A visual comparison of a segmentation of one rater smoothed with different
kernels is shown in Fig. 2. The data was processed in a point-wise manner, but
for better visualization, surfaces were generated from the point clouds.

The results show that mean and Gaussian filtering create smoother sur-
faces compared to median filtering, since they allow for sub-voxel placement
of points on the smoothed surface. Furthermore, as expected, larger kernels cre-
ate smoother outputs. In contrast to the isotropic filters, the anisotropic kernels
reduced the visible segmentation direction.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2. Surfaces reconstructed from segmentations of one rater (medial tibial and carti-
lage surface). (a) original segmentation, (b) 3x3 median filtered, (c) 3-σ Gauss filtered,
(d) 3x3 mean filtered, (e) 7x3 mean filtered, (f) 11x9 mean filtered.
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Table 1. RMSE (mean ± standard deviation) between one rater’s original segmenta-
tions, and combinations of segmentations of an increasing number of reference raters.
Since there is only one possibility to combine five raters, only a mean and no standard
deviation is given in the last column.

1 rater 2 raters 3 raters 4 raters 5 raters

rater 1 0.184 ± 0.028 0.159 ± 0.011 0.149 ± 0.006 0.144 ± 0.003 0.141

rater 2 0.167 ± 0.029 0.137 ± 0.012 0.124 ± 0.006 0.117 ± 0.004 0.113

rater 3 0.199 ± 0.022 0.176 ± 0.007 0.168 ± 0.003 0.164 ± 0.002 0.161

rater 4 0.183 ± 0.029 0.157 ± 0.011 0.147 ± 0.005 0.141 ± 0.003 0.137

rater 5 0.172 ± 0.030 0.144 ± 0.012 0.132 ± 0.007 0.126 ± 0.004 0.122

rater 6 0.222 ± 0.011 0.204 ± 0.004 0.198 ± 0.002 0.195 ± 0.001 0.193

The results of the quantitative evaluation are shown in Tab. 1 and 3. Tab. 1
shows for the original segmentation of each rater the mean RMSEs to all com-
binations of other raters. For the original and smoothed surfaces, in Tab. 3 the
mean RMSEs over all raters are given.

4 Discussion

Manual segmentations are always subjective because every human rater makes
decisions based on his experience and intuition. However, a consensus can be
computed by averaging over multiple raters. The presented work shows that a
consensus that is based on a higher number of raters has a lower mean RMSE
to each single rater (Tab. 1). A possible interpretation of this finding is that the

1 rater 2 raters 3 raters 4 raters 5 raters

original 0.188 ± 0.020 0.163 ± 0.025 0.153 ± 0.027 0.148 ± 0.028 0.144 ± 0.029

mean3x3 0.168 ± 0.013 0.141 ± 0.017 0.129 ± 0.020 0.123 ± 0.021 0.119 ± 0.022

mean11x11 0.162 ± 0.007 0.132 ± 0.012 0.120 ± 0.014 0.113 ± 0.015 0.109 ± 0.016

mean15x15 0.166 ± 0.007 0.137 ± 0.010 0.126 ± 0.012 0.119 ± 0.013 0.115 ± 0.014

mean21x21 0.180 ± 0.008 0.153 ± 0.010 0.143 ± 0.012 0.137 ± 0.012 0.134 ± 0.013

mean7x3 0.164 ± 0.009 0.136 ± 0.013 0.124 ± 0.016 0.117 ± 0.017 0.113 ± 0.018

mean11x9 0.162 ± 0.008 0.132 ± 0.012 0.120 ± 0.014 0.113 ± 0.015 0.109 ± 0.016

median3x3 0.180 ± 0.015 0.154 ± 0.019 0.144 ± 0.021 0.138 ± 0.022 0.135 ± 0.023

Gauss1σ 0.166 ± 0.012 0.138 ± 0.017 0.126 ± 0.020 0.120 ± 0.021 0.116 ± 0.022

Gauss2σ 0.161 ± 0.009 0.132 ± 0.014 0.120 ± 0.016 0.113 ± 0.018 0.109 ± 0.019

Gauss3σ 0.161 ± 0.008 0.131 ± 0.012 0.119 ± 0.014 0.112 ± 0.016 0.108 ± 0.017

Gauss2x1σ 0.163 ± 0.011 0.134 ± 0.016 0.122 ± 0.018 0.116 ± 0.020 0.111 ± 0.021

Gauss3x2σ 0.161 ± 0.008 0.132 ± 0.013 0.120 ± 0.015 0.113 ± 0.016 0.108 ± 0.017

Table 2. Mean RMSE and standard deviation over all raters for the comparison of the
original respectively smoothed segmentations with one to five raters.
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consensus of a larger number of raters lies closer to the correct segmentation
than all individual raters alone.

The second part of the evaluation showed that low-pass filtering the annota-
tions of a rater results in a segmentation that is closer to the consensus compared
to the unfiltered segmentation, as shown in Tab. 3. The mean and Gaussian fil-
ters outperformed the median, an explanation for this is that the creation of
reference combinations was also based on a mean computation. For the smaller
filter sizes, anisotropic filtering produced slightly better results than isotropic
filtering. More importantly, it considerably reduced the visibility of the segmen-
tation direction, yielding qualitatively better results compared to the unfiltered
and isotropically filtered segmentations. Since cartilage is a smooth surface, this
filtering step will therefore produce more natural looking results. The smallest
mean RMSE values were achieved for the 3σ Gaussian filtered segmentation, but
11x9 and 11x11 mean achieved similar results. If it is assumed that the average
rating of the other raters corresponds most closely to the gold standard segmen-
tation, this minimum indicates that a 3σ Gaussian or 11x11 resp. 11x9 mean
filter should be considered as filtering method of choice. Note that 15x15 and
21x21 filtering already started to increase the distance to the consensus of the
other raters.

The current work shows that smoothing can be used to decrease the vari-
ability between raters and suggests the Gaussian filter as best filtering method.
The best kernel size is highly problem dependent and is still to be evaluated in a
larger study. This study implies that low-pass filtering of manual segmentations
yields results similar to the consensus of multiple raters, suggesting that fewer
raters are needed to create a reliable consensus.
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Abstract. In this paper, we investigate whether is it possible to train
a neural network directly from user inputs. We consider this approach
to be highly relevant for applications in which the point of optimality is
not well-defined and user-dependent. Our application is medical image
denoising which is essential in fluoroscopy imaging. In this field every
user, i.e. physician, has a different flavor and image quality needs to be
tailored towards each individual. To address this important problem, we
propose to construct a loss function derived from a forced-choice experi-
ment. In order to make the learning problem feasible, we operate in the
domain of precision learning, i.e., we inspire the network architecture by
traditional signal processing methods in order to reduce the number of
trainable parameters. The algorithm that was used for this is a Laplacian
pyramid with only six trainable parameters. In the experimental results,
we demonstrate that two image experts who prefer different filter char-
acteristics between sharpness and de-noising can be created using our
approach. Also models trained for a specific user perform best on this
users test data. This approach opens the way towards implementation of
direct user feedback in deep learning and is applicable for a wide range
of application.

1 Introduction

Deep learning is a technology that has been shown to tackle many important
problems in image processing and computer vision [1]. However, all training
needs a clear reference in order to apply neural network-based techniques. Such
a reference can either be a set of classes or a specific desired output in regression
problems. However, there are also problems in which no clear reference can be
given. An example for this are user preferences in forced-choice experiments.
Here, a user can only select the image he likes best, but he cannot describe or
generate an optimal image. In this paper, we tackle exactly this problem by
introduction of a user loss that can be generated specifically for one user of such
a system.

In order to investigate our new concept, we explore its use on image en-
hancement of interventional X-ray images. Here, the problem arises that differ-
ent physicians prefer different image characteristics during their interventions.
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Some users are distracted by noise and prefer strong de-noising while others
prefer crisp and sharp images. Another requirement for our user loss is that we
want to spend only few clicks for training. As such we have to deal with the
problem of having only few training samples, as we cannot ask your users to
click more than 50 to 100 times. In order to still work in the regime of deep
learning, we employ a framework coined precision learning that is able to map
known operators and algorithms onto deep learning architectures [2]. In litera-
ture this approach is known to be able to reduce maximal error bounds of the
learning problem and to reduce the number of required training samples [3]. Fu
et al. even demonstrated that they are able to map complex algorithms such as
the vesselness filter onto a deep network using this technique [4].

2 Methods

We chose an Laplacian pyramid de-noising algorithm as basis [5]. In this section
first image denoising using the Laplacial pyramid is described. Then, we follow
the idea of precision learning to derive the network topolgy based on the known
approach followed by an detailed description of the loss function.

2.1 Subband decomposition

Image densoising using a Laplacian pyramid is carried out in two steps. First the
image is decomposed into subbands followed by an soft threshold to reduce the
noise. The Laplacian pyramid [5] is an extension of the Gaussian pyramid using
differences of Gaussians (DoG). To construct a layer of the Laplacian pyramid
the input has to be blurred using a Gaussian kernel with a defined standard
deviation σ and mean μ = 0 with a subsequent subtraction from the unblurred
input itself.

2.2 Soft-thresholding

After sub-band decomposition, we assume that small coefficients are caused by
noise in each band Ibp,n. We employ soft-thresholding to suppress this noise
with magnitudes smaller than ε. Note that for both, the Gaussian that is used
for the sub-band decomposition, as well as for the soft thresholding function
sub-gradients [6] can be computed with respect to their parameters. As such
both are suited for use in neural networks [2].

2.3 Neural network

Following the precision learning paradigm, we construct a three layer Laplacian
pyramid filter as a neural network. A flowchart of the network is depicted in
Fig. 1. The low-pass filters are implemented as convolutional layers, in which the
actual kernel only has a single free parameter σ. Using point-wise subtraction,
these low-pass filters are used to construct the band-pass filters. On each of those
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filters, soft-thresholding with parameter ε is applies. In a final layer, the soft-
thresholded band-pass filters are recombined to form the final image. As such we
end up with a network architecture with nine layers that only has six trainable
parameters σ1, σ2, σ3, ε1, ε2, ε3. In the following, we summarize these parameters
as a single vector φ that can be trained using the back-propagation algorithm
[7].

2.4 User loss

Let Ipref be the user preferred image, INN the denoised image produced by our
net. Below equation would be the main objective of our net

argminφ ||Ipref − INN||22 (1)

The main problem with this equation is that the user is not able to produce
Ipref. To resolve this problem, we introduce errors to the optimal image that
cannot be observed directly

e = ||Ipref − I||22
However, if we provide a forced-choice experiment using four images I0 . . . I3,
we can determine which of the four errors e0 . . . e3 is the smallest. This gives
us a set of constraints that need to be fulfilled by our neural network. For the
training of the network, we define our error in the following way

eq = ||INN − Iq||22
Let s be the total number of frames, es,q denote the quality q dedicated to frame
s, and Q denote the number of choices. Assuming es,∗ is selected by the user,
the following expected relationships between the errors emerge

es,∗ ≤ es,q ∀q ∈ {0, . . . , Q− 1} (2)

For user selection is ∗ = 2, the constraint below are used to set up our loss
function. Similar to implementation of support vector machines in deep networks,
we map the inequality constraints to the hinge loss using the max operator [8]

es,2 < es,0 −→ es,2 − es,0 < 0 −→ max(es,2 − es,0, 0)

es,2 < es,1 −→ es,2 − es,1 < 0 −→ max(es,2 − es,1, 0)

es,2 < es,3 −→ es,2 − es,3 < 0 −→ max(es,2 − es,3, 0)

(3)

Fig. 1. Schematic of
the neural network de-
sign used in this work.
The architecture mim-
ics a Laplacian pyra-
mid filter with soft-
thresholding.
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This gives rise to three different variants of the user loss that are used in this
work:

1. Best-Match: Only the user selected image is used to guide the loss function

argminφ

S∑
s=1

es,∗ (4)

2. Forced-Choice: The user loss seeks to fulfill all criteria imposed by the user
selection

argminφ

S∑
s=1

Q−1∑
q=0

max(es,∗ − es,q, 0) (5)

3. Hybrid: The user selected image drives the parameter optimization while all
constraints implied by the forced-choice are sought to be fulfilled

argminφ

S∑
s=1

es,∗ +

Q−1∑
q=0

max(es,∗ − es,q, 0) (6)

Note that the hybrid user loss is mathematically very close to the soft-margin
support vector machine, where es,∗ takes the role of the normal vector length

and
∑Q−1

q=0 max(es,∗ − es,q, 0) the role of the additional constraints.

3 Experiments and results

For generating different scenarios, in the first step the Laplacian pyramid is ini-
tialized for each input image. Considering the center values of our parameter sets
φ, the four different scenes are generated using random parameters. The result-
ing scenes for each frame are then imported to a GUI in order to take the user
preferences (Fig. 2). The network is implemented in Python using Tensorflow
framework. ADAM algorithm is used as optimizer iterating over 5000 epochs
with learning rate of μ = 10−2 and the batchsize is set to 50. The datasets which
are used in this work are 2D angiography fluoroscopy image data. The dataset
contains 50 images of size 1440 × 1440 with different dose levels. We created
200 scenarios via randomly initializing the Laplacian pyramid parameters.Our
dataset is divided such that 60% of the dataset for training data, 20% for val-
idation and 20% for test set. In this work stratified K-Fold Cross-Validation is
used for data set splitting.

3.1 Qualitative results

Qualitative results of our approach are presented in Fig. 3 for the first user. These
indicate an influence of different loss functions on the parameter tuning of one
user’s preferences. The Best Match loss shows better noise reduction, however
reduces the sharpness more than the other losses. In contrast to Best Match,
Forced Choice loss shows better sharpness and higher noise level. In order to
favor both targets the Hybrid Loss eliminates noise and preserve sharpness of
image data as well.
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Table 1. Quantitative comparison of loss functions: Best-Match (BM), Forced-Choice
(FC), Hybrid(HY).

Low dose data User 1 User 2

BM FC HY BM FC HY

Model Nr. 1 BM 1431.1 — — 2436.7 — —

FC — 248.8 — — 253.1 —

HY — — 1771.1 — — 2675.9

Model Nr. 2 BM 1381.5 — — 2391.5 — —

FC — 249.5 — — 964.9 —

HY — — 1781.1 — — 2359.1

3.2 Quantitative evaluation

In this section, we evaluate the three loss functions for both of our users against
each other. Tab. 1 displays the models created with the respective loss functions
versus the test sets of both users. To set fair conditions for the comparision, we
only evaluated models with the respective loss functions that were used in their
training. The results indicate that Best-Match and Forced-Choice only are not
able to result in the lowest loss for their respective user. The Hybrid loss models,
however, are minimal on the test data of their respective user. Hence, the Hybrid
loss seems to be a good choice to create user-dependent de-noising models.

Fig. 2. Graphical
user interface designed
for proposed network
training.

Fig. 3. Comparison of
original low-dose image
and its corresponding
results obtained from
different user losses for
the first user. For bet-
ter visualization win-
dowing is applied on
the second row.
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4 Conclusion and discussion

We propose a novel user loss for neural network training in this work. It can be
applied to any image grading problem in which users have difficulties in finding
exact answers. As a first experiment for the user loss, we demonstrate that it
can be used to train a de-noising algorithm towards a specific user. In our work
200 decisions using 50 clicks were sufficient to achieve proper parameter tuning.
In order to be able to apply this for training, we used the precision learning
paradigm to create a suitable network with only few trainable parameters.

Obviously also other algorithms would be suited for the same approach [9,
10, 11, 12, 5]. However, as the scope of the paper is the introduction of the user
loss, we omitted these experiments in the present work. Further investigations
on which filter requires how many clicks for convergence is still an open question
and subject of future work.

We believe that this paper introduces a powerful new concept that is applica-
ble for many applications in image processing such as image fusion, segmentation,
registration, reconstruction, and many other traditional image processing tasks.
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Abstract. Sodium Magnetic Resonance Imaging (sodium MRI) is an
imaging modality that has gained momentum over the past decade, be-
cause of its potential ability to become a biomarker for several diseases,
ranging from cancer to neurodegenerative pathologies, along with mon-
itoring of tissues metabolism. One of the most important limitation to
the exploitation of this imaging modality is its characteristic low resolu-
tion and signal-to-noise-ratio as compared to the classical proton MRI,
which is due to the notably lower concentration of sodium than water
in the human body. Therefore, denoising is a central aspect with respect
to the clinical use of sodium MRI. In this work, we introduce a Convo-
lutional Denoising Autoencoder that is trained on a training database
of thirteen training subjects with three sodium MRI images each. The
results illustrate that the denoised images show a strong improvement
after application in comparison to the state-of-the-art Non Local Means
denoising algorithm. This effect is demonstrated based on different noise
metrics and a qualitative evaluation.

1 Introduction

Sodium Magnetic Resonance Imaging (sodium MRI) is an imaging modality that
has the potential to become a valuable biomarker in many applications in the
field of medical diagnostics [1, 2]. Because of the strict balance of sodium concen-
tration between inner and outer cell space, sodium imaging enables a monitoring
of the tissues metabolism. An increase in concentration of sodium ions in brain
tissues has been shown to be potentially related to neurodegenerative diseases or
inflammations of the neural system. Therefore, this imaging modality represents
a tool of choice for the early diagnostic of such diseases, ideally taking place
before the damages they involve have occurred.

However, sodiumMRI is limited by the notably lower concentration in sodium
nuclei within the human body as compared to the concentration of elements
containing hydrogen, which is the nucleus involved in the classical proton MRI.
For this reason, as well as because of the lower gyromagnetic ratio of sodium as
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compared to hydrogen, the signal-to-noise ratio (SNR) in the images is low and,
consequently for this the resolution of sodium MR images is low, too. The effects
of noise on such low resolution images can critically jeopardize their content,
which demonstrates the crucial importance of denoising in the field of sodium
MRI.

For about a decade, the domain of Deep Learning has known tremendous de-
velopments,resulting in highly efficient methods for many high level tasks in the
field of computer vision [3]. The development of strategies enabling the training
of more complex networks has allowed researchers to achieve impressive results
in segmentation, classification, super resolution and also denoising tasks.

In this paper, a Denoising Autoencoder is applied to sodium MRI and evalu-
ated concerning its denoising performance in comparison to the state-of-the-art
non local mean algorithm [4].

2 Methods

The goal of sodium image denoising is to increase the SNR, while keeping the
underlying brain structure unaffected. Our approach is to use a Denoising Au-
toencoder [5, 6] (DA) to predict the denoised signal based on each voxels signal
and its neighboring signals. Most of the time, DAs are trained by adding noise
to the original data, while being given the original uncorrupted data as target
output (label). Furthermore, the learnable effect of denoising can be improved if
a low-noise dataset and a high-noise dataset is available.

2.1 Denoising autoencoder

The utilized Deep Learning structure is a DA, which composes two basic blocks:
First, the encoder encodes the noisy input signal into a feature vector, while the
decoder part of the network tries to rebuild the input without noise based on the
given feature vector. The effect of denoising can be improved, if a signal with less
noise than the input is utilized as output image, while the regular noisy image
is utilized as input image.

In this work, the input signal (a 5×5×5 voxel neighborhood) is convoluted by
64 different 3×3×3 convolutional kernels, followed by a second convolution (3×
3×3 kernel size) projecting the resulting 64 feature maps onto 256 features, while
only one voxel remains. Afterwards, only basic dense layers (Dense) are utilized
to project the given 256 features onto 32 features and back up onto 256 features.
In the end, the remaining 256 features predict the denoised signal intensity. All
but the last layer utilize Rectified Linear units as activation function. The last
layer uses no activation function.

An overview over the full network is given in Tab. 1.

2.2 Training

The network is trained based on a single sodium acquisition with added Gaussian
noise as input, while the corresponding center voxel (label) is constructed by av-
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Table 1. Topology of the DA for predicting a
denoised sodium image.

# Type Parameters

1 3D convolution 64× 3× 3× 3

2 ReLU —

3 3D convolution 256× 3× 3× 3

4 ReLU —

5 Flattening —

6 Dense 32

7 ReLU —

6 Dense 256

7 ReLU —

6 Dense 1

eraging all three repeated sodium acquisitions of the same subject. For training,
only brain voxels, extracted with FSL’s BET [7], are used. Optimization is based
on the ADAM optimizer (learning rate 0.0001, batch size 128 3D patches), while
the mean squared error is utilized as loss function.

Training is completed after validation performance does not improve for more
than eight epochs.

3 Evaluation

In the following, we present the results of our method and a state-of-the-art de-
noising method, the Non Local Means (NLM) algorithm [4]. The latter calculates
the average value of all pixels in the image and weights these with the similarity
of the target pixel to the respective pixels. This results in a much better denoised
image and a significantly lower loss of detail in the image compared to regular
local denosing algorithms, e.g. Gaussian blurring and unsharpening masks [4].

For evaluation, a five-fold cross validation is performed (three groups with
three subjects and two groups with two subjects). Four groups are used for
training, while the remaining group is subdivided into a test and validation
group, to ensure that there is no inter-subject overlap within training, validation
and testing.

3.1 Materials

The dataset consists of thirteen subjects, with three sodium acquisitions each (≈
20 minutes acquisition time in total). Every sodium acquisition has an isotropic
resolution of 4× 4× 4mm. Furthermore, every subject was scanned with addi-
tional calibration phantoms placed on both sides of the subject’s head of known
sodium concentration (Fig. 1, green circles). Based on this concentration, each
scan can be re-normalized for quantitative sodium concentration measurements.
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Mean Median σ

NLM 1.95 1.96 0.33

DA 2.37 2.42 0.50

Table 2. Resulting relative improvement (in percent) of
pSNR of the NLM and DA approach.

3.2 Results

All results are compared using the the peak SNR [8] (pSNR) defined as

pSNR(Ref, Img) = 10 log10

(
(max(Ref)−min(Ref))2

MSE(Ref, Img)

)
with (1)

MSE(Ref, Img) =
1

N

∑
x̂

(Ref(x̂)− Img(x̂))2 (2)

and the the Structural Similarity index [9] (SSIM) specified by

SSIM(x̂) =
1

N

∑
x̂

l(x̂) · c(x̂) · s(x̂) (3)

where l(x̂) defines the similarity of the local patch luminance (brightness values),
c(x̂) defines the similarity of the local patch contrasts, while s(x̂) defines the sim-
ilarity of the local patch structures (for more information see [9]). Furthermore,
Ref represents the reference image, while Img denotes the predicted denoised
image. x̂ indicates the spatial position within an image and N is the number of
voxels within the utilized brain mask.

Tab. 2 and Tab. 3 presents the resulting mean, median and σ of pSNR and
SSIM evaluated on the brain voxels only. It can be seen that the DA achieves a
higher mean and median pSNR and SSIM. On the other side, it should be noted
that σ increases, too.

Mean Median σ

NLM 18.85 18.88 3.39

DA 28.75 28.93 3.85

Table 3. Resulting relative pSNR improvement (in per-
cent) of the SSIM of the NLM and DA approach.

Furthermore, Fig. 2 shows a qualitative and exemplary slice after application
of the NLM and the DA algorithm. Here, both algorithms show an improved
and denoised image after application, while the NLM image results in very sharp
edges with a high contrast, in comparison to DA.

Fig. 1. Exemplary axial slice of a sodium acquisition with
marked concentration bars in green.
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4 Discussion

Sodium acquisitions are increasingly being included in the diagnosis and study
of neurodegenerative diseases, as they can characterize degenerative processes
before they are visible in standard T1 or T2 acquisitions. However, the intrinsic
low SNR of this imaging modality leads to long acquisition times. To mitigate for
this, low spatial resolution images are typically used within within clinical trials.
In this paper, we present a denoising technique based on a DA and demonstrate
its ability to outperform state-of-the-art non-deep learning techniques.

As shown in Tab. 2 and Tab. 3 the DA achieves higher mean and median
values for the pSNR and the SSIM, while σ(SSIM) and σ(pSNR) increases only
a little. A similar denoising performance can be seen in Fig. 2, where both
algorithms show a good result. Nonetheless, the NLM seems to sharpen edges,
resulting in edge artifacts, while at the same time, homogeneous areas seem to
be very smooth. These effects are not visible for the DA image.

Despite these promising results, the application of deep learning comes at a
cost, since it is limited by its utilized training database. Due to this, novel signals,
that are not part of the training database, might result in wrongly denoised
images. Although the DA was chosen as a standard deep learning architecture
with only few parameters (which is due to the limited training database), it might
be beneficial to train a more complex structure, if more subjects are available
for training.

(a) Input Image (b) Reference Image

(c) NLM image (d) DA image

Fig. 2. Exemplary input and reference slice utilized during training and its correspond-
ing NLM and DA denoised version (best viewed in digital version).
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Overall, this work shows a feasible and practical solution for denoising sodium
MRI. It is validated using quantitative and qualitative criteria.
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Abstract. X-ray images can show great variation in contrast and noise
levels. In addition, important subject structures might be superimposed
with surgical tools and implants. As medical image datasets tend to be
of small size, these image characteristics are often under-represented. For
the task of automated, learning-based segmentation of bone structures,
this may lead to poor generalization towards unseen images and con-
sequently limits practical application. In this work, we employ various
data augmentation techniques that address X-ray-specific image charac-
teristics and evaluate them on lateral projections of the femur bone. We
combine those with data and feature normalization strategies that could
prove beneficial to this domain. We show that instance normalization is
a viable alternative to batch normalization and demonstrate that con-
trast scaling and the overlay of surgical tools and implants in the image
domain can boost the representational capacity of available image data.
By employing our best strategy, we can improve the average symmetric
surface distance measure by 36.22%.

1 Introduction

Automatic segmentation of X-ray images is a challenging task because typically
many types of X-ray systems in different scenarios need to be supported. First,
the proportion of the imaged organ may vary in size and rotation, and shifts
and image flips may occur. Reasons are that patients are of different size and
proportion. But also the geometry of systems may be quite different, as the
detector size and detector-tube distance may range from 15 cm to 40 cm and
from 40 cm to 200 cm respectively. It is not always possible for a patient to
move such that the body part is aligned with the system in all axes. Thus,
image rotations and views on the imaged structure can slightly vary between
images. Then, different contrasts between the organ and the background may
occur because different tube voltage settings are used [1]. And last, an X-ray
image is always a superimposition of organs, bones and objects along the ray,
which means that the organ or bone of interest may be interfered by other organs
or surgical instruments and implants (Fig. 1).
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More recently, deep learning based solutions advance as powerful ways to
tackle various problems in the medical imaging domain. For the particular task
of image segmentation, fully convolutional neural networks (FCN) yield state of
the art performance fueled by great representational learning power and high
computational efficiency [2]. To learn the appearance and variability of different
image structures, these models typically rely on a large number of training data.
However, since medical image data is often limited, the sample sizes are usu-
ally not sufficient to fully account for the aforementioned image characteristics.
Several strategies have been proposed to tackle this problem. If available, simu-
lation of radiographs from appropriate 3D CT scans yields realistic results that
can enlarge the available training data [3]. As shown in [4], extensive augmenta-
tion to the existing training data can enable these models to learn invariance to
a broader set of image characteristics. Also, careful normalization of the input
data and features in the network can alleviate covariate shift between different
distributions, thus allowing for accelerated and more robust learning [5].

In this work, we draw upon a subset of these ideas and evaluate their benefit
towards the problem of X-ray-based bone segmentation. To this end, we consider
contrast scaling, additive noise, and the overlay of surgical tools and implants in
the image domain as task-specific data augmentations that could promote prac-
tical application on clinical data. We also think of X-ray segmentation as being
sensitive to different normalization techniques of the input data and network fea-
tures. For this reason, we examine the input standardization methods min-max
normalization and z-scoring and combine them with various potentially beneficial
replacements for the widely used batch normalization (BN) [5]. Instance normal-
ization (IN) aims to introduce invariance to image contrast by normalizing only
over spatial dimensions [6]. Layer normalization (LN) and group normalization
(GN) both decouple different batch examples by normalizing over spatial and
channel dimensions, with the latter additionally introducing feature clusters to
respect network features as structured data [7, 8]. Switchable normalization (SN)
supplies a fully-learnable approach by weighting the statistics created by IN, LN,
and BN, which potentially allows for an optimal normalization scenario [9]. The
main contribution of the paper is to show that an ensemble of normalization and
augmentation strategies can substantially improve the segmentation in the case
of lateral projections of femur bones on X-ray images.

(a) (b) (c) (d) (e)

Fig. 1. Image examples representing different image characteristics. (a) depicts overlay
of surgical tools and implants, (b) and (c) show different contrast settings, (d) and (e)
show different noise levels.
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2 Materials and methods

2.1 Formulation of input and feature normalization

Let x be some input data we want to normalize. We can formalize min-max
normalization and z-scoring as x̃min-max = (x−min(x))/(max(x)−min(x)) and
x̃z-score = (x− μ)/(

√
σ2 + ε) respectively. μ and σ2 denote mean and variance of

the data, whereas ε is a small constant for numerical stability.
To introduce a general formulation for the feature normalizations, let zbcij be

some pre-activation hidden feature at an arbitrary layer, represented as a vector
(B,C,H,W ) and indexed with b ∈ [1, B], c ∈ [1, C], i ∈ [1, H], and j ∈ [1,W ].
B denotes the batch dimension, C denotes the channel dimension, and (H,W )
refer to the spatial height and width dimensions. Instead of directly computing
the layer’s activated output abcij = g(zbcij) with an activation function g, the
covered normalization strategies introduce an intermediate step of calculating a
normalized representation z̃bcij = (zbcij − μk)/(

√
σ2
k + ε). The calculation of μk

and σ2
k depends on a subset of features Mk with k ∈ {IN,BN,LN,GN} (Tab. 1)

μk =
1

|Mk|
∑

(b,c,i,j)∈Mk

zbcij σ2 =
1

|Mk|
∑

(b,c,i,j)∈Mk

(zbcij − μk)
2 (1)

SN builds upon the statistics computed in IN, BN, and LN to define an
importance-weighted, normalized representation of the features [9]. Addition-
ally, all covered feature normalizations introduce the trainable parameters γ and
β to facilitate scaling and shifting of the layer input. That way, distribution
characteristics other than μ = 0 and σ2 = 1 can be learned. Thus, the layer’s
activated output is calculated with abcij = g(γz̃bcij + β).

2.2 Data augmentation strategies

To model different contrast settings in the image domain, we consider contrast
scaling as a linear scaling of each image pixel px by 0.5+α(px−0.5), α ∈ [0.33, 3].
Caused by electronic readout noise and quantum mottle, radiographic images
may also contain different noise levels. We approximate this by adding generated
Gaussian noise which is drawn from ∼ N (0, [0.01, 0.15]). Furthermore, each
photon transmitted along a ray may interact with different objects along its path,
which by integration of different intensities can lead to partially or fully obscured
image regions. To account for this, a randomly chosen projection generated from
a proprietary CAD database of surgical tools and implants (50 images) is blended
into the image region with randomized shift, rotation and surface intensity. The
overlaid area amounts to a maximum of 9% of the original image region.

2.3 Dataset

The dataset consists of 56 X-ray knee scans in lateral projection. 35 examples
originate from systems with image intensifiers which leads to circularly masked
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Table 1. Feature subsets used in different normalization strategies [5, 6, 7, 8, 9].

Feature normalization Feature subset

Instance normalization (IN) MIN = {(i, j) | i ∈ [1, H], j ∈ [1,W ]}
Batch normalization (BN) MBN = {(b, i, j) | b ∈ [1, B], i ∈ [1, H], j ∈ [1,W ]}
Layer normalization (LN) MLN = {(c, i, j) | c ∈ [1, C], i ∈ [1, H], j ∈ [1,W ]}
Group normalization (GN) MGN = {(c, i, j) | c ∈ [xn−1, xn], i ∈ [1, H], j ∈ [1,W ]}

Subdivision of [1,C] into G groups/subintervals

[xn−1, xn] with width ΔC−1
G

. Here, we consider G=32.

images. The remaining 21 samples are from digital radiography systems and are
sometimes rotated for PACS viewing or include overlaid meta information. For
each image, a ground truth segmentation mask of the femur bone was created.
The data was split into three subsets for training, validation and testing with
distribution ratios of 0.6/0.2/0.2. To factor in various spatial resolutions and
aspect ratios present in the dataset, we applied an online data preprocessing
routine which consists of rescaling with fixed aspect ratio and center-cropping
to the target size of 256 × 256. For the training set, we allowed a randomized
deviation of the cropping center and applied a basic set of randomized online
data augmentation techniques (rotation, scaling, horizontal flipping).

2.4 Ablation study and performance metrics

The experiments were structured into three sections. First, a base model was
constructed which derives from the standard U-Net architecture, but was sup-
plemented with a dropout layer at the end of the contracting path [4]. As the
standard feature normalization technique, we introduced pre-activation batch
normalization layers to each network block. As for the input data, we set min-
max normalization as the default. The hyper-parameters of this base model were
optimized by performing 150 steps of random search limited to 120 epochs train-
ing time each, followed by manual refinement. In a second step, we evaluated
the product set of both data and feature normalizations against the optimized
base model, returning a total of ten combined strategies. Lastly, the two most
promising strategies were used to examine the proposed augmentations. All eight
strategies resulting from all possible ordered subsets of the contemplated aug-
mentations were introduced as additional steps after the basic augmentations and
were applied with a probability of p = 0.5 each. To allow for potentially longer
training times when employing the different strategies, we raised the number of
epochs to 200 for both normalization and augmentation experiments.

In all experiment stages, the model performance was measured against mean
intersection over union (mIOU), average symmetric surface distance (ASD) and
symmetric Hausdorff distance (HD). The mIOU score evaluated on the validation
set was used as the key metric and as the main selection criteria between different
steps in the ablation study [2]. To factor in potential initialization variances or
outliers, the median was calculated from 20 training trials for each strategy.
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3 Results

Without further modifications, the base model with BN and min-max normaliza-
tion achieves a mIOU score of 0.956, 95%CI [0.955, 0.958] (Fig. 2). It performs
equally well when z-scoring is used and yields the best mIOU performance for all
employed feature normalizations. The second best configuration – IN and min-
max normalization – achieves a mIOU score of 0.953, [0.952, 0.956], which results
in a relative deterioration of 0.31%. The remaining normalization techniques re-
turn mIOU scores of 0.938, [0.933, 0.941] (GN, min-max), 0.937, [0.933, 0.939]
(SN, min-max) and 0.894, [0.886, 0.901] (LN, min-max). As regards the sur-
face distance scores, the base model returns an ASD of 2.238, [1.990, 2.418]
and an HD of 18.523, [16.217, 23.770]. Replacing min-max normalization with
z-scoring slightly improves upon this base model’s performance, returning an
ASD of 2.136, [1.973, 2.579] and a HD of 17.313, [15.947, 19.404]. The combina-
tion of IN and min-max normalization achieves comparable performance with
an ASD of 2.157, [2.093, 2.301] and a HD of 16.729, [14.660, 18.500].

If the proposed augmentations are incorporated, most improvement can be
attained by supplementing IN and min-max normalization with contrast scaling
and the overlay of surgical tools and implants (Fig. 2). This configuration yields
a mIOU of 0.964, [0.963, 0.965], an ASD of 1.572, [1.477, 1.650] and a HD of
11.815, [10.168, 12.991]. For the previous best configuration with BN and z-
scoring, solely introducing the overlay of surgical tools and implants achieves
the greatest improvement with a mIOU of 0.961, [0.960, 0.962], an ASD of 1.861,
[1.706, 2.027] and a HD of 17.185, [13.790, 20.801].
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Fig. 2. Results for normalization and augmentation techniques on the validation set
(1: contrast scaling, 2: overlay of surgical tools and implants, and 3: additive noise).
For each metric, ↑ and ↓ indicate lower and higher is better, respectively.
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4 Discussion

For the task of X-ray bone segmentation, IN shows to be a competitive feature
normalization technique. The surface distance metrics’ improvement of the best
model that uses IN suggests a lower number of segmentation outliers, which could
prove beneficial in highly contour-sensitive domains. As IN computes its statistics
independently of the applied batch size, one can further think of retaining larger
spatial dimensions of the input images in exchange for a smaller batch size. This
potentially enables the network to learn more robust image features, though
at the cost of weakening the benefits of mini-batch training. However, further
evaluation on the test set shows that IN is also more susceptible to images where
only a small portion of the femur bone is visible and where it is heavily obscured
by medical tools. In such cases, BN is more successful due to its learned statistics
over multiple images. This means that careful analysis of the target data and
the employed setting is mandatory to choose the most suitable normalization
strategy. Intriguingly, SN does not improve upon the base model’s performance
by incorporating multiple ways to learn the statistics. Ideally, in this setting, the
weights for LN would drop to a small value. As we restricted the evaluation to
drop-in replacement without further hyper-parameter optimization, a dedicated
optimization for SN should therefore be considered in future work. In contrast
to the best model with BN, where the overlay with medical tools returns the
greatest relative improvement, scaling of the image contrast shows to be the
most effective augmentation to be combined with IN. These augmentations do
not hamper overall convergence speed and can be incorporated into the training
pipeline without adding much computational overhead.

Disclaimer. The methods and information presented here are based on research
and are not commercially available.
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Abstract. Despite the visually appealing results, most Deep Learning-
based super-resolution approaches lack the comprehensibility that is re-
quired for medical applications. We propose a modified version of the
locally linear guided filter for the application of super-resolution in med-
ical imaging. The guidance map itself is learned end-to-end from multi-
modal inputs, while the actual data is only processed with known op-
erators. This ensures comprehensibility of the results and simplifies the
implementation of guarantees. We demonstrate the possibilities of our
approach based on multi-modal MR and cross-modal CT and MR data.
For both datasets, our approach performs clearly better than bicubic up-
sampling. For projection images, we achieve SSIMs of up to 0.99, while
slice image data results in SSIMs of up to 0.98 for four-fold upsampling
given an image of the respective other modality at full resolution. In ad-
dition, end-to-end learning of the guidance map considerably improves
the quality of the results.

1 Introduction

Spatial resolution is subject to trade-offs in many medical imaging applications.
For example in magnetic resonance imaging (MRI), spatial resolution must be
weighed against the signal-to-noise ratio and acquisition time. A retrospective in-
crease in resolution by post-processing measures could alleviate this problem. To
this end, a vast amount of super-resolution (SR) methods have been proposed
and proven in the past [1]. In general, a differentiation can be made between
single and multiple image SR methods. The latter is of particular interest for
medical imaging, as non-existent information in one image can be derived from
another image of the same patient. Especially in diagnostics, the presence of
several scans of the same patient is common. In processing these data, Deep
Learning (DL) has recently developed the state of the art in SR towards a previ-
ously unknown image quality [2]. Thereby, most learning-based methods apply
high-dimensional non-linear transformations that are very difficult or impossible
to comprehend. If only additional information is generated, e.g. in segmentation,
the lack of comprehensibility can be tolerated, as blatant errors can be quickly
identified. However, if the image is modified, as is the case with super-resolution,
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a failure of the method cannot be detected trivially. This is a limiting factor in
medical applications where no less than the lives of patients are at stake. Despite
these downsides, DL-based methods are highly promising if used in an appropri-
ate way. In combination with well understood known operators, the advantages
of DL can be combined with the necessary comprehensibility [3, 4]. To transfer
this to the task of super-resolution, we present the combination of the guided
filter, which applies a local linear transformation to the input image, with a
guidance map that is learnd end-to-end from multi-modal input.

2 Methods

2.1 The guided filter

First proposed by He et al. [5], the guided filter has been applied to a variety
of tasks. Simply put, a given input image I is processed by incorporating struc-
tural information from a guidance image G. The filtering operation in this case
assumes a locally linear model between the guidance and the input image. In
general, the guidance map can be any given image, even the input image itself. To
fully leverage the power of the guided filter, a more appropriate guide is needed.
Given multiple input images from the same object, a combination of these is
beneficial. However, this raises the question of how the combined guidance map
is composed.

2.2 End-to-end trainable guided filter

Based on the wide range of possible applications of the guided filter as well
as the ongoing success of Deep Learning, Wu et al. [6] incorporated the guided
filter into a DL framework as a differentiable layer. This allows to backpropagate
gradients through the filter to previous layers. We employ a convolutional neural
network with the task to generate a guidance map for the guided filter based
on the multi-modal input. Being able to train this generator in an end-to-end
fashion enables for an optimal selection of features from all input modalities
directly by the network.

The proposed pipeline consists of a guidance map generator network, for
which we use a U-net-like architecture [7] with two separate encoding and a
single decoding path, and the guided filtering layer.

Starting from two images, the low-resolution image I lr, which is to be raised
to higher resolution, and a higher-resolution image Lhr that serves as a guide.
First, the input image I lr is upsampled by bicubic interpolation to the desired
output resolution as an initialization, further denoted as Iup. Second, I lr and Lhr

are fed into the generator network in order to extract the best possible combined
representation G. Finally, the learned guidance map G and the upsampled input
Iup are processed by the guided filter, resulting in the high-resolution output Ihr.
By this, only (locally) linear processing steps are applied to the computed output
image. A graphical representation of the pipeline is shown in Fig. 1.

Optimization is performed using a feature matching (FM) loss [8] based on
the VGG-19 network [9].
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3 Experiments

For evaluation, on the one hand multi-modal MRI data is used in the form of
8 tomographic T1 and T2 flair datasets with a spatial resolution of 256 x 256.
On the other hand, 13 cone-beam MR and X-ray projections at a resolution
of 512 x 512 are processed. All experiments are performed on clinical patient
datasets provided by the Department of Neuroradiology, University Clinics Er-
langen (MR: 1.5T MAGNETOM Aera / CT: SOMATON Definition, Siemens
Healthineers, Erlangen / Forchheim, Germany). Of each combination of modali-
ties two corresponding patient dataset pairs are reserved for final testing. Image
registration is done using 3D slicer [10]. The forward projections are taken from
the work on hybrid MR/CT imaging by [11, 4, 12] and are generated using
the CONRAD framework [13]. The low resolution images are artificially created
by nearest neighbor downsampling by a factor of 4, resulting in a resolution of
64 x 64 for the tomographic and 128 x 128 for the projection data. For quan-
titative evaluation, we compute the mean squared error (MSE) and multi-scale
structural similarity (MS-SSIM) measures. To avoid optimistic bias by the large
homogeneous air regions, all background pixel are ignored for the evaluation
metrics.

4 Results

The proposed approach was evaluated in comparison with bicubic upsampling
and guided filtering using only the high-resolution image Lhr as guidance. The
results are presented in Tab. 1. Exemplary qualitative results with their respec-
tive inputs are shown in Fig. 4. Furthermore, in Fig. 3 a region of interest can
be seen to better observe the differences in the fine details.

Guidance Map 
Generator

Guided 
Filtering

Layer

Ilr

Lhr

G

Iup

Ihr

Ground Truth

FM Loss

Fig. 1. The proposed guided filtering pipeline. Black arrows indicate the order of pro-
cessing steps and orange arrows the gradient flow.
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Table 1. Evaluation metrics of the proposed multi-modal guided filter.

CT & MRI Projection Images (128× 128 → 512× 512)

Bicubic GF w/o learned guidance GF w learned guidance

MSE 0.0019± 0.001 0.0873 ± 0.0398 0.0005± 0.0001

MS-SSIM 0.97± 0.00 0.74± 0.04 0.99± 0.003

Tomographic T1 & T2 MRI images (64× 64 → 256× 256)

Bicubic GF w/o learned guidance GF w learned guidance

MSE 0.0997± 0.0526 0.1506± 0.0493 0.0138± 0.0077

MS-SSIM 0.89± 0.04 0.63± 0.13 0.98± 0.01

5 Discussion

The quantitative and qualitative results show clear improvement of the pro-
posed guided filtering pipeline compared to the reference method. Especially
when observing the differences between the bicubic and the proposed upsam-
pling method for the tomographic images in Fig. 4(a) and 4(b), respectively, the
improved performance of the guided filter upsampling becomes apparent. The
proposed framework captures fine details that are present in the guidance map
which can not be estimated from the low-resolution input alone. Furthermore,
the end-to-end learned guidance map clearly benefits the processing, as indicated
in Tab. 1. This comes with the additional advantage that the optimal guidance
map can be learned individually for each task and each combination of inputs.
The learned guidance maps are already close to the desired high-resolution out-
put images (Fig. 4(e)). However, due to the high-dimensional transforms applied
in the computation of these, the required comprehensibility is not given. In con-

(a) Guide Lhr (b) Input I lr (c) Prediction Ihr (d) Ground truth

(e) Guide Lhr (f) Input I lr (g) Prediction Ihr (h) Ground truth

Fig. 2. Results of the guided filtering process. T1 & T2 MRI image pairs (a)-(d) and
CT & MRI projection images (e)-(h).



114 Stimpel et al.

Fig. 3. Comparison of the proposed GF results with bicubic upsampled images.

(a) Bicubic (b) Ours (c) Bicubic (d) Ours

trast, when only used as guidance, the modifications to the input images can be
reduced to locally linear operations.

For future work, the proposed pipeline needs to be evaluated more thoroughly
against a variety of comparable methods. In addition, we want to compare our
method with state-of-the-art deep learning super-resolution methods, although
these are not in line with our fundamental considerations regarding comprehensi-
bility of the results. Furthermore, we would like to apply the proposed approach
to other tasks that can be addressed by the guided filter, e.g., denoising.

6 Conclusion

We presented a guided filtering pipeline for multi-modal medical image super-
resolution. The proposed approach has two key points. First, it solves the prob-
lem of the unknown best combination of multi-modal inputs by learning a task-
optimal guidance map directly from the data. Second, the actual data is only
processed with known operators, which ensures comprehensibility of the results
and simplifies the implementation of guarantees. The achieved results closely
resemble the ground truth data which is substantiated by the low error and high
structural similarity measures.

(e) Guidance map (f) Bicubic (g) Ours

Fig. 4. An exemplary guidance map (a). Difference maps of the bicubic (b) and guided
filtering (c) upsampled images w.r.t the ground truth.
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Abstract. In the field of biophysics, deformation of in-vitro model tis-
sues is an experimental technique to explore the response of tissue to a
mechanical stimulus. However, automated registration before and after
deformation is an ongoing obstacle for measuring the tissue response on
the cellular level. Here, we propose to use an iterative point cloud reg-
istration (IPCR) method, for this problem. We apply the registration
method on point clouds representing the cellular centers of mass, which
are evaluated with a Watershed based segmentation of phase-contrast im-
ages of living tissue, acquired before and after deformation. Preliminary
evaluation of this method on three data sets shows high accuracy, with
82% - 92% correctly registered cells, which outperforms coherent point
drift (CPD). Hence, we propose the application of the IPCR method on
the problem of cell correspondence analysis.

1 Introduction

Epithelial and other types of tissues are constantly exposed to stress, which is
affecting the cell shape. The mechanism of this response is not understood, and
progress lies on deconvolving the response of individual cells comprising the tis-
sue. This requires sophisticated and automated image analysis techniques. Here,
we induce an affine deformation of a 2D tissue model to relate the macroscopic
deformation of the tissue to changes on the cellular level for a large number of
cells in an automated fashion.

In our experiments, MDCK II cells (Madin Darby Kidney Cells) were grown
as confluent epithelial cell layers on fibronectin(FN)-coated Polydimethylsilox-
ane (PDMS), and subjected to uniaxial stress through the underlying substrate.
With existing methods it is only possible to investigate the average cell shape
changes in the distributions over all cells for large tissue deformations. How-
ever, establishing the correspondence of every single cell is not yet possible for
statistical relevant sample sizes.
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The cell correspondence problem can also be formulated as a cell tracking
problem, which often relays on cell detection based on computer vision algo-
rithms [1, 2] and a series of time frames as input. However, image registration
has been seldom employed for this purpose. Nonetheless, recent studies showed
that image registration is potent for aligning cell nuclei [3] and feasible for track-
ing of single cells imaged with phase-contrast [4].

In this work, we propose a novel approach based on Watershed segmenta-
tion and iterative point cloud registration (IPCR), to find the cellular corre-
spondences in the micrographs before and after deformation, such that shape
changes may be investigated for each cell independently. By this we present, to
the best of our knowledge, the first cell correspondence analysis algorithm using
point cloud registration.

2 Materials and methods

2.1 Cell stretching and image acquisition

Clusters of MDCK II monolayers (about 8,000 cells) were stretched using FN-
coated PDMS substrates and a cell-stretching device [5] (Fig. 1a). Samples were
imaged before and subsequently after deformation in phase-contrast tile scans
(Axiovert 200M, 10×/0.25 Achroplan, both Zeiss, pixel size: 0.8μm × 0.8μm)[6].
Resulting images were background corrected [7] and stitched using ImageJ [8].

Fig. 1. The workflow of the proposed approach. a) Scheme of the deformation exper-
iment. b) The original images, left: unstretched; right: stretched for 30%. Scale bar
50 μm. c) Zoomed-in images with center points. d) Original position of the two point
clouds. e) Initial position after manual placement. f) Best matching after the regis-
tration. The unstretched and the stretched images are denoted with red and green,
respectively.
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2.2 Semi-automatic cell correspondence analysis

The workflow of the proposed approach to the cell correspondence analysis prob-
lem is illustrated in Fig. 1. The approach consists of two steps, elaborated below:
(i) Cell centroid coordinates before and after stretching are obtained by segmen-
tation. These centroids represent the images as point clouds, for subsequent
steps. (ii) The spatial relationship of the point clouds is initialized by manual
placement using a visual representation. Finally, we obtain the spatial relation-
ship and therefore, cellular correspondence using IPCR.

Cell segementation Cell segmentation is implemented using MATLAB [9]. As
an input, the program can take either an image of a cell monolayer or a stitched
image showing a whole cell cluster.

1. If the input is a whole cell cluster, the edge of the cluster is found using Otsu’s
method [10], so that single cells and dirt outside the cluster are excluded.
Within the current imaging approach slightly lower threshold levels (90% of
the calculated level) provided the best outline of the cell cluster (Fig. 2a).

2. Small objects as well as the holes in the cell layer are removed by the area-
opening-procedure. The border of the cell cluster is recognized using a flood-
fill algorithm and used as a mask for further image analysis.

3. For the segmentation of single cell shapes within the mask, we used the
Watershed algorithm, which can be applied since cell-cell contacts appear
brighter in the image. After appling H-minima transformation to suppress
all insignificant minima in the image, we obtain the watershed lines using
the Fernand Meyer algorithm [11].

4. Cells are recognized as different objects with the flood-fill algorithm, and
their center of mass is calculated assuming the same weight of each pixel
(Fig. 2 b). Objects which are too small to be a cell (deviate more than two
standard deviations from the mean cell area value) are removed.

Iterative point cloud registration As described previously, the cell cor-
respondences should be obtained based on the clouds of the extracted center
points. Fig. 3 shows the flowchart of our registration algorithm. The algorithm
is described in the following:

Fig. 2. Segmentation results. a) Segmented border (red) of a typical cell cluster. b)
Cell segmentation (red) and corresponding centers of cell mass (white dots).
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1. With a visualization of the extracted 2D point clouds assuming
A = {a1, ...,aM} as the source and B = {b1, ...,bN} as the target or the
reference, an initial position T0 is obtained manually by moving the source
cloud close to the target cloud.

2. The initial point matching A0
c and B0

c is generated according to the initial
transformation T0 based on k -d tree nearest neighbor (NN) search [12]. Due
to the outlier rejection in the NN search, the matched point clouds are equal
to or smaller than the original point clouds, i. e. Ac ⊆ A and Bc ⊆ B

3. The transformation matrix T is updated to achieve optimal alignment of the
two reciprocal point clouds Ac and Bc

4. The point matching is recalculated using the new transformation matrix.
5. Step 3 and Step 4 are repeated until the termination criterion is fulfilled.

We used the Fast Library for Approximate Nearest Neighbors (FLANN) [12]
for the k -d tree NN search. Covariance Matrix Adaptation Strategy (CMA-ES)
[13] is utilized as the optimizer to update the transformation between the point
clouds. Because the image was stretched, we assumed that the transformation
is affine and the variation can be constrained with translation and scaling. The
cost function of our optimization problem is defined with Euclidean distances of
the reciprocal points (Eq. 1). We also used the average Euclidean distance in the
termination criterion of the iterative algorithm to determine whether the best
point matching is achieved

f =
M ·N
K3

K∑
k=1

‖T · ac,k − bc,k‖ (1)

where K is the amount of the reciprocal pairs, M and N are the number of
points of the source and the target, K ≤ M and K ≤ N .

3 Results

The proposed approach for cell correspondence analysis was evaluated with three
data sets. Each data set contains two images before and after the deformation
(Fig. 1b). Tab. 1 summarizes the information of the evaluated results of these
three data sets. Cells (U/S) records the total number of cells of the unstretched
(U) and stretched (S) images. The proposed approach is compared with another
major type of point cloud registration algorithm – the coherent point drift (CPD)
algorithm [14]. Found shows the calculated correspondences using FLANN [12]

Fig. 3. Flowchart of the proposed IPCR method.
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Table 1. Information and results of the evaluated data sets.

CPD [14] Proposed

Data Cells deform. found eval. cor. Acc. found eval. cor. Acc.

(U/S) [%] [%] [%] [%]

Set 1 160/156 30.0% 91.0 142 137 87.8 91.0 142 140 89.7

Set 2 170/158 20.3% 86.1 136 52 32.9 92.4 146 145 91.8

Set 3 1264/900 20.3% 88.2 301 69 20.2 88.4 289 267 81.7

after the registration in percentage of the maximum of possible correspondences.
Eval. and correct records the number of evaluated pairs, and out of those the cor-
rectly identified ones. The proposed approach obtained 88.4%−92.4% reciprocal
cell pairs. The calculated accuracy, according to Eq. 2, is 81.7%− 91.8%

Acc. = found× Correct correspondences

Evaluated cells
(2)

4 Discussion

We propose a novel approach based on the Watershed algorithm and IPCR to
identify correspondences in the practical analysis of cells in tissue. We report
81.7% to 91.8% of correctly aligned cells in the preliminary evaluation and
outperform CPD (with default parameter settings), which suggests that our ap-
proach is feasible for cell correspondence analysis. For the data set 1 with 30%
deformation, both methods performed similarly. Comparing the registration of
different sized data sets (2 and 3), the proposed method obtained more correct
reciprocal cell pairs in both cases. An important observation is that CPD pro-
vides high accuracy at the center of the input, declining with the distance to the
center. The reason could be that CPD supposes the point sets are distributions
built by a Gaussian Mixture Model (GMM). This may be due the manual initial-
ization used in this study and the uniform distribution term incorporated within
the GMM by CPD, designed to accommodate outliers and missing correspon-
dences. However, minimal missing correspondences and outliers were present in
the data used in this study. Consequently, CPD is inferred to over-constrain
the registration process, and the here proposed approach thus resulted in higher
accuracy.

It is important to note that only a baseline is provided in this work. Currently,
the deformation is assumed to be affine, as appropriate for the given experiment,
where only translation and scaling are considered. Rotation and elastic defor-
mation could also be considered for more complex problems, which could be
particularly relevant for tissues that exhibit large deformations or strong re-
structurings of the cell neighborhoods. The optimization and termination could
be further improved by using the information on cell area and its connectivity
to other cells. Furthermore, the manual initialization could be replaced by an
automatic method, which would be useful for large data sets. For the analysis
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of tissues over long time scales, the algorithm should be augmented to account
for cell death and division (i.e. missing correspondences). In the context of these
challenges, image registration seems a particularly suitable approach.
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Abstract. Fluoroscopy is used in a wide variety of examinations and
procedures to diagnose or treat patients in modern pediatric medicine.
Although these image guided interventions have many advantages in
treating pediatric patients, understanding the deterministic and long
term stochastic effects of ionizing radiation are of particular importance
for this patient demographic. Therefore, quantitative estimation and vi-
sualization of radiation exposure distribution, and dose accumulation
over the course of a procedure, is crucial for intra-procedure dose track-
ing and long term monitoring for risk assessment. Personalized pediatric
models are necessary for precise determination of patient-X-ray interac-
tions. One way to obtain such a model is to collect data from a population
of pediatric patients, establish a population based generative pediatric
model and use the latter for skin dose estimation. In this paper, we gen-
erate a population model for pediatric patient using data acquired by
two RGB-D cameras from different views. A generative atlas was estab-
lished using template registration. We evaluated the registered templates
and generative atlas by computing the mean vertex error to the asso-
ciated point cloud. The evaluation results show that the mean vertex
error reduced from 25.2± 12.9mm using an average surface model to
18.5± 9.4mm using specifically estimated pediatric surface model using
the generated atlas. Similarly, the dose estimation error was halved from
10.6 ± 8.5% using the average surface model to 5.9 ± 9.3% using the
personalized surface estimates.

1 Introduction

In modern pediatric radiology, fluoroscopy is used to provide the physicians
dynamic and functional information of the patients’ internal organs, both in
diagnostic and minimally invasive surgery. However, as an ionizing radiation
based imaging modality, the use of fluoroscopy is associated with radiation re-
lated risks such as radiation-induced cancer. A retrospective study by Pearce [1]
showed a noticeably increased risk of leukemia and brain cancer when accumu-
lated dose reached a certain level in children. Therefore it is desirable to reduce
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X-ray exposure adhering to the as low as reasonably achievable (ALARA) prin-
ciple, particularly in pediatric patients, who are more sensitive to X-rays than
adults. One way to help facilitate dose reduction in the interventional suite is
to use digital patient twins to better model and monitor X-ray dose exposure.
An interesting practical application for such models is to keep track of the dose
deposition in the skin. Skin entrance dose estimation often comprises two steps:
(1) identification of the irradiated skin area, and (2) dose calculation based on
a forward projection of an online-measured dose-related quantity such as dose-
area-product from the X-ray source onto the skin surface. Previous studies have
shown progressive improvements concerning the accuracy of skin dose estima-
tion, but also highlight the importance of an accurate patient model [2]. An
interesting practical question is, how accurate a patient model has to be, such
that the skin dose estimate is reliable. This forms the basic motivation for the
current study, with the focus on pediatric patients. The associated task is chal-
lenging as the anatomy and physiology of children exhibits a significantly higher
degree of variation relative to adults. Models of pediatric patients are typically
generated using MRI (or in rare cases CT) scans, referred to as computation
or reference phantoms. While such phantoms are highly detailed and accurate,
they are difficult to obtain on a large scale as they usually require very high
resolution data and significant manual post-processing, e.g. for segmentation.
With the introduction of RGB-D cameras, using depth data to construct surface
models has become increasingly popular. While most efforts have been aimed at
modeling adults [3, 4, 5], Hesse et al. [6] investigated methods to generate infant
body models, using RGB-D image sequences.

In this work, we propose a method to build a generative atlas using two RGB-
D cameras. Using this atlas, a patient specific pediatric model can be estimated
using patient height and weight as input data. We evaluated the model both in
terms of model estimation accuracy, and its impact on skin dose estimation.

2 Materials and methods

2.1 RGBD imaging setup and data acquisition

Two Microsoft Kinect V2 cameras were used to acquire RGBD data from two
fixed, but different viewing angles. Children (n = 20) were asked to stand in front

Fig. 1. Data acquisition setup (left) and processing pipeline (right).
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of a wall in the target region of interest (ROI). Cameras were mounted on two
tripods and oriented such that the target ROI (complete child) was located in
the ISO center. The angle between the two cameras was set to be approximately
30deg. An illustration of the acquisition setup is shown in Fig. 1, left side. The
RGBD cameras are calibrated jointly using a calibration phantom to determine
distortion correction and obtain the intrinsic as well as the extrinsic camera
parameters. Besides the RGBD data, we further collected meta data (gender,
height, weight and age) of the children. In order to get most accurate height
and weight information, measurements were performed shortly before the image
acquisition. Gender and age of the children was inquired from the parents. The
data acquisition was voluntary and followed the rules set out by the European
General Data Protection Regulation. Each data set acquired and processed has
an associated consent form with signatures of both parents and the child, if
necessary.

2.2 Preprocessing

The data preprocessing pipeline is illustrated in Fig. 1. First, the point cloud of
a patient is reconstructed using both depth images from the two cameras. Two
point clouds are reconstructed separately using associated undistorted depth
images and the intrinsic camera matrix. These two point clouds are then aligned
using the extrinsic camera matrices. As the tripods may have moved accidentally
during the acquisition, we added an extra correction step performing a rigid
registration using coherent point drift (CPD) [7] to ensure that the point clouds
are aligned. Subsequently, the two point clouds of each child are merged. Next,
we determined the wall and floor planes using RANSAC with plane fitting and
removed these from the data. As the backs of the patients and the bottom of
their feet were occluded in the acquisition setup, we used the calculated wall and
floor planes to fill in the missing information. As not all patients were positioned
next to the wall, we had to manually align the reference wall planes to obtain
the missing data. Finally, we manually removed remaining artifacts, e.g., wide
clothes obstructing the body silhouette. The extracted region was adjusted for
cases where patients were positioned outside the target ROI.

2.3 Template fitting

Template fitting was used to extract a structured mesh for each preprocessed
point cloud, for atlas generation. The MakeHuman1 software was used to ini-
tialize a patient reference template. An iterative scheme was then used to fit
the reference to the cleaned-up point cloud. In each iteration, the reference was
registered to each point cloud using an affine, and subsequently, non-rigid trans-
formation (using CPD). As clothing and pose of the children varied significantly
in the training data, a high outlier rate was used in the CPD registration. CPD
tries to find a globally optimal solution when fitting the template to the point

1 http://www.makehumancommunity.org/
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cloud by performing a non-rigid deformation. Since the head-to-body-ratio of
children, however, changes with age, we decided to treat head and body trunk
separately.

Afterwards, the reference was again fitted to the separately registered point
clouds to ensure smoothness of the model. At the end of each iteration, the
reference was updated by calculating the mean shape of all fitted meshes. This
fitting process converged after a few iterations, and we took the result for each
point cloud as the associated ground truth mesh.

2.4 Atlas generation

The goal of atlas generation is to learn a generative model and estimate a person-
alized surface, based on a given height and weight of the child. For this purpose,
we used the ground truth meshes to compute a statistical shape model using
Principal Component Analysis (PCA), where P c encodes the modes of variation
and bci encodes the associated shape parameters. We then computed the PCA
space of the associated height and weight data. Unfortunately, the measured
data in the acquired datasets suffered from rank deficiency, making a regression
of shape parameters bci = f(hi, wi) in native PCA space insufficient to generate
a model having correct height hi and weight wi. Therefore, we used the mode
of variation P a learned from the adult CEASAR [8] database as an extra term.
Our aim was to find the associated shape parameters ba for a given height hi

and weight wi such that

xi = x̄+ P cbci + P abai (1)

argmin
ba

=
∑
i

(λ1‖ρV (xi)− wi‖+ λ2‖H(xi)− hi‖) + ‖∇ba‖ (2)

where ρ denotes the approximate body mass density of children, V (·) describes
the calculation of the input mesh volume, and H(·) represents the calculation of
the height of the input mesh, respectively. The gradient of the shape parameter
ensures smooth adaption. Minimizing this equation resulted in generation of an
estimated surface model which is in good agreement with the ground truth and
coherent with the associated measured data.

2.5 Skin entrance dose estimation

For validation purposes, we computed the accumulated skin entrance dose for
each surface model, focused on a central body region. The goal was not to sim-
ulate an actual interventional setup, but to focus on differences in skin dose
estimation resulting from the use of different models. The surface models were
placed within a virtual model of the imaging setup (source–object–detector) for
the dose simulations, comprising a homogeneous projection and view geometry of
the X-ray source and the model matrix of the patient, specifying its orientation
and position with respect to the X-ray beam. Based on the resulting model-
view-projection matrix, each mesh face was forward projected onto the detector
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plane if at least one associated vertex was positioned within the X-ray beam and
the face normal pointed towards the X-ray source making sure that only those
surfaces were considered that received radiation. The corresponding distance to
the X-ray source was given by the last homogeneous coordinate of each vertex.
Applying barycentric depth interpolation, the triangle in the image plane was
rasterized and the depth map was constructed iteratively [9]. The skin entrance
dose was then calculated by forward projecting a dose-related quantity measured
at the X-ray emitter onto the area of irradiation, taking additional correction
terms into account [2]. We evaluated the percentage error of the skin entrance
dose introduced by both surface estimation methods: 1) using an average surface
model, 2) using personalized surface models. Both types of surface models were
based on the atlas data. The template fitted to the original point cloud served
as ground truth.

3 Evaluation and results

In total, we gathered 20 point cloud sets with associated measurements. We first
evaluated the accuracy of the atlas generation pipeline by overlaying the atlas-
based estimate with the associated 3D point cloud and calculating the minimal
distance for each vertex. We performed a leave-one-out cross validation in which
the estimate was rigidly registered to the associated point cloud using CPD.
An illustration of color coded mean vertex error of the reference, estimate and
ground truth, is shown in Fig. 2. Using only the reference, an average distance
of 25.2± 12.9mm was achieved. The ground truth had an average distance of
15.3± 8.7mm. A mean vertex error of 18.5± 9.4mm was achieved using the es-
timate. The percentage error of the skin entrance dose using the template model
(for each sample compared to its ground truth) was estimated to 10.6± 8.5%.
The percentage error using models generated by the atlas (for each sample com-
pared to its ground truth) was 5.9± 9.3%.

Fig. 2. An illustration of mean vertex distance in mm to its merged point cloud using
the reference template late (left), estimation based on metadata (middle) and the fitted
template. Right: Visualization of dose estimation setup.
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4 Discussion

The proposed statistical atlas complements our adult atlas derived from the
CEASAR database. Both atlases yield comparable accuracy. Although the aver-
age error of approximately 2 cm will still contribute to a (skin) dose estimation
error, the proposed atlas is still an improvement when compared to a setup in-
volving only one single representation, (average) reference model, for all pediatric
cases. Our statistical atlas could also be used as a first estimate of a continu-
ously adapting model which refines itself after each new source of information,
e.g., provided by successive MRI scans. A possible improvement of the model-
ing pipeline would be to use a more robust point set registration method than
CPD. Although CPD introduces an outlier ratio, the underlying Gaussian mix-
ture model can not effectively model the point cloud in the present of extreme
or large percentage of outliers. Despite the successful application of the adults’
modes of variation to the children’s atlas, more representative modes of variation
of the children might improve the accuracy of the model further. In this atlas,
we used height and weight measurements only. We were not able to account for
gender and age of the children due to the rank deficiency in the dataset. This was
caused by the limited amount of training data collected. In future work, we hope
to be able to gather more data such that we can incorporate this information as
well, to further reduce the estimation error.

Acknowledgement. We gratefully acknowledge the support of Siemens Health-
ineers, Forchheim, Germany. Note that the concepts and information presented
in this paper are based on research, and they are not commercially available.
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Abstract. In this publication, a new blind motion correction algorithm
for magnetic resonance imaging for arbitrary sampling trajectories is
presented. Patient motion during partial measurements is estimated. Ex-
ploiting the image design, a sparse approximation of the reconstructed
image is calculated with the alternating direction method of multipliers.
The approximation is used with gradient descent methods with deriva-
tives of a rigid motion model to estimate the motion and extract it from
the measured data. Adapted gridding is performed in the end to receive
reconstruction images without motion artifacts.

1 Introduction

Artifacts caused by patient motion result in diagnostically unusable images mea-
sured by magnetic resonance imaging (MRI). These artifacts appear especially
as ghost replications of the object or image blurring. In many cases, motion can
be avoided by a motionless patient. But especially the motion of organs like lung,
liver, and heart can not be stopped for a long time and also swallowing can not
be suppressed effectively. To overcome these artifacts, techniques are developed
to either adapt the measurement process to the motion or compensate motion
afterwards.

In contrast to other method, blind motion estimation uses only information
about the motion hidden in the measurement. The main idea is not to restrict
oneself to periodical motion but also be capable of compensating spontaneous
motion. Based on the knowledge about the sampling trajectories many meth-
ods were developed to estimate the performed motion. Then, it is extracted
from the measurement data to reconstruct images without artifacts. One popu-
lar technique was proposed for rotated blade sequences by Pipe et al. [1] and is
implemented in current MR scanners. There, motion is estimated from several
partial measurements based on their correlation.

Former research showed that MR images can effectively be represented in
sparse domains. Sparsification reduces the artifacts appearing in those repre-
sentations. This was used to blindly estimate motion in [2]. The new proposed
algorithm measures the MRI k-space on arbitrary trajectories and combines the
ideas of sparsifying images and gradient descent algorithms. This leads to an
image reconstruction algorithm with very high reduction of motion artifacts.
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2 Materials and methods

In MRI, as the k-space contains sampled frequency coefficients, it can be inter-
preted as Fourier transform of the MR image. More exactly, one measurement of
the whole k-space is composed of partial measurements at intervals in time spec-
ified by trajectories. Let x(r) ∈ R

o×m be a two dimensional MR image with spa-
tial coordinates r = [r1, r2, . . . , rM ] ∈ R

2×M ,M = om and ri = [ri,1, ri,2]
T , i ∈

{1, 2, . . . ,M} with coordinate ranges ri,1 ∈ [0, o− 1], ri,2 ∈ [0,m− 1]
The Fourier transform of the image is described by Fx. Parts of the k-space

are sampled in consecutive time intervals indexed by n = 1, 2, . . . , N ∈ N The
read out is so fast that no motion occurs during these intervals. Let S(kn) be a
sampling operator at frequency coordinates kn belonging to all trajectory points
measured at time n. The frequency coordinates of the samples are defined by
kn = [kn,1,kn,2, . . . ,kn,Pn ] ∈ R

2×Pn with two-dimensional coordinates kn,q =
[kn,q,1, kn,q,2]

T , q ∈ {1, 2, . . . , Pn} in the ranges kn,q,1 ∈
[
− o−1

2 , o−1
2

]
, kn,q,2 ∈[

−m−1
2 , m−1

2

]
With it, the partial measurement yn(kn) ∈ C

Pn with Pn ∈ N

being the number of samples measured at this time n is given by yn(kn) =
S(kn)Fx

If patients move during a complete MR scan, the partial measurements rep-
resent a motion corrupted image each. This motion is modeled by the operator
Tθn

, where θn ∈ R
Θ, Θ ∈ N contains all motion parameters necessary to describe

the object motion from the first measurement at n = 1 to time n. In total, the
partial measurement model is given by yn(kn) = S(kn)FTθnx and the complete
measurement is y(k) = [y1(k1),y2(k2), . . . ,yN (kN )] with k = [k1,k2, . . . ,kN ]
Then, the reconstruction problem for the measured image x̂ ∈ R

o×m from all
partial measurements yn(k)n can be formulated as

x̂ = argmin
x

N∑
n=1

‖S(kn)FTθn
x− yn(kn)‖22 +

1

σ2
Φ(x) (1)

with a regularization term Φ(x) and 0 < σ ∈ R.

2.1 Rigid motion model

To model patient motion, we restrict ourselves to rigid motion. Therefore, we
need three motion parameters θn = [βn,1, βn,2, αn] in two dimensions. The trans-
lation operator is given by Dθn,1,θn,2

and the rotation is described by Rαn
. Then,

the complete motion operator is given by Tθnx = Dβn,1,βn,2Rαnx

Translationmodel From [2], for a shift βn,i = δn,i + γn,i with δn,i ∈ N, γ ∈
(0, 1], i ∈ {1, 2}, it is known that the translation transform is given by

Dβn,1,βn,2x = Dγn,1D
δn,1

1 x
(
D

δn,2

1

)T
DT

γn,2
(2)

with convolution matricesDγn,i
realising subpixel shift andD1 realising full pixel

circular shifts of the image.
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Rotation model The rotation of the image is described with a rotation matrix
Rαn

∈ R
2×2 which rotates the coordinates r of the image x. Afterwards, the

image is interpolated back onto the unrotated coordinates by barycentric inter-
polation I(x(Rαnr), r) [3] combined with Delaunay triangulation [4], to cope
with arbitrary spatial grids. In total, the rotation model is described by

Rαn
x = I(x(Rαn

r), r) (3)

2.2 Nonequidistant sampling scheme

To allow for any arbitrary sampling trajectory, the operator S is able to sample
any point kn,q ∈ R

2×1 in frequency domain. This sampling can be formulated
as nonequidistant discrete Fourier transform (NDFT) [5]

yn(kn,q) = S(kn,q)Fx(r) =

M∑
i=1

x(ri)e
−2πjkT

n,qri , q = 1, 2, . . . , Pn (4)

2.3 Regularization

Generally, MR images consist of clear structures and edges and should not show
noise. Especially, motion artifacts like ghosting appear as noise. So, the recon-
structed images are supposed to be sparse in the wavelet domain. Therefore,
the regularization term is chosen as Φ(x) = ‖Wx‖1 with W being the wavelet
transform. In the proposed setup, especially Daubechies wavelets are efficient.

2.4 Motion estimation gradient

Motion estimation is performed in a three-step iterative algorithm. It is based
on the assumption that MR images can be sparsely represented in the wavelet
domain. For each partial measurement n, separate motion parameters θ̂n are
estimated. The following algorithmic steps are iterated for each partial measure-
ment separately.

Sparsifying by alternating direction method of multipliers (ADMM)

The ADMM [6] solves (1) for fixed motion parameters θ̂n. It converges to the
sparsest image x̂ representing partial measurements yn∈Υ whereby Υ contains

all indexes n for measurements yn with already estimated θ̂n and the index of
the currently considered measurement.

Problem (1) is split into two separate minimization problems and is iteratively
updated by

x̂d+1 = argmin
x

∑
n∈Υ

‖S(kn)FTθn
x− yn(kn)‖22 +

1

λ2
‖x− x̄d+1‖22

x̄d+1 = v̂d − ud (5)

v̂d+1 = argmin
v

‖Wv‖1 +
σ2

λ2
‖v − v̄d+1‖22 , v̄d+1 = x̂d+1 + ud (6)

ud+1 = ud + x̂d+1 − v̂d+1 (7)
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with λ, σ ∈ R, ud,vd ∈ R
o×m and iteration index d ∈ N. The measurement

fitting problem (5) is solved by a conjugate gradient method [7] using the inverse
NDFT (INDFT) [6]. The sparsifying step (6) is performed by soft thresholding.

Motion estimation by quasi-Newton gradient descent Gradients of the
motion models (2), (3) with respect to βn,1, βn,2, and αn are optimized in a
quasi-Newton gradient descent with backtracking line search to estimate the
motion. The Boyden, Fletcher, Goldfarb, and Shanno update rule [7] is used.
The translation gradient is additionally parameterized by convolution with a
Gaussian model.

Three gradient descents are calculated on the sparse image x̂ until an update
for θ̂n,An with An ∈ N being the iteration number per partial measurement
is given. First, the rotation gradient is evaluated to get a first estimation for
α̂n,a, a = 1, 2, . . . , An ∈ N With a sparse image temporarily rotated by α̂n,a,
the translation estimation gradient is applied in the quasi-Newton manner for
both directions β̂a

n,1, β̂
a
n,2 Finally, starting from the former estimations, all three

motion parameters are estimated in one gradient for rotation and translation.

Motion update The estimated motion is added to a global motion θ̂n =
θ̂n,An

=
∑An

a=1 θ̂n,a The sampling trajectory coordinates per partial measure-

ment are updated by rotation with α̂n,An , and image translation [β̂n,1,An
, β̂n,2,An

]
is updated in its frequency coefficients by phase shifts.

2.5 Image reconstruction

Finally, the global translation [β̂n,1, β̂n,2] per partial measurement n is corrected
by a phase shift in k-space. Afterwards, the global rotation per partial measure-
ment is compensated by rotating the frequency coordinates by the estimated
angle α̂n with k̂n = Rα̂n

kn In total, we get translation corrected frequency

coefficients ŷn(k̂n) which belong to rotated sampling coordinates in k-space.
The final reconstruction is done by gridding to avoid blurring caused by the

INDFT. We follow the gridding scheme of Pipe et al. [8]. With it, the recon-
struction is described by

ỹ (kg) =
(((

ŷ
(
k̂
)
wω

(
k̂
))

∗ c
(
k̂
))

g (kg)
)
∗−1 c (kg) (8)

with kg ∈ R
2×g being new grid coordinates with the same ranges as k. The

weighting function wω(k) is calculated iteratively by wω(k) = wω−1(k)/(wω−1(k)∗
c(k)), w0(k) = 1, ω ∈ N. With it, sampling coefficients are weighted by an area
density compensation function to equalize the sample contribution to the new
sampled coefficients.

The kernel c(k) was analytically designed as described in [9] to optimize the
reconstructed image in a circular field of view (FOV). It is given by

c(kn,q) =

(
J1
(
m
2 π |kn,q|

)
mπ |kn,q|

)2

(9)
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with J1 denoting the Bessel function of first kind and order.
By convolution with the sampling function g(kg) the data is sampled onto a

new grid kg. In contrast to former time consuming propositions by Johnson et
al. [9], we calculated all convolutions effectively using KD-trees [10].

Deapodization as inversion of the kernel convolution is realized in the image
domain by dividing by the pseudoinverse of the kernel to remove aliased sidelobes
of the image kernel. If the grid kg is Cartesian, the reconstructed image x̃ is
gained by inverse discrete Fourier transform of ỹ.

2.6 Test setup

As the algorithm is built for arbitrary sampling trajectories, we exemplarily
used periodically rotated overlapping parallel lines with enhanced reconstruction
(PROPELLER) to evaluate the proposed algorithm. The k-space is divided into
rectangular blades of the same size consisting of parallel lines. The blades are
rotated around the k-space center in uniform angles. Pipe proposed the blades
to contain m equidistant samples per line and l = πm

2N lines for a circular FOV
[11]. The motion was modeled as an autoregressive moving average process with
maximal amplitude given to simulate a smooth patient motion for each motion
parameter. It is sampled at N positions to extract each θn. Test images were
the Shepp-Logan phantom in a FOV with a diameter of m = 160 and Brainweb
simulations [12] in a FOV with a diameter of m = 455.

3 Results

Two reconstruction examples are given in Fig. 1. The Brainweb image was trans-
formed by smaller motion and image details are reconstructed. The Shepp-Logan
phantom was corrupted by large motion. No image, only motion artifacts are vis-
ible in the corrupted scene, but the image is reconstructed very well. Only a few
gridding artifacts are visible. In Tab. 1, the mean percental improvement of the
image quality measures peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and mutual information (MI) calculated between the motion corrected
and ground truth Shepp-Logan phantoms. The results for several numbers of
partial measurements, maxima of translation and rotation are shown. High rates
of improvement are reached. For Brainweb, similar results were gained.

Fig. 1. Left to right: Brainweb image corrupted by motion with βn,1, βn,2 ≤ 5, αn ≤
π
6
, N = 5; motion compensated Brainweb image; Shepp-Logan phantom corrupted

with βn,1, βn,2 ≤ 30, αn ≤ π
6
, N = 8; motion compensated Shepp-Logan phantom.



Blind Motion Estimation 133

N Trans Rot PSNR SSIM MI

5 5 π/4 4.35 2.87 8.50

8 10 π/6 6.73 4.97 23.99

5 30 π/4 6.73 4.82 28.08

6 30 π/4 8.08 5.32 30.06

6 30 π/6 9.74 5.36 23.28

Table 1. Percental improvement
of the quality measures PSNR,
SSIM, MI for N partial mea-
surements with maximum trans-
lation (Trans) and maximum ro-
tation angle (Rot) on the Shepp-
Logan phantom.

4 Discussion

The motion compensation algorithm reaches reconstructions without motion ar-
tifacts and with a lot image details even for large motion. For small motion,
image details are reconstructed even better. Only gridding artifacts remain in
the images caused by low resolution. Overall, image quality measures are highly
improved. A higher number of partial measurements comes with better motion
compensation even if the number of samples per measurement gets smaller. With
this blind motion compensation algorithm a new design for motion compensation
for arbitrary sampling trajectories is given. Improvements could be reached by
expansion to natural elastic motion and further reduction of gridding artifacts.
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Abstract. Open gantry C-arm systems that are placed within the in-
terventional room enable 3-D imaging and guidance for stroke therapy
without patient transfer. This can profit in drastically reduced time-to-
therapy, however, due to the interventional setting, the data acquisition
is comparatively slow. Thus, involuntary patient motion needs to be es-
timated and compensated to achieve high image quality. Patient motion
results in a misalignment of the geometry and the acquired image data.
Consistency measures can be used to restore the correct mapping to
compensate the motion. They describe constraints on an idealized imag-
ing process which makes them also sensitive to beam hardening, scatter,
truncation or overexposure. We propose a probabilistic approach based
on the Student’s t-distribution to model image artifacts that affect the
consistency measure without sourcing from motion.

1 Introduction

Modern C-arm systems enable 3-D imaging of the head in an interventional envi-
ronment. This is of high relevance in neuroradiology, where a 3-D reconstruction
allows to distinguish an ischemic from hemorrhagic stroke. The patients benefit
from reduced time-to-therapy [1] but the open gantry system and the interven-
tional setting constrain the acquisition speed compared to conventional Com-
puted Tomography (CT). With prolonged scan time, involuntary movements of
patients constitute a major challenge for high quality image reconstruction.

This gives rise to a strong need for motion compensation algorithms [2]. In
recent years, consistency conditions have been shown to be promising in this
context [3, 4]. Besides the compensation of motion, consistency measures are
heavily used in cone-beam CT, as they provide a mathematical model constrain-
ing the imaging process. The most commonly applied consistency measure uses
Grangeat’s theorem to judge the pairwise consistency of two projections.

The measure was successfully applied for the correction of a variety of ac-
quisition artifacts. Beam hardening can be corrected by projection linearization
using a polynomial model. The parameters for the model are found by optimizing
for Grangeat’s consistency [5, 6]. Hoffmann et al. used Grangeat’s consistency to
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estimate parameters of an additive scatter model [7]. The consistency measure
can also be used to estimate missing data due to truncation for field of view
reconstruction [8] and possibly to the closely related problem of overexposure
correction [9]. The most widely use of Grangeat’s consistency is the estimation
of geometry information that is distorted either due to rigid patient motion or
geometry jitter [3, 4, 10]. The reason for its wide applicability is the sensitivity
of the consistency measure to a variety of image artifacts. Thus, when we use
the consistency measure to compensate for motion, we also measure the incon-
sistency induced by other sources. In this work, we propose to use a statistical
model to handle inconsistencies that are not originating from motion artifacts.

2 CIV look-up-table

In cone-beam imaging, a line profile l on the detector plane is created by attenu-
ated X-ray beams within a plane p connecting the X-ray source and l. Grangeat’s
theorem describes a transformation, to find a common value — we denote it as
Consistency Intermediate Value (CIV) — that can be computed either from l,
or the 3-D Radon value indexed by p [11]. Formally, the derivative of the 3-D
Radon value in the normal direction of p equals a transformed value of l. As a
consequence, any pair of epipolar lines can be used as a consistency measure by
computing their respective CIVs, which must be equal. All CIVs can be precom-
puted as a look-up-table (LUT) by a concatenation of cosine-weighting, Radon
transform and derivative. As a result, from each projection we obtain a CIV
look-up-table as depicted in (Fig. 1).

Using the geometry information, we can sample CIVs [11] as visualized in
(Fig. 1). Here, the dark blue dotted line corresponds to a correct sampling, where

Fig. 1. LUT of two projections containing CIVs and corresponding lines visualizing the
sampling of redundancies based on the given geometry information. The CIVs along
corresponding lines in the left and right LUT, e.g. along the dotted lines, should be
equal (Fig. 2 for a visualization of line profile). True geometry (dotted), z translation
(dashed), x rotation (chained) and y translation (solid).
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the geometry information is consistent with the acquired projection data. The
profile of the sampled line is shown in (Fig. 2). If the geometry information is
corrupted then the sampling pattern changes, as visualized by the solid line in
(Fig. 1). The corresponding sampling profile is shown in (Fig. 2). Due to the
misalignment, the profiles sampled from both LUTs, corresponding to two pro-
jections, do not match anymore. This is used to restore the correct geometry by
minimizing the difference between two profiles and in turn maximizing the con-
sistency. However, the profiles of two projections with perfect geometry will not
match exactly (Fig.2), because other acquisition artifacts reduce the consistency.
We propose to model these artifacts using a probabilistic approach.

3 Student’s t-distribution-based maximum likelihood
estimation for consistency optimization

Instead of assuming two CIVs to be equal, we propose a Bayesian description
of the matching problem. We assume that the sampled CIV of projection a is a
random variable x, distributed according to a Student’s t-distribution with mean
μ, variance σ and a shape factor ν

p(x|μ, σ, ν) =
Γ ( ν+1

2 )√
ν π Γ ( ν2 )σ

(
1 +

(x− μ)2

ν σ2

)− ν+1
2

(1)

where Γ is the gamma function. We use a t-distribution, because it can model our
inherently outlier-affected sampling process (Fig. 3). We assume that the mean
of the random variable is the CIV of our second projection image b described
by Sb(h(κ)). Here Sb is the LUT generated from projection b, and h(·) defines a
function that maps an angle κ to a corresponding value in the LUTs as displayed
in (Fig. 1). A detailed explanation on the function h(·) can be found in [11].

The motion compensation can then be formulated by finding the parameters
of a probability density function that results in the greatest likelihood, or alter-
natively minimizing the negative log-likelihood. By setting the random variable
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Fig. 2. Profiles along the LUTs for correct and motion-affected geometry. The profiles
are sampled along the true geometry and the geometry affected by a translation in y
direction as depicted in (Fig. 1).
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x as Sa(h(κ)) the maximum likelihood is defined by

min
∑
κ

− ln (p(x|μ, σ, ν)) = min
∑
κ

ν + 1

2
ln

(
1 +

(Sa (h(κ))− Sb (h(κ)))
2

ν σ2

)
(2)

For similar objects (e.g. head) and a given system, the distribution will always
be similar. Thus, the unknown parameters ν and σ can be estimated from a
motion free prior scan (not identical to the scanned object) by accumulating the
distances within the CIVs given by

∑
κ Sa(h(κ))−Sb(h(κ)). In a second step we

fit a Student’s t-distribution to the data. This is depicted in (Fig. 3), where we
can see that the t-distribution properly fits to the data: outliers are modeled by
its approximately constant tails. For comparison, fitting a Gaussian distribution
leads to a very high standard deviation (σ = 29) due to the outliers.

4 Experiments and results

4.1 Experimental Setup

To evaluate our method, we compare our norm, derived as the log-likelihood of a
Student’s t-distribution (σ = 0.398, ν = 0.8228) with the L2 norm, which is the
log-likelihood assuming a Gaussian distribution and the more robust L1 norm.
We apply them for the compensation of axial motion (z) modeled with splines.
Thus, each projection is shifted in the z direction by the amount of the spline
at that projection index. The spline shape is controlled by 12 nodes, whose
values are determined randomly in the range of ±0.5 mm. We use z-motion,
because z-translations produce inconsistencies. In contrast, motions within the
acquisition plane do not necessarily violate the consistency measure [3, 4]. We
show our results on three phantoms (Fig. 4.1), acquired with a robotic C-arm
system (Artis zeego, Siemens Healthcare GmbH, Germany).

4.2 Motion Compensation

We use a simplex method to find the motion-compensated geometry. We itera-
tively optimize each node of a spline separately, assuming all other spline nodes
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Fig. 3. Histogram of distances between corresponding CIVs from two projections
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constant. For each dataset, we model a different motion trajectory. The induced
motion trajectory is displayed in (Fig. 5) for all the three datasets, with the
estimated motion curves using the respective norms.

4.3 Results

The motion-estimated reconstruction using the proposed method is displayed in
(Fig. 4.1) together with the motion-affected reconstruction. The mean distance
between the estimated and ground truth motion parameters are displayed in
(Tab. 1). Using the proposed norm, we achieve the best results in restoring the
motion parameters. The second best estimation is achieved using the robust L1

norm. Using the L2 norm the consistency and the motion parameters can only
be poorly approximated. A visual inspection of the parameters is provided in
(Fig. 5). The L2 norm especially fails to approximate the areas at the beginning
and end of the trajectory. The motion structure in the middle is approximated
in its structure, although, with a great offset.

a ã b b̃ c c̃

Fig. 4. Central slices of three reconstructed anthropomorphic head phantoms (HU
[-200,400]). Motion-compensated reconstruction using the proposed method (a,b,c) and
reconstruction with motion artifacts ranging from ±0.5 mm (ã,b̃,c̃).
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Fig. 5. Splines describing motion trajectory for datasets a (top), b (middle) and c (bot-
tom). Each subplot shows the ground truth motion (solid) and the estimated motion
using the proposed norm (dotted), the L1 norm (dashed) and the L2 norm (chained).
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Dataset a [mm] b [mm] c [mm]

Proposed 0.0057 0.0044 0.0048

L1 0.0152 0.0158 0.0077

L2 0.5044 0.6167 0.4268

Table 1. Mean distance between esti-
mated and ground truth motion curves.

5 Conclusion

We propose a statistical description for evaluating the consistency of a trajectory.
We model the consistency value as a Student’s t-distribution and find the optimal
geometry by minimizing the negative log-likelihood. Consequently, we derive a
robust norm for the comparison of consistency values, insensitive to outliers
which naturally arise due to physical effects. The proposed solution outperforms
the L1 and L2 norm. The L2 norm is very sensitive to outliers which pose it
improper. In the current approach, we fixed the parameters of the t-distribution.
Each projection pair reveals a different outlier-characteristic due to the scanned
object. Thus, the precision might be enhanced by estimating projection pair
dependent parameters for the Student’s t-distribution.

Disclaimer. The concepts and information presented in this paper are based
on research and are not commercially available.
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Abstract. In this paper, we present an alternating retrospective MRI
reconstruction framework based on a parametrized motion model. An
image recovery algorithm promoting sparsity is used in tandem with a
numeric parameter search to iteratively reconstruct a sharp image. Addi-
tionally, we introduce a multiresolution strategy to restrict the numeric
complexity. This algorithm is then tested in conjunction with a simple
motion model on simulated data and provides robust and fast reconstruc-
tion of sharp images from severely corrupted k-spaces.

1 Introduction

In the context of medical imaging, magnetic resonance imaging (MRI) is partic-
ularly sensitive to patient movement during data acquisition. Even though the
scanning process was sped up considerably during recent years through improve-
ments of scanner hardware and image recovery algorithms, the duration of a full
scan often is prohibitively long even for cooperative patients. In addition, some
involuntary movements – such as pulsatile expansions and contractions due to
blood flow or intestinal peristalsis – are impractical to stop for a scan.

Autofocussing recovery algorithms, used to reduce these motion artefacts,
require only the data measured in a conventional scan and approximate motion
and recover the sharp image by minimizing some error metric after the scan is
finished. Algorithms utilizing autofocussing do not require specialized scanner
hardware nor do they influence the measurement or increase acquisition time.
Generally, these approaches utilize the gradient of an error function for image
updates while regularizing the motion parameters over time (e.g., in [1]). How-
ever, up to this point, blindly retroactively removing nonaffine motion remains
an open challenge. As these models might not be readily differentiable, prior
approaches employing gradients are not readily applicable.

We propose a general framework for such an algorithm that allows us to
fit arbitrary parametrized motion models in a blind MRI reconstruction. We
employ a novel regularization scheme using path searching algorithms to find
suitable time-dependent parameter sets. By iteratively approximating the image
using a sparse recovery approach and numerically updating the motion model,
the unknown motion is compensated effectively.
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2 Methods

Let x ∈ R
M2

be a vectorized square image and Dθ a known motion model.
Generally, Dθ can be understood as a linear transform matrix of size M2 ×M2

with an underlying structure compactly described by a set of parameters θ ∈ R
T .

In MRI, read-out trajectories through k-space are acquired nearly instantly.
If we measure N trajectories described by k-space coordinate vectors fn with
n ∈ {0, 1, . . . N − 1}, we are interested in the deformation of the image Dθx at
N points in time and therefore affected by N distinct motion parameter sets θn.

The whole measurement can be described with a k-space data vector y =
[y0, . . . ,yN−1]

T . Each yn ∈ C
Un represents a partial measurement of the k-space

acquired by the trajectory through frequency coordinates fn with a number of
captured coefficients Un � M2 defined by yn = FfnDθn

x. In this, Ffn is a

partial Fourier transform which can be expressed as a C
Un×M2

matrix.
Disregarding Dθ in the reconstruction of x will lead to ghosting artifacts

which degrade image quality and, in the worst case, will make the resulting
image unfit for medical evaluation. The exact recovery of x requires the approx-
imation of the underlying motion. In blind MRI image reconstruction, where no
additional data is acquired, we are left with the partial measurements yn and
the corresponding fn and tasked with the simultaneous approximation of both
image and the motion through Θ = {θ0, . . .θN−1}.

2.1 Optimization scheme

The objective function of our reconstruction problem can generally be – and, in
comparable approaches, is – expressed as

fΘ̃,x̃ =

N−1∑
n=0

‖FfnDθ̃n
x̃− yn‖22 (1)

for a fixed measurement y. To jointly approximate image and motion parameters
we split the optimization problem into an alternating algorithm in which we
iteratively reduce the artifacts corrupting y and fit the motion model to better
describe the updated image. Beginning with some arbitrary starting points x0

and Θ0 we seek an updated image through

xk+1 = argmin
x̃

fΘk,x̃ + αRx(x̃) (2)

where k ∈ {0, 1, . . .K − 1} is the current iteration with a maximum number of
iterations K. Since the problem is ill-posed, Rx is a regularization term for the
image with Lagrange multiplier α. We then seek an updated motion parameter
set through

Θk+1 = argmin
Θ̃

fΘ̃,xk+1 s.t. Θ̃ ∈ Ψ (3)
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which fits the parameter set to the updated image. Since acquisition time in MRI
is generally short, we expect that the motion state does not change too much
between consecutive time steps. To quantify this change, we define a distance
function φ(·, ·) which is used as a difference measure of parametrized motion
states. Using this, we define a set of admissible motion parameter sets

Ψ = {Θ | φ(θn,θn−1) < τ ∀ n ∈ {1, . . . , N − 1}} (4)

with a maximally allowed distance between time steps τ .
We will now describe the two update steps and their motivation in greater

detail while providing some implementation details.

2.2 Image reconstruction

The optimization probem in Eq. (2) is regularly found in literature and research
concerning sparse data recovery. In the latter, the regularization term is chosen
so that structure of the underlying data is exploited and a solution is chosen
which is sparse in a transform basis.

Using this approach, we chose Rx(x) = ‖Wx‖1, where W ∈ R
M2xM2

is an
invertible wavelet transform matrix. It is well known from literature that natural
images can be represented sparsely in the wavelet domain. Since the ghosting
artifacts afflicting the image reduce its sparsity, we can expect to improve image
quality by this approach.

Thus, Eq. (2) is an unconstrained convex optimization problem which can be
solved in numerous ways. Because of the size of the involved system matrices, al-
gorithms requiring system matrix inversion are not feasible for larger images. We
instead use the (scaled) alternating direction method of multipliers (ADMM)[2]
to find a solution iteratively.

Using the ADMM framework, the problem can be decomposed into an alter-
nating algorithm consisting of the three sub-steps

uj+1 = argmin
ũ

N−1∑
n=0

||FfnDθ̃n
ũ− yn||22 +

λ

2
‖ũ−

(
vj +wj

)
‖22 (5)

vj+1 = Tα/λ
(
W
(
uj+1 +wj

))
, wj+1 = wj + uj+1 −W−1vj+1 (6)

starting from some arbitrary u0, w0 and v0 with j denoting the iteration and
λ being the penalty parameter of the augmented Lagrangian. With a soft-
thresholding function Tz(·) with threshold z, the updates for vj+1 and wj+1

are trivial. The update of uj+1 can be solved using convex optimization – we
used a conjugate gradient descent to find an update.

2.3 Motion update

The optimization of Θ is unfortunately not straight-forward for arbitrary mo-
tion models Dθ. Since we seek a general solution independent of the underlying
motion model, we cannot optimize using convex optimization.
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The objective function Eq. (1) however can be split into a number of N
smaller problems by splitting the sum. For a fixed measurement and image ap-
proximation we end up with

f̂n
θ = ||FH

fnyn −Dθx
k+1||22 (7)

By defining a search space for the parameter set, we can then numerically eval-
uate every partial objective function f̂n

θ on possible values for θn and look for
the set that minimizes Eq. (1) while being in Ψ .

To sample the partial objective function with respect to θ, we create a pa-
rameter lattice Ω ⊂ R

T . We approximate a maximum absolute value Gt and a
step size γt for each value in the parameter representation θt, so that we end up
with

Ω =

{
T−1∑
t=0

atθt | at ∈ {−Gt,−Gt + γt, . . . , Gt}
}

(8)

The parameters Gt and γt are crucial for the algorithm, as they define the
maximum value for every parameter as well as its resolution.

Using a linear index v ∈ {0, 1, . . . , V − 1} with V =
∏T

t=0

⌈
2Gt

γt

⌉
we then

calculate the error term for every motion state ωv on the lattice and collect
them into a matrix Q ∈ R

NxV with entries qn,v = f̂n
ωv
.

The update of Θk reduces to a path search problem through Q. We use a
modified variant of the Viterbi algorithm [3], but other path search algorithms
might be applicable as well.

For the path search algorithm, we initialize a path storage p0,v = v , state
transition sets βv = {ωh | φ(ωv,ωh) ≤ τ}, and a path error matrix E ∈ R

N×V

with entries e0,v = q0,v. We then update paths and error matrix by

p̃v = argmin
c ∈ βv

[en−1,c] , en,v = en−1,p̃v
+ qn,v, pn,v = [pn−1,v, p̃v] (9)

while iterating through n = {1, . . . , N − 1}. The optimal path pj,N−1 corre-
sponding to the smallest eN−1,v then defines the updated motion parameter set
by Θk+1 = {ωpj,0

, . . . ,ωpj,N−1
}. This formulation allows us to find the optimal

path in O(V N), once Q is calculated.
Due to the nature of Q, accurately approximating a large number of param-

eters in a big region would be infeasible using this approach. However, if the
partial objective functions are smooth enough for a step size γt we can utilize
a different approach. Refining the grid between iterations by progressively low-
ering Gt and γt and centring the search space on Θk−1 – that is, evaluating
qn,v = f̂n

(ωv−−θk−1
n )

– yields a multiresolution approach. This approach will fail

if the partial objective function changes too rapidly for a step size γt, which
depends on the motion model and the underlying image.

Regardless whether the grid is refined or not, the update formulation comes
with a slight caveat: The resulting motion set is ambiguous in that everyΘ which
fulfills yn = FfnDθn

Dξx is a possible solution. In essence, we cannot directly
influence the stating state of x, which might still be warped with a constant
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bias motion Dξ. Although this might be unproblematic in practical situations,
we circumvent this problem after the final iteration of the algorithm. Modifiying
ΘK−1 with a bias term κ ∈ R

T yields a final set Θ̂ = {θK−1
0 −κ, . . . ,θK−1

N−1−κ}
so that Dθ̂0

I = I and the image at n = 0 is recovered.

2.4 Test setup

Up to this point, we have outlined a reconstruction framework for arbitrary
motion. The model used during recovery are part of ongoing research. However,
we evaluate the performance using a simple model to provide preliminary results.

We used PROPELLER [4] (Periodically Rotated Overlapping ParallEL Lines
with Enhanced Reconstruction) as a k-space acquisition scheme with 50 blades.
Translational movements of the underlying image between blade acquisitions
were used to corrupt the measured k-space. This motion model results in a very
small set of parameters (T = 2) and an intuitive parameter distance function
φ(θa,θb) = ‖θa − θb‖2. As a base image, we used a simulated tomography of
the human brain [5] with a size of 150× 150 pixels.

Approximately smooth random motion curves were used with a varying max-
imum amplitude of θmax.

Preliminary numerical evaluations show the partial objective functions to be
almost convex in a region around the true minimum. Therefore, we utilize mul-
tiresolution and refine the lattice between iterations. Starting with a maximum
allowed motion of Gt = 30 pixels and step size γt = 3 for both parameters, both
were halved every three iterations. The maximum number of iterations was fixed
to K = 18. The starting step size was found to be inconsequential and fixed to
γt = 3. The maximum parameter distance τ was set to 2/10 ·Gt.

Parameters concerning image recovery were chosen empirically – we used
a separable wavelet transform with a Daubechies mother wavelet, a shrinking
parameter α = 1/2 and an ADMM penalty parameter of λ = 1.

For error measurements we used an l2-norm between base image and recon-
struction to quantify the recovery error as well as the structural image similarity
measure (SSIM) and total variation (TV) for artefact quantisation.

3 Results

Fig. 1 shows the simulated data prior to the algorithm and after its final iteration.
Sharp images are recovered even from harshly corrupted k-spaces, while the
iterative approach allows for the improvement of images with θmax > Gt. We
expect the image to further improve with more iterations of the algorithm.

Fig. 2 shows the error measurements at the last iteration of the algorithm
(after about 5 minutes) for different θmax. As expected, the l2-error is robustly
decreased for all θmax, yielding near perfect results for small movements while
SSIM is increased. Note that PROPELLER oversamples central regions of k-
space while undersampling edge regions, which in itself yields an l2-error even
for unmoving subjects. Although preliminary, these results indicate robust per-
formance of both the base algorithm and its multiresolution expansion.
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Fig. 1. Corrupted image and reconstruction for two maximal motion amplitudes.

(a) θmax = 10 (b) Reconst. (c) θmax = 40 (d) Reconst.

Fig. 2. Error values for images before (cross) and after (square) reconstruction.
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4 Discussion

In our algorithm, the parameter set of an a-priori defined motion model is ap-
proximated using partially sampled k-spaces. It can be used to find a robust
approximation of both sharp image and corrupting motion simultaneously. Al-
though it can be computationally intensive, we propose a scheme to find a good
solution with a reduced number of numeric evaluations using multiresolution.
The development of suitable low-parametric motion models is subject of ongo-
ing research.
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Abstract. Digital subtraction angiography is an important method for
obtaining an accurate visualization of contrast-enhanced blood vessels.
The technique involves the digital subtraction of two X-ray images, one
with contrast filled vessels (fill image) and one without (mask image).
Unfortunately, artifacts that are introduced due to the subtraction of
misaligned mask and fill images may potentially degrade the diagnos-
tic value of an image. The techniques used for correcting such artifacts
involve the use of affine image registration techniques for aligning the
mask and fill images and image processing techniques for suppressing the
artifacts. Although affine registration techniques often yield acceptable
results, they may fail when the imaged object undergoes 3D transforma-
tions. The techniques used for suppressing artifacts may cause blurring,
when a projection image can no longer be corrected using a globally uni-
form motion model. In this paper, we have introduced an optical-flow
based local motion compensation approach, where pixel-wise deforma-
tion fields are computed based on an X-ray imaging model. A visual
inspection of the results shows a significant improvement in the image
quality due to a reduction in the artifacts caused by misregistrations.

1 Introduction

Digital subtraction angiography (DSA) is an important technique to enable a
detailed structure assessment of blood vessels without the potentially compro-
mising effect of anatomical background information. The technique is based on a
digital subtraction of a non-contrast-enhanced native image (mask image) from
a corresponding image with contrast-enhanced vascular structures (fill image).
To account for the exponential attenuation of the imaged object, the digital
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subtraction is usually carried out after applying a logarithmic transformation
on the mask and fill images. Unfortunately, if the mask and the fill images are
not spatially aligned, e.g., due to patient motion, DSA images may be affected
by misalignment artifacts. When these artifacts are present in regions with con-
trast enhanced vascular structures, the diagnostic value of the images may be
compromised.

Commonly used approaches to correct such artifacts involve the application
of geometrical transformations accounting for shifts caused by patient move-
ment [1, 2, 3]. Deuerling-Zheng et al. [4] have proposed and analyzed methods
to detect local motions in DSA sequences and the application of pixel-shifting
and block matching to correct motion artifacts. Ionasec et al. [5] have presented
a method for a rigid motion compensation that optimizes the physical position
and orientation of a C-arm X-ray device using an image based registration ap-
proach. Since X-ray images are projections of 3D objects, it may not be possible
to accurately represent a 3D motion using 2D affine transformations. Moreover,
due to a variation in the amount of noise present in images acquired at different
dose levels, current techniques may have a significantly decreased performance,
particularly at low-dose levels. Extensive calibrations and parameter tuning may
be required to adapt the techniques to different dose levels. In this paper, we
propose the use of a novel optical-flow based approach to perform a deformable
registration of the mask and the fill images. The approach relies on a realistic
X-ray imaging model to reduce the influence of noise on the registration process
and therefore allows a robust application even at varying dose levels.

2 Materials and methods

X-ray images are corrupted by noise from various sources, e.g., Poisson noise,
electronic noise and quantization noise. Depending on the imaging situation,
different gains are applied [6]. In this section, we have presented an algorithm
designed to minimize the impact of the signal-dependent noise on the outcome
of an image registration. After stabilizing the noise variance to a known constant
based on an image formation model, we have computed the deformation vectors.

2.1 Image formation and noise model

We have made use of the imaging model proposed in [7]. According to the model,
X-ray images are corrupted by signal-dependent quantum noise and signal inde-
pendent electronic noise. The model can be represented by

y[i, j] = α · x[i, j] + h+ η[i, j] (1)

where y[i, j], x[i, j] and η[i, j] represent the observed gray value, quanta and
electronic noise at the particular location [i, j], respectively, and α and h rep-
resent the system gain and the system offset, respectively. The quantum noise
associated with x can be approximated using a Poisson distribution and the elec-
tronic noise η can be approximated using a Gaussian distribution with a specific
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standard deviation σ. The overall signal-dependent noise may negatively influ-
ence optimization problems, such as denoising and registration, when applied in
the image domain. This may, in turn, result in undesirable artifacts. In order to
remove the signal dependency of the overall noise present in the images, we use
the generalized Anscombe transform (GAT) [8] on the images to transform the
noise in the images to unit variance σ2

n More formally, we apply the GAT on ym
(mask image) and yf (fill image) to obtain Ym and Yf , respectively.

2.2 Deformable registration of mask and fill images

An affine 2D transformation in the projection space may not be sufficient to
represent either a change in the 3D orientation of an object or in the angula-
tion of an imaging device. A better representation of the geometrical situation
and therefore a better registration, can be achieved by estimating pixel-wise de-
formation vectors. For this, we have used the optical flow estimation approach
proposed in [9], which is based on minimizing the objective function

E(ui, vj) =

∫ (√
(Ym(p+ wp)− Yf (p))

4
+ ε+ λ

√
(|∇u|2 + |∇v|2)2 + ε

)
dp

(2)
in the continuous spatial domain, where p = (i, j) is the image lattice, wp(p) =
(ui(p), vj(p)) represents the underlying flow field and ui(p) and vj(p) represent
the horizontal and vertical components of the flow field associated with the pixel
location [i, j], respectively, λ is a parameter that controls the importance of the
regularization term and ε = 10−6 Since the objective is highly non-convex, a
coarse-to-fine refining scheme on a dense Gaussian pyramid with image warp-
ing can be used to avoid local minima [9]. In order to obtain the flow fields,
an iterative reweighted least squares approach can be applied on a discretized
formulation of Eq. 2. The deformed pixel elements in the mask image can then
be computed from the flow fields by

Y ′
m[i, j] = g(Ym[i+ u, j + v]) (3)

where Y ′
m and g(.) represent the transformed mask and a cubic interpolation

function, respectively. Even though the solution is expected to converge to a
minimum, it may be difficult to achieve, when there are significant differences
between the images used in the registration. In such cases, the algorithm might
compute incorrect deformation fields for the mask images, which may result in
anatomical artifacts, such as missing or blurred vessels in DSA images. To reduce
this effect, we propose a correction mechanism that depends on the similarity of
the local means of the input mask and the transformed mask and the local stan-
dard deviations of the transformed mask and the fill images in regions without
contrast agent. This similarity measure can be represented by

e−wσi,j
×wμi,j < τ (4)

with wσi,j = |σ(y′
mi,j

− yfi,j)−
√
2× σn| and wμi,j

= |μ(y′
mi,j

− ymi,j
)|
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where y′
mi,j

, ymi,j
and yfi,j represent k×k regions around Y ′

mi,j
, Ymi,j

and Yfi,j ,
respectively, σn and τ represent the standard deviation of noise in Ym and a
threshold for distinguishing between acceptable and unacceptable registrations,
respectively, and σ(.) and μ(.) represent functions for calculating the standard
deviation and the mean of a region, respectively. In order to choose τ independent
of the used X-ray dose, we have scaled the noise variance stabilized images to
the same range and modified σn accordingly. When wμi,j

and wσi,j
in Eq. 4

are close to zero, the transformation may not introduce artifacts since y′
mi,j

is expected to be similar to ymi,j
and well registered with yfi,j .Otherwise, the

registration may not be accurate. In order to prevent such misregistrations in
Y ′
m from influencing the computed DSA images, especially on regions involving

contrast agent, we use the corresponding regions in Ym instead of Y ′
m to compute

the final motion compensated mask Y ∗
m as shown below

Y ∗
m[i, j] =

{
Y ′
m[i, j] if e−wσi,j

×wμi,j < τ

Ym[i, j] otherwise
(5)

Finally, an inverse generalized Anscombe transform [10] is applied to Y ∗
m[i, j]

to transform it back to the image domain. The DSA is then computed for yf
using the computed motion compensated mask y∗m

2.3 Material

In order to validate the proposed method, we have used X-ray images of an
anthropomorphic brain phantom, where a contrast agent can be manually in-
jected (Fig. 1). The mask and fill images have been acquired at 100% and 12%
of the standard dose level. During the acquisition, we have introduced realistic
deformations commonly observable in real clinical scenarios.

(d) Mask image (e) Fill image

Fig. 1. Visualization of a mask and a fill image acquired at standard dose level.
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3 Results

In Fig. 2, we have presented the DSA images computed with and without ap-
plying the proposed motion compensation on the mask image for 100% and 12%
of the standard dose level. For this, we have empirically estimated the values
of τ = .00001 and k = 21 by analyzing the obtained deformation fields for the
two image sequences acquired at different dose levels. It can be seen that the
motion artifacts visible in Fig. 2(a) and Fig. 2(c), especially around the borders
of the skull and the tubes used for simulating blood vessels, can be successfully
reduced by the proposed approach (Fig. 2(b) and Fig. 2(d)). On the other hand,
in all the DSA images presented in Fig. 2, a significant amount of noise can be
observed in some regions that are associated with low gray values in the mask
image (Fig. 1(d)). Please note that a very narrow gray level window width has
been chosen to highlight misalignment artifacts.

(a) Input 100% dose (b) Processed 100% dose

(c) Input 12% dose (d) Processed 12% dose

Fig. 2. Visualization of DSA images acquired at 100% and 12% of the standard X-ray
dose level. In the case of (a) and (c), no motion compensation has been applied, and
for (b) and (d), the proposed motion compensation approach has been applied.
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4 Discussion and conclusion

In this paper, we have proposed an X-ray dose independent motion compensa-
tion approach to align corresponding contrast-enhanced (fill) and non-contrast-
enhanced X-ray (mask) images, where the deformation fields are computed in the
generalized Anscombe transform domain using an optical-flow based approach
and subsequently refined based on a realistic X-ray imaging model. This allows
for a significant reduction in the applied X-ray dose that is otherwise required to
prevent the negative influence of noise on registration algorithms. Although, the
impact of signal dependent non-stationary noise is still prominently visible in
some parts of the computed DSA images, it can be reduced using denoising al-
gorithms. Therefore, if the proposed motion compensation approach is combined
with suitable denoising algorithms, a further reduction in the artifacts and the
X-ray dose may be possible. In our future work, we will evaluate the performance
of the proposed algorithm on clinical X-ray sequences and also focus on improv-
ing the performance of the proposed approach by constraining the optimization
of the optical-flow algorithm using physiologically motivated regularizing terms.
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Abstract. Further developments of the medical virtual reality applica-
tion MedicVR were achieved by new approaches to direct volume ren-
dering with the HTC Vive head mounted display. Even though the nec-
essary real-time performance for a smooth interactive experience is ac-
complished by the shader technologies, the rendered image quality and
performance is influenced by several parameters. We propose in this pa-
per multiple technological upgrades to our application including: Lens
Matched Shading, interactive volume clipping, semi-adaptive sampling,
global illumination in direct volume rendering with shadow rays as well
as an optimisation method for shadow rays and multiple light source in-
tegration. The quality of the rendered images is increased while keeping
impact on performance at minimal levels. The application is currently
used in study and planning in the field of dentofacial surgery.

1 Introduction

Direct volume rendering (DVR) techniques can be used to visualise surfaces from
volume data sets. The DVR ray casting algorithm can be massively parallelized
using the graphics processor units (GPU). Hadwiger et al. [1] presented a single-
pass fragment shader based approach. Hänel et al. [2] evaluated acceleration
techniques for volume data visualisation within immersive virtual environments
(IVE). Mastmeyer et al. [3, 4] developed a CUDA based DVR to simulate a
visuo-haptic VR training and planning system. It was shown that a sufficient
performance in IVEs remains a challenge. MedicVR [5] (www.medicvr.de) is a
virtual reality application and is based on the new shader technology for inter-
active real-time volume rendering in virtual reality. What are the requirements
for the DVR ray casting in virtual reality? A high-quality image pair must be
calculated at optimally 90 frames-per-second (FPS) to allow a comfortable and
smooth experience, while avoiding motion-sickness. Exemplary, in case of the
HTC Vive each rendering image requires a resolution of 1080× 1020 pixel. This
results in about 233.280.000 integrated rays per second. The following sections
will describe how acceleration techniques are used and enhancement methods
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are integrated in the shading pipeline for MedicVR. The results summarise per-
formance measurements in frames-per-second with and without the respective
feature and the resulting quality of the visualisation.

2 Materials and methods

MedicVR imports standardised DICOM data files from computer tomography or
magnetic resonance tomography. The DVR algorithm complexity correlates with
the number of rays, the number of samples per ray, the design of the transfer
function and the amount of rays intersecting the volume. The visualisation for
IVEs requires highly optimised algorithms to maintain a stable frame rate, while
assuring a high quality rendering output for medical application. The following
subsections describe applied improvement methods to MedicVR.

2.1 Lens matched shading for direct volume rendering

Lens Matched Shading (LMS) [6] is a technique used to improve performance
and image quality by taking advantage of physical properties of HMDs. Due
to lens distortion of the rendered image, the shading rate distribution does not
match the lens profile. Fig. 1a shows how the central region in the focus of
the lens is under-sampled, while the periphery is significantly super-sampled.
With LMS the viewport is divided into four sub regions, each being distorted
according to certain lens parameters. For each viewport LMS modifies the ho-
mogeneous w component of each vertex in clip-space before perspective division
with w′ = w+Ax+By with A,B being the lens parameters. Fig. 1b shows the
projective viewport correction. Fig. 1c, 1d show the effect before and after LMS.
No difference can be seen through the lens, but LMS reduces the total number
of rays in DVR and increases performance while focusing the image quality to
the centre point.

2.2 Volume clipping with the virtual reality plane-tool

An interactive clipping plane is introduced in MedicVR for clipping of the ren-
dered volume in three dimensional space. The clipping plane enables the user

(a) (b) (c) (d)

Fig. 1. Lens matched shading (LMS): shading rate without LMS (a); projective view-
port correction (b), before LMS (c), and after LMS (d).
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to view the inner structures of the volume by placing a plane tool in the IVE
onto the volume. The resulting cut into the volume reveals internal features and
coherences, otherwise obscured by higher opacities. The challenge of projecting
a two dimensional cut of the volume onto a plane is solved by determination
of the position of a sampling point on the plane so that the influence on the
rendering integral is nullified for all points in front of the plane. The geometric
properties of the dot product can be used to calculate the facing direction of
a plane spanned by its normal vector towards a certain point. Multiplying the
result of this calculation with the source value of the sampling point reduces
the value to zero if the sampling point is in front of the plane. As such further
computation on the sampling point can be skipped.

Fig. 2 shows the clipping plane combined with different visualisations. Sam-
pling points in front of the plane are not included in ray integration.

2.3 Shadow ray diffuse culling (SRDC)

To assist the depth perception of volumetric data we integrated a gradient-based
Blinn-Phong shading model and accelerated it by a gradient map [7] computed
in a preprocessing-step (Fig. 3a).

When using a global illumination model in virtual reality, additional chal-
lenges occur in comparison to a desktop based solution. Due to the high degree
of interaction and constant movements any preprocessing-steps relying on a fixed
position of the light sources, the volume or the camera become impractical.

For global illumination of volumetric data MedicVR introduces the new tech-
nique shadow ray diffuse culling (SRDC) which is based on shadow rays by
Ropinski et al. [8] combined with the Blinn-Phong shading model (Fig. 3b).

SRDC checks if the diffuse component of the Blinn-Phong shading model
equals to zero. If given the sample position lies in the shadow and only the
ambient component contributes to the shading. By exploiting this information
the amount of emitted shadow rays can be reduced noticeably (Fig. 3c).

(a) (b) (c)

Fig. 2. Clipping Plane (turquoise rectangle) on different visualisations.
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Fig. 3. SRDC: Exploitation of the diffuse light intensity from the Blinn-Phong shading
model to accelerate shadow rays. (a) Blinn-Phong shading model, (b) Blinn-Phong
shading model combined with shadow rays and (c) shadow rays but no shadowing
(light blue), shadow rays with shadowing (dark blue), SRDC reduced shadow rays
(green).

(a) (b) (c)

2.4 Semi-adaptive sampling

When using the first hit method [1] for direct volume rendering with medical
image data a conspicuous noise is visible. This phenomenon is caused by the
ray-casting rays entering and sampling the different tissues on slightly different
depths. Hence the density on the sample point differs from the neighbouring
pixels. This problem is especially recognisable on low sample rates (Fig. 4b),
but also occurs on very high sample rates (Fig. 4a). Sampling between the first
hit sample and the previous sample with additional correction samples results
in a much higher sampling rate only in the important section of the ray-casting

(d) (e) (f)

Fig. 4. Semi-adaptive sampling in first hit with correction steps. Panle (a), (b), and
(c) show 1024 samples without correction, 128 samples without correction, and 128
samples with 20 correction steps, respectively.
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Table 1. Average FPS for
shadow rays 0, 150 and 500 sam-
ples with 1 or 3 light sources,
LMS on or off and sample rate
512 or 1024. LMS improves
the FPS rate about 30% in
case of no shadow rays. The
performance decreases with the
number of light sources.

light LMS sample Shadow rays FPS

sources on off rate 0 150 500

1 on 512 93 54 45

1 off 512 60 45 34

1 on 1024 62 36 27

1 off 1024 40 27 19

3 on 512 92 23 16

3 off 512 60 17 12

ray. Therefore the surface can be represented more accurate and the noise is
significantly reduced, even at a much lower overall sample rate (Fig. 4c).

3 Results

The methods were implemented using OpenGL shading language GLSL and
C++ on a NVIDIA GTX 1080 graphics card with 8 GB GDDR5X RAM and
rendered at the native resolution of the HTC Vive. For the evaluation we used
the manix dataset with 512× 512× 460 voxel resolution and 16 Bit color depth
per voxel. Unless otherwise noted an optimal sample rate of 1024 is used. A
stable 1D transfer function is used for all measurements where more than 90%
iso values have an opacity value > 0. During the performance measurement we
use a stable visualisation considering the whole volume data. Tab. 1 shows the
average FPS rate over 1024 measurements.

With semi-adaptive sampling in first hit we achieved heavy noise reduction
with lower sample rates (128 samples, 20 correction) and higher performance
(58 FPS to 92 FPS in average) reaching almost the exact same image when
using a much higher rates (1024 samples).

Using SDRC a performance gain was observed when using the same parame-
ters by enableing and disableing SDRC in accumulate and first hit. Performance
increased by 10 FPS in average in accumulate and 3 FPS in first hit.

Fig. 5. Increasing the shadow ray sample rate increases the depth perception and
realism of the scene while still being useable in VR at lower rate. Shadow ray sample
rate from left: 0/50/150/500.
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The quality of the rendered images is increased while keeping impact on
performance at minimal levels. The application is currently used in study and
planning in the field of dentofacial surgery. The three dimensional visualisation
of the data in MedicVR acts as an auxiliary tool for the surgeon in order to un-
derstand the structural relationships and internal properties of the study case,
serving as a new medium in medical education as well as in academical train-
ing. The interactive clipping plane is intensively used for preoperative planing
and gives the surgeon an interactive real-time visualisation of the patient inner
structures.

4 Discussion

Key concepts to MedicVR are high quality medical visualisation methods com-
bined with the requirements of a smooth and interactive virtual reality appli-
cation. Further developments into visualisation, usability and performance have
been integrated into MedicVR for a better user experience and increased pro-
ductivity. LMS takes advantage of the lens distortion of HMDs to significantly
reduce the amount of rendered pixels and focus the computation power where it
is needed. The image quality is increased while rendered pixels are reduced by
about 40%. The clipping plane tool serves as an arbitrary anatomical plane in
the virtual reality. The presented method allows the user to explore the volume
interactively, while showing no impact on the performance. In further develop-
ments, we will integrate more new VR hardware acceleration techniques. In the
end, we want to improve the usability for the clinical use cases.
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Abstract. Within a clinical image analysis workflow with large data
sets of patient images, the assessment, and review of automatically gen-
erated segmentation results by medical experts are time constrained. We
present a software system able to inspect such quantitative results in a
fast and intuitive way, potentially improving the daily repetitive review
work of a research radiologist. Combining established standards with
modern technologies creates a flexible environment to efficiently evalu-
ate multiple segmentation algorithm outputs based on different metrics
and visualizations and report these analysis results back to a clinical
system environment. First experiments show that the time to review au-
tomatic segmentation results can be decreased by roughly 50% while the
determination of the radiologist is enhanced.

1 Introduction

Nowadays, medical images are a backbone of medical diagnosis and therefore
omnipresent in the clinical environment. Reasons are decreasing imaging cost and
concomitant. Therefore, it is a challenge in radiology to keep up with analyzing
and reviewing a large amount of image data. Experienced radiologists develop an
impressive intuition in how to classify medical images without further do. This
approach is however restricted to a qualitative analysis. However, quantitative
analysis, which is an essential part of clinical decision making, requires a voxel-
wise segmentation of the image. Well-proven automatic segmentation methods
exist, namely statistical shape models and deep neural networks, that could
significantly simplify and speed-up this task.

The time of radiologists is usually constrained and entailed to high costs.
This cost can be reduced by a system that allows to review and rework image
segmentations time-efficiently. Such a system can improve the clinical workflow
of a radiologist regarding the certainty of his decisions. The system shall be
designed to support radiologists as well as researchers with the task of creating
a reliable and valid ground truth with less supervisor interaction when multiple
segmentations for one image exist.

A system, which supports quantitative image analysis profits from quantita-
tive imaging (QI). QI aims to extract quantifiable features from medical images
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within systematic and routine measurements to assess and track the severity of a
patients condition. Automatic workflows can then summarize the feature results
into useful reports for radiologists.

Common standards like DICOM (Digital Imaging and Communication in
Medicine) are established to transfer image data interoperable in a clinical envi-
ronment. To preserve clinical information like text or measurements in a struc-
tured way, DICOM offers the Structured Report (SR) while segmentations are
properly stored in DICOM Segmentation (SEG) objects. In this context, the
work of Herz et al. has published open source tools to enable the use of suitable
DICOM data objects for quantitative image analysis [1]. They present a solution
to interoperate with commonly used data formats in imaging research.

Not only interoperability is important for modern DICOM-based systems,
but also the environment and its technology where image data is reviewed today.
The web technology must be leveraged to meet the shift to the mobile era,
meaning DICOM support for browsers on modern devices [2]. As DICOMweb
is now a stable standard, next-generation technologies like image analytics and
machine learning are enabled. Imaging is more ubiquitous with improved access
to imaging and reduced cost of interoperability by DICOMweb [2]. Although
DICOMweb exists since 2003, more recent publications are not using it, but
instead, focus on HTML5 based viewers [3, 4]. These works convert DICOM
images into PNG or JPEG and sent them to the client by Ajax or web sockets.

In summary, this work aims to combine the advantages of previous work. Re-
ferring to a standardized REST-API, with DICOMweb shall avoid the overhead
of custom services which are handling metadata. In addition to that, modern
HTML5 technology is used to leverage the power of today’s browsers. The sys-
tem shall follow established standards, scalable calculations by virtualization and
easy integration in a web environment.

2 Materials and methods

The proposed system is now named as Segmentation Review System (SRS).
In a brief overview, the top level workflow with its components is explained.
The image server sends images to the website’s included DICOM viewers. The
website provides tools to support the decision whether a segmentation rework
is necessary. This reworking process takes place within an established desktop
application with a variety of imaging and viewing tools. Finally, the image server
saves the reworked segmentation and a separate evaluation result database logs
the reworking event.

2.1 Architecture and tools

The SRS consists of two components which both represent a web server (Fig. 1).
The technology used for the web server is implemented in Python. Reasons for
this decision are its fast and straight-forward way to configure a simple web
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server. The decision for the REST-Service framework falls to Django1, as it
offers a well-proven REST package. The frontend web server is implemented
as light-weight Flask2 application. Flask supports the idea of a zero-footprint
viewer more than Django because it has less unnecessary features. The tools for
displaying and interacting with image data on the frontend are implemented in
JavaScript. The libraries dcm.js and dicomweb-client.js3 are valuable for the im-
plementation of querying and handling DICOM data. The library cornerstone.js4

fulfills the actual interaction and image display task. To support a virtualized en-
vironment for the components triggered by the REST-API, Docker is chosen. It
represents a state-of-the-art and a well-established choice in virtualization. The
tool EvaluateSegmentation of the VISCERAL project5 supports the calculation
of metrics. The following component and context diagram displays the design of
the architecture and the tool decisions (Fig. 1).

Fig. 1. The system bound-
ary encloses components
within the SRS, represented
by a dashed line. The sys-
tems in context are the
rework desktop application
and a PACS server as dis-
cussed previously. The li-
braries for the frontend and
the containerized tools, exe-
cuted by the REST-Service,
are highlighted.

2.2 Segmentation evaluation

As discussed earlier, Docker executes the evaluation in a virtualized environ-
ment. The pixel data is converted from DICOM Segmentation (SEG) to Nrrd as
common researcher format, to align with existing tools like the EvaluateSegmen-
tation. The selection of metrics for the evaluation follows an established guideline
[5], while EvaluateSegmentation tool performs the calculation. The evaluation of
two segmentation volumes consists of calculating a set of different kind of met-
rics on each slice where segmented areas exist in both volumes. Overlap-based
metrics like Dice, are used in combination with distance-based metrics like the
Hausdorff distance. All metrics are normalized and weighted by a known cor-
relation resulting in a slice similarity score. Every slice score contributes to a
volume score. In addition to a single value, a local dissimilarity map (LDMap)

1 https://www.djangoproject.com/
2 http://flask.pocoo.org/
3 Pieper et al., https://github.com/dcmjs-org
4 https://github.com/cornerstonejs/
5 http://www.visceral.eu/resources/evaluatesegmentation-software/



Web-Based Review for Automatic Segmentation 161

[6] is calculated for each slice. This map uses a modified Hausdorff distance with
an adjusted window-size to catch local distances between segmentation contours
and its spatial layout. It is stored as DICOM Parametric Map (PM) object.

The segmentation evaluation workflow starts with two DICOM SEG objects.
The evaluation results (metrics, DICOM PM), calculated in a new Docker con-
tainer, are documented in a DICOM Structured Report (SR) which contains all
referenced DICOM objects in the composite context. The dcmqi tool [1] per-
forms the data conversion, for example, DICOM to Nrrd, and the DICOM SR
creation. A new Docker container simplifies the necessary metadata generation
used by the dcmqi tool.

The browser receives the objects by encoded unique identifiers (UID) in a
URL like stated in the IHE Invoke Image Display profile6. This profile gives a
standard mechanism to request images for displaying them on a viewer. The pro-
file connects image-aware systems like the analysis page and non-image-aware
systems like a management page. The proposed web application can process a
URL like“?requestType=SEG EVAL&studyUID=...&srStudyUID=...” contain-
ing the type of request, the study UID, and the UID of the structured report.
The analysis page parses the mentioned input parameters and fetches the SR
series at first. In parallel, the composite context of the SR is extracted and the
metrics are parsed. The composite context reveals the series UID of the base
image, two SEG and one PM object. After the image base series is fetched, the
other DICOM series are fetched asynchronously and displayed since loaded.

2.3 Experiment

For the experiment, two segmentation results of organ segmentation on abdom-
inal CT volume scans are compared. Each scan contains about 100 up to 150
slices. A U-Net based approach called nnU-Net from Isensee et al. [7] is compared
against a shape model method from Norajitra et al. [8]. The system evaluation
design is built on two different setups of the analysis view displayed in Fig. 2.
One cycle (Setup 1) is done without supporting tools like the LDMap in the mid-
dle, the slider background on the left and a function which makes the viewport
display the region of interest. This cycle represents the usual workflow. Another
cycle (Setup 2) is done with supporting tools. We measure the time when the
page is loaded until a decision is made. Possible choices are the result of one
algorithm or the need for rework. The data for the experiment consists of 45
image series including 30 kidneys and 15 livers.

3 Results

The results consists of the implementation of the web page and its infrastructure
(Subsec. 2.1). A screenshot of the viewing page is displayed in Fig. 2.

In addition to that, the system was evaluated by one radiologist and one
medical student to show its use for experts (Subsec. 2.3). The results of both

6 http://www.ihe.net/uploadedFiles/Documents/Radiology/IHE RAD Suppl IID.pdf
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experts are averaged. The number of datasets at which the experts made the
same decision with and without tools is 32 of 45 which is about 71% of all cases.
The time improvement result of this evaluation is shown in Fig. 3. It reveals
that in 35 of 45 cases, the experts were faster with our tools than without. In
some cases, for example, 7, 18, and 24 a time improvement with about 150% is
remarkable, meaning a factor of 2.5. The average time improvement factor over
all datasets is 1.53.

4 Discussion

The radiologist states, he is able to make decisions more target-oriented with our
tools, especially with the region of interest function for kidneys. A better compre-
hension of the segmentation differences can be assumed. The time improvement
for the decision is quite variable. This variation is caused by dataset-related char-
acteristics, like vessels or fat tissue which are sometimes segmented by only one
of the methods. It also depends on the size and variability of the organ. Fig. 3
shows a higher time improvement on the rather smaller kidney within the first
30 datasets than on the larger liver. A considerable trend to a time improvement
with tools is noticeable with an average proportion of 78% of the cases, where
the decision was made faster with tools. This trend of faster decision making is
also confirmed by the average time improvement factor per case of 1.53 which
splits the time needed for a review session in half.

Fig. 2. Analysis web page. The middle viewer displays the dissimilarities between the
left and right segmentation in a LDMap. At the left border, a frame slider with a
highlighted background is displayed, indicating areas with a high deviation based on
the combined metrics. The tools are displayed on top and the decision buttons are
displayed below.
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Fig. 3. Time improvement to decide between the three choices without tools against
with tools on average over both experts. The background marks the left group as
kidneys and the right as livers.

This work has successfully shown that DICOMweb and HTML5 technology
together can bring DICOM data in a large number to the browser. The proposed
application is easily accessible for a radiologist, which can save time using the
mentioned tools while reviewing segmentations. The usage of DICOM enables
segmentation analysis as a routine operation in nearly any clinical environment.
Future use cases will include an integration with the training part of the under-
lying segmentation methods to investigate the potential of a tight feedback loop
for active learning based on medical expert input.
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X-ray Phase-Contrast Imaging (PCI) is a novel imaging technique that can
be implemented with an grating interferometer. PCI is compatible with clinical
X-ray equipment, and yields in addition to an absorption image also a differ-
ential phase image and a dark-field image. Computed Tomography (CT) of the
differential phase can in principle provide high-resolution soft-tissue contrast. Re-
cently, grating-based PCI took several hurdles towards clinical implementation
by addressing, for example, acquisition speed, high X-ray energies, and system
vibrations. However, a critical impediment in all grating-based systems lies in
limits that constrain the grating diameter to few centimeters. Such a small field
of view is a major challenge, since the object is typically larger, which leads to
truncation in the projection images and therefore artifacts in the reconstruction.

In our work, we propose a system and a reconstruction algorithm to cor-
rect for phase truncation artifacts, and to obtain quantitative phase values in a
clinically compatible way [1]. We propose to perform a phase-sensitive region-of-
interest CT within a full-field absorption CT. An attenuating collimator can be
used to mount the gratings, leading to less dose in the peripheral region outside
of the gratings. Furthermore we propose an algorithm to correct for the phase
value truncation by using the absorption information. Our method first performs
a segmentation of the materials, which allows to obtain an estimate of their re-
spective phase values. Then, a non-truncated sinogram is extrapolated from the
truncated sinogram and the estimated phase values.

Our method is robust, and shows high-quality results on simulated data and
on a biological mouse sample. The work is a proof of concept showing the poten-
tial to use PCI in CT on large specimen, such as humans, in clinical applications.
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Abstract. Magnetic particle imaging is a tracer-based medical imaging
technology that is quite promising for the task of imaging vessel struc-
tures or blood flows. From this possible application it can be deduced
that significant areas of the image domain are related to background,
because the tracer material is only inside the vessels and not in the sur-
rounding tissue. From this fact alone it seems promising to detect the
background of the image in early stages of the reconstruction process.
This paper proposes a multiresolution and segmentation based recon-
struction, where the background is detected on a coarse level of the re-
construction with only few degrees of freedom by a Gaussian-mixture
model and transferred to finer reconstruction levels.

1 Introduction

Magnetic particle imaging (MPI) is a tracer-based medical imaging method
which was published in 2005 [1]. It is based on the nonlinear magnetization
behavior of super-paramagnetic iron-oxide particles (SPIOs). The goal is to as-
certain the SPIOs’ distribution inside a volume, e.g. the distribution inside the
vessel structure of a patient. Therefore, MPI scanners measure the induced volt-
age from the SPIOs’ distribution by their change of magnetization. Fortunately,
only SPIOs around the vicinity of the field free point (FFP) can significantly
contribute to the voltage signal due to the nonlinear magnetization of those [2].
The FFP is the position where the different magnetic fields cancel each other
out and this point is in MPI periodically moved, e.g. by a Lissajous trajectory,
over the field of view. However, for two- and three-dimensional MPI there is no
closed-form solution known so far for the system function, which relates the mea-
sured signal to the SPIOs distribution and vice versa [3]. This is the reason that
the system function is normally approximated by a linear model. The resulting
matrix models the spatio-temporal relationship and is called system matrix.

MPI offers a relatively high spatial and temporal resolution. To exploit the
full spatial resolution, the system matrix has to be large in size. Unfortunately,
solving the linear inverse problem becomes quite slow for dense system matrices.
To speed up the reconstruction process, different matrix compression strategies
were developed [4, 5]. The main idea is based on the usage of transforms, like
the discrete cosine transform (DCT), to compress the system matrix. Recently,
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a simultaneous compression and multiresolution formulation for the system ma-
trix was proposed. The authors also presented a multiresolution reconstruction
procedure based on this formulation [6].

With the new formulation of the system matrix, a level-wise background
segmentation and image reconstruction is proposed. The idea to exclude regions
without SPIOs inside the reconstruction is based on the work in [7]. A quite sim-
ilar idea was presented in [8], but there the background information was coming
from an additional magnetic resonance image scan and is used for structural
prior information. For the background segmentation a Gaussian mixture model
(GMM) is used, which has also been successfully applied in positron emission
tomography [9]. It will be shown that the background segmentation will help to
significantly improve the particle distribution reconstruction at finer resolution
levels.

2 Materials and methods

2.1 Multiresolution reconstruction

Due to page limitation the description is shortened to the necessary parts of the
multiresolution system matrix approach from [6]. Let S� ∈ C

M×K� be the low-
resolution system matrix (low-pass approximation on the (�− 1)-th level of the

discrete wavelet transform (DWT)) with K� =
⌈
Nx

2�

⌉
·
⌈
Ny

2�

⌉
where � ·� denotes

the ceiling operator and Nx, Ny are the numbers of pixels in x and y direction.
Then the transform matrix T � ∈ R

K�×K� denotes one stage of the DWT+DCT.
The DWT+DCT decomposition is mathematically described by S�

T = S�T �.
The level-wise particle distribution reconstruction is defined as follows

c� = argmin
c∈R

K�
+

‖S�
TT

−1
� c− f‖22 + λ2‖c‖22 (1)

where λ > 0 is the regularization factor f ∈ C
M defines the measured fre-

quency components, which are derived from the voltage signal T−1
� is the inverse

DWT+DCT and c� ∈ R
K�
+ denotes the unknown particle distribution on the res-

olution stage �. Preknowledge about the background pixels can be obtained by
a segmentation on the coarser level reconstruction and then transferred to the
finer resolution levels. Let B denote the set of background pixel indices and
P = {c ∈ R

K�
+ |∀i ∈ B : ci = 0} then the problem in (1) can be reformulated to

the easier problem

c� = argmin
c∈P

|S�
TT

−1
� c− f‖22 + λ2‖c‖22 (2)

This problem is solved by an iterative shrinkage thresholding algorithm [10].

2.2 Background detection

To separate foreground and background pixels a thresholding with a variable
threshold at each level is used. The threshold is obtained by estimating the
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probability density function of the foreground and background pixels with a
GMM. The obtained mask is postprocessed by some morphological operations.

It is assumed that both the reconstructed particle distribution of the back-
ground and the foreground pixels follow a Gaussian distribution. Mean, standard
deviation and mixture weights are estimated by a GMM. For the approximated
density follows p(x|θ) =

∑K
i=1 λif(x|μi, σi), with θ = (μ,σ) the parameter vec-

tor, f(x|μ, σ) the probability density function of the normal distribution with
mean μ and standard deviation σ, and K the number of components. In this
paper K = 2 is used under the assumption that contained structures share a
similar concentration of the tracer. The weights λi can be seen as the estimation
of the a-priori probability Pi. Then the threshold can be obtained by a maximum
a-posteriori estimation, which is a solution of P1f(x|μ1, σ1) = P2f(x|μ2, σ2). In
the case of two solutions, the one between μ1 and μ2 is the desired one. Now
the thresholding is performed and a binary mask is obtained. Small areas of
foreground are deleted by morphological operations and then the structures are
extended to preserve foreground. The obtained mask is used to set background
pixels to zero during the reconstruction process. This procedure is repeated at
each level and in this way the mask is refined step by step. After a successfull
masking the amount of background pixels that are not set to zero decreases. For
this reason only concentrations ck > 0 are used for the GMM estimation. Besides,
if the masking is nearly perfect, there only exists a single cluster of concentra-
tion values. This results for the GMM in two means which are close together.
For detection of this case, it was tested whether 2 ·min(μ1, μ2) < max(μ1, μ2) is
satisfied. If this is not fulfilled, no further thresholding is performed at this level.

2.3 Test setup

For the simulation of the MPI scanner the Langevin model of paramagnetism
was used. The simulated MPI scanner has the frequency ratio of fx/fy = 32/33
with fx = 25.25KHz for the acceleration fields. This ratio results in a Lissajous
FFP-trajectory with a repetition time of 1.27ms. For the gradient fields in both
spatial directions gradients up to a strength of 1.25Tm−1 were used. The simu-
lated system matrix was sampled for both receive channels up to a frequency of
1.3MHz, which corresponds to 2 × 817 frequency components for a real-valued
voltage signal. For the Langevin model a particle size of 30 nm and body tem-
perature was assumed. The field of view had a size of 5× 5 cm2.

The multiscale segmentation reconstruction algorithm was tested on different
concentration phantoms with different SNRs. In view of an application in the
field of visualization of the blood flow, vessel structures were used as phantoms.
Each phantom had a size of 250 × 250 pixels. The background had the value 0
while the concentration in the structures was 1.

For comparison purposes, also a reconstruction without foreground segmen-
tation was performed [6], which is referred to as the baseline. A variation, where
the thresholding method was used at the last level after completed reconstruc-
tion, is also included. The root mean square error (RMSE) and the structural
similarity index (SSIM) [11] are used as measurements for comparison.
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An RMSE near to zero shows a low difference in the concentration levels,
while an SSIM near to one shows highly similar structures. A 9/7 wavelet de-
composition in four levels was used.

3 Results

In Fig. 1 the ground truth concentrations and the reconstructed concentrations
for an SNR of 20 dB for all compared approaches are shown. It can be observed
that the proposed approach deletes background noise and delivers less blurring
around the edges of the vessels than the other reconstruction results.

Fig. 2 shows the results of RMSE and SSIM for the different phantoms and
methods in dependence of the SNR. The regularization parameter λ was chosen
to produce the best RMSE or SSIM, respectively. It can be observed that the
SSIM value of the proposed method is significantly higher for all phantoms and
all SNRs than the value of the baseline. For most SNRs, advantages can be
seen in comparison to the thresholded baseline method as well. The RMSE of
the postprocessed baseline is better than the original baseline results for all
phantoms and all SNRs. The results for the proposed method with regard to the

(a) Phantom A (b) (c) (d)

(e) Phantom B (f) (g) (h)

(i) Phantom C (j) (k) (l)

Fig. 1. Best reconstructions of the three phantoms for the tested methods and an SNR
of 20 dB. The left column shows the ground truth. In the middle, the reconstructions
of the baseline and the thresholded baseline are depicted. On the right the final results
of the proposed method are shown.
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RMSE for phantom B and C is equal or better than the other approaches. For
high SNRs and for phantom A a worsening can be seen.

4 Discussion

It could be observed that the proposed method provides a reconstruction with
improved SSIM compared to standard reconstruction and even to postprocessed
reconstructions. It works well for different structures and improves especially
the SSIM while delivering a similar RMSE in most cases. With increasing SNR
the RMSE value becomes unexpectedly worse. Fig. 3 shows the estimation of
the multilevel thresholded approach and the result for the baseline method. At
some areas at the borders of the vessels the foreground is underestimated and as
a consequence high estimations of the concentration appear at the border and
lead to a high RMSE value, though in the authors’ perception the quality of this
estimation is better. To avoid this phenomenon, the strong enhancement at the
mask boundaries could be used to detect mismasked areas and expand the mask
around these edges. The enhancement of the SSIM is due to the suppression of
the background noise in areas without tracer concentration and the generation
of sharp edges. This disembogues in a more homogenous concentration inside
the object. Our further research is directed towards a speeding up of the recon-
struction process using the obtained masks. Instead of setting the background
to zero in each step, the calculations at these positions are not neccessary and
could be skipped. This could result in a faster reconstruction.
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Fig. 2. RMSE and SSIM for the tested phantoms and different methods. The proposed
method with foreground segmentation is referred to as MR-T, the baseline is MR-NT,
and the postprocessed baseline is MR-ST. For each method and for each SNR the
regularization parameter with the best result among the tested values was used.
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Fig. 3. Particle distribution estimation of phantom B with an SNR of 40 dB with the
proposed method (a) and the baseline system (b).
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For a plane symmetric object we can find two views – mirrored at the plane
of symmetry – that will yield the exact same image of that object. In conse-
quence, having one image of a plane symmetric object and a calibrated camera,
we can automatically have a second, virtual image of that object if the 3D lo-
cation of the symmetry plane is known. In this work, we show for the first time
that the above concept naturally extends to transmission imaging and present
an algorithm to estimate the 3D symmetry plane from a set of projection domain
images based on Grangeat’s theorem. We then exploit symmetry to generate a
virtual trajectory by mirroring views at the plane of symmetry. If the plane is
not perpendicular to the acquired trajectory plane, the virtual and real trajec-
tory will be oblique. The resulting X-shaped trajectory will be data-complete,
allowing for the compensation of in-plane motion using epipolar consistency [1].

Utilizing Grangeat’s theorem, we can measures the pairwise consistency of
two projections by comparing corresponding epipolar lines. The theorem explains
a transformation of the projection images, such that two values must match if
they correspond to two epipolar lines. This value equals a transformation of the
object mass within the epipolar plane – i.e. the derivative of the Radon transform.
It directly follows, that inconsistency induced by a rigid object motion within the
epipolar plane cannot be detected, as the object mass within the epipolar plane
is not affected. In a circular trajectory, most of the measurable epipolar planes
are parallel to the acquisition plane, limiting the detectable inconsistencies to
motion that steps out of the acquisition plane. As a result, out-plane motion is
well compensable while in-plane motion remains an open challenge.

This limitation can be mitigated by the X-shaped trajectory. This enables
epipolar planes in more directions and it is shown that with an adequate tilde be-
tween the acquisition plane and the plane of symmetry, in-plane motion becomes
well detectable.
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Abstract. of preoperative data with intraoperative fluoroscopic images
has been shown to reduce contrast agent, radiation dose and procedure
time during endovascular repair of aortic aneurysms. However, the qual-
ity of the fusion may deteriorate due to often severe deformations of
the vasculature caused by instruments such as stiff wires. To adapt the
preoperative information intraoperatively to these deformations, the 3D
positions of the inserted instruments are required. In this work, we pro-
pose a reconstruction method for stiff wires that requires only a single
monoplane acquisition, keeping the impact on the clinical workflow to
a minimum. To this end, the wire is segmented in the available X-ray
image. To allow for a reconstruction in 3D, we then estimate a virtual
second view of the wire orthogonal to the real projection based on ves-
sel centerlines from a preoperative computed tomography. Using the real
and estimated wire positions, we reconstruct the catheter using epipo-
lar geometry. We achieve a mean modified Hausdorff distance of 4.1mm
between the 3D reconstruction and the true wire course.

1 Introduction

of preoperative data with intraoperative images has proven its benefits in a
number of minimally invasive procedures. One example is endovascular aortic
repair (EVAR) for aortic aneurysms, during which stent grafts are inserted under
fluoroscopic guidance to reduce the risk of aneurysm rupture. Visualization of the
aorta and branching vessels extracted from preoperative computed tomography
angiography (CTA) on the intraoperative images can aid navigation and can
help to reduce the amount of contrast agent needed during the intervention [1].
The guide wires and stents inserted during the procedure, however, can deform
the vasculature and the utility of the preoperative information deteriorates. On
the other hand, these instruments can be assumed to lie within the aorta and
the iliac arteries, and are visible in the fluoroscopic images without contrast
injection. Accordingly, information about their position can be used to correct
for deformations and restore the usefulness of the fusion. To allow for a correction
based on the instruments, the 3D course of the instrument has to be known.
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3D reconstruction of instruments from fluoroscopic images has been ad-
dressed repeatedly using biplane systems or two projections [2, 3]. Acquiring
a second projection, however, may heavily impact the interventional workflow
during EVAR as repositioning of the C-arm is required. Reconstruction from
a single image requires additional information, for example in form of a pre-
operative model of the anatomy. In previous work on reconstruction from one
view [4, 5, 6], the anatomy under investigation is assumed not to be heavily
impacted by the inserted wires. In contrast to this, the vessels and especially
the iliac arteries are deformed during EVAR due to the stiffness of the inserted
wires [1], requiring a different approach. Finite element modeling has been in-
vestigated to estimate guide wire position for EVAR preoperatively [7], however,
computation times are prohibitively long for intraoperative estimation.

In this work, we propose a method to reconstruct the 3D position of guide
wires based on the segmentation of a single monoplane acquisition of the re-
spective instrument. To this end, we utilize prior information in form of a vessel
segmentation from preoperative CT. Based on the segmentation, more specifi-
cally the vessel centerlines, we estimate a virtual second projection of the wire to
approximate the depth. Using the real and virtual projection of the guide wire,
we reconstruct the 3D positions as described in [2]. The reconstruction error in
3D is evaluated by comparing our estimation to biplane reconstructions of the
stiff wire and ground truth acquired from cone-beam CT (CBCT).

2 Materials and methods

Given a registered preoperative segmentation and the 2D image, the reconstruc-
tion of the 3D wire course can be divided into three steps as follows: 1) segmen-
tation of the wire in the available monoplane image, 2) estimation of a virtual

Fig. 1. Visualization of set-up. The wire is segmented (solid red line) in one X-ray image
from an angulation of approximately 45◦ LAO/RAO. A virtual second projection of
the wire (dotted red line) is estimated based on the preoperative CT (solid green line).
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second view of the device and 3) reconstruction of the wire using the real and
virtual wire course as biplane information. The main contribution of this work
is step 2). The set-up is depicted in Fig. 1. In the following, we will describe the
data we use in this work, as well as the three steps in more detail.

2.1 Data

Prerequisite for the proposed method is a preoperative CT and corresponding
3D centerlines of the vessels in which the stiff wire is inserted, namely the aorta,
the common and external iliac artery, and the femoral artery. We evaluate our
method using data from 16 patients who underwent EVAR at Sahlgrenska Hospi-
tal, Gothenburg, Sweden. For each patient, a preoperative CTA was segmented
using in-house prototype software. During the procedure, an X-ray image is
acquired that shows the area around the iliac bifurcation before the stent is de-
ployed with the stiff wire in place. This is done at an angulation of approximately
45◦ RAO for the left and 45◦ LAO for the right iliac artery. At this angulation,
the iliac bifurcation is generally well defined in contrast-enhanced acquisitions
which allows for accurate stent placement. We obtained this data from an in-
traoperative CBCT that was originally acquired for 3D image guidance. Each
patient had a stiff wire and optionally a delivery device inserted in at least one il-
iac artery at the time of the CBCT. Projection images from 45◦ LAO/RAO were
extracted from the corresponding projection run. The wires inserted in the left
and right iliac artery were annotated manually in these projection images and in
the 3D reconstruction. The preoperative CT and the intraoperative CBCT were
registered semi-automatically with focus on the lower vertebrae of the spine.

2.2 2D segmentation

Input to the segmentation is an image X ∈ R
w×h with width w and height h. For

guide wire segmentation, several methods have been published, including meth-
ods which make use of the preoperative segmentation [8], and, more recently,
methods based on neural networks [9]. We opted for a manual segmentation of
the device in the 2D image to avoid mixing errors of the reconstruction process
and errors in the segmentation. With either method, the result from the segmen-
tation is a sequence of 2D coordinates W2D = {vw1, . . . ,vwnA

} with vwi ∈ R
2

that describes the course of the device in X.

2.3 Estimation of a virtual projection

The estimation of the virtual projection can again be separated into three steps:
i) determination of anatomically relevant points (control points) in the preopera-
tive data, ii) forward-projection of the estimated points, and iii) weighted fitting
of a polynomial function through these points. The selected points in step i) and
the weights in step iii) are optimized based on a training set of patients. Again,
we will describe each step in more detail:
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Estimation of control points The preoperative vessel centerline can be de-
scribed by a sequence of 3D points V3D = {v1, . . . ,vnV

} with vi ∈ R
3 In this

sequence, certain points can be determined as landmarks, namely the aortic bi-
furcation (AB) vAB and the position at which the stiff wire enters the femoral
artery (FA) vFA The first point is automatically determined during segmenta-
tion, the latter is estimated using the method described in [10]. Based on these
two landmarks, we identify a segment of interest that stretches from FA to 20 cm
proximal to the AB landmark with the proximal endpoint vP Within this seg-
ment [vFA,vP] we determine the most dorsal and most ventral position vD and
vV of the centerline. In addition, we estimate points that try to capture the
straightening caused by the stiff wire. More specifically, we split the sequence
into three subsegments S1 = [vFA,vD], S2 = [vD,vAB], and S3 = [vAB,vP] For
each segment, we estimate the mean of all points within two overlapping inter-
vals that are defined by the first and the last two thirds of the segments. Lastly,
we estimate the mean of all points in the segment [v1/3FAD,vAB] a segment of
very strong curvature, and the midpoints between vD and vAB, vAB and vP,
and v1/3FAD and vP This results in a list of 16 control points VC3D

.

Forward-projection of control points As mentioned previously, we assume
that the fluoroscopic image for which we want to reconstruct the stiff wire in
3D was acquired at an angulation of approximately 45◦ RAO for the left and
45◦ LAO for the right side. The projection can be described by a projection
matrix P ∈ R

3×4 (using homogeneous coordinates). We rotate this projection
matrix by 90◦ LAO (resp. RAO) which corresponds to a 90◦ rotation around
the longitudinal axis, resulting in a projection matrix P

′ ∈ R
3×4 The estimated

control points VC3D
can then be projected forward using the matrix P

′, resulting
a sequence of 2D points V ′

C2D
= {v′

c1, ...,v
′
c16} with v′

ci ∈ R
2.

Weighted polynomial fitting At the given angulation, the course of the wire
can be described by a polynomial function of degree three to five. We make use
of this by fitting a polynomial of degree five to the control points V ′

C2D
using

weighted least squares. For each control point, we define a weight wi to control
its influence during fitting. The weights w are optimized based on a training
set of six patients by minimizing the mean squared modified Hausdorff distance
(mHD) between the estimated course and the 2D ground truth in the respective
projection image using random search. The fitted polynomial then provides the
estimated virtual 2D course W ′

2D of the catheter.

2.4 Reconstruction from real and virtual views

For reconstruction, we utilize the method described in [2]. Given the acquisition
geometry, all possible correspondences between points along the sequences W2D

and W ′
2D are computed. Based on this, a mapping between W2D and W ′

2D of
optimal correspondences is determined that respects the continuity of the device.
These are then used to reconstruct the wire in 3D.
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Table 1. 3D reconstruction error for vessels with stiff wire (SW) only, and stiff wire
and delivery device (DD) inserted. Reported are mean and standard deviation with
respect to Hausdorff distance and modified Hausdorff distance in mm.

Baseline reconstruction Proposed method

SW only SW and DD SW only SW and DD

Modified Hausdorff distance 0.97±0.14 0.97±0.17 3.82±1.97 4.49±1.61

Hausdorff distance 2.32±0.36 2.17±0.39 7.34±3.47 9.36±3.41

3 Results

From the 32 iliac arteries (left and right), we excluded three that contained
only a substantially softer pigtail catheter. All patients used for training were
excluded from further analysis. For the remaining 10 patients, we reconstructed
the wire in the left and right iliac artery as described above. To assess the base-
line error, we additionally reconstructed the stiff wire based on segmentations in
two projections (45◦ LAO/RAO). Errors in this reconstruction may stem from
patient breathing and heartbeat during acquisition of the CBCT, or errors in the
annotation. The results of the reconstruction can be found in Tab. 1. Addition-
ally, we investigated the stability of the approach in case the projection image
is acquired ±20◦ from the trained 45◦ projection. The results and examples of
estimated virtual projections can be found in Fig. 2.

4 Discussion and conclusion

The error of the proposed method with a mean mHD of 4.1 mm for the left and
the right wire lies well below the typical vessel diameter of the iliac artery of ap-
proximately 10-17 mm. It is in range with errors reported by preoperative FEM
simulation with a mean 3.8 mm mHD between real and simulated wires [7]. We
see a slightly higher error when both a stiff wire and a delivery device is inserted
likely because the delivery device causes even more straightening of the vessel.
The proposed approach is optimized for the region around the iliac bifurcation
and angulations around 45◦ LAO/RAO. Due to the heuristic selection of con-
trol points and the restriction we impose by a polynomial fitting, we see a high
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Fig. 2. Left: Error when deviating from a 45◦ LAO/RAO angulation. Right: Examples
for estimated projections (dotted red line), the true wire course is highlighted in green.
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deviation outside this field of view. While we see a stable estimation when vary-
ing the angles in a reasonable range, the approach has to be adapted for other
regions, e.g., around the renal arteries. Furthermore, it requires a preoperative
CT segmentation and a registration to the intraoperative images, both generally
available in the context of image fusion. It has to be noted that reconstruction
accuracy strongly depends on the accuracy of the initial rigid registration.

Within the current workflow for iliac artery deformation correction, these
limitations are acceptable, and the accuracy and speed of the method of below
100 ms allows for intraoperative use. In future work, we aim to look into directly
reconstructing the device in 3D to be more independent of the anatomical region
and integrate tissue properties such as calcifications into the reconstruction.

Disclaimer. The methods and information presented here are based on research
and are not commercially available.
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Abstract. Robust estimation of the human pose is a critical require-
ment for the development of context aware assistance and monitoring
systems in clinical settings. Environments like operating rooms or inten-
sive care units pose different visual challenges for the problem of human
pose estimation such as frequent occlusions, clutter and difficult light-
ing conditions. Moreover, privacy concerns play a major role in health
care applications and make it necessary to use unidentifiable data, e.g.
blurred RGB images or depth frames. Since, for this reason, the data
basis is much smaller than for human pose estimation in common sce-
narios, pose priors could be beneficial for regularization to train robust
estimation models. In this work, we investigate to what extent exist-
ing pose estimation methods are suitable for the challenges of clinical
environments and propose a CAE based regularization method to cor-
rect estimated poses that are anatomically implausible. We show that
our models trained solely on depth images reach similar results on the
MVOR dataset [1] as RGB based pose estimators while intrinsically being
non-identifiable. In further experiments we prove that our CAE regular-
ization can cope with several pose perturbations, e.g. missing parts or
left-right flips of joints.

1 Introduction

Human pose estimation is a typical computer vision task that has been studied
for decades and is a key component for a variety of higher level applications rang-
ing from motion control in video games or car entertainment systems to video
surveillance and behavioral understanding. The conventional estimation process
is driven by the underlying image data, capturing local appearance, as well as
structured prediction to produce globally plausible poses. Similar to other fields,
purely data driven deep learning methods, in particular convolutional neural
networks (CNNs) yield impressive results on public datasets and have nowadays
replaced hand-crafted features and graphical models. With their success research
shifts to more challenging scenarios. Pose estimation in clinical environments of-
fers great opportunities by providing contextual information about the patient
or staff for assistance and monitoring systems, but also has to cope with strong
occluded and cluttered settings such as the operating room. At the same time
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clinical pose estimation datasets are much smaller than large-scale annotated
datasets like MPII [2] making it harder to reliably train deep learning models.
Explicit regularization of predicted poses is a possibility to recover plausible
poses.

1.1 Related work

Early successful methods for human pose estimation relied on hand-crafted image
features and sophisticated body part models [3]. DeepPose [4] was the first work
that trained a deep neural network to directly regress joint positions. Following
the success of CNNs for the image classification task subsequent methods used
CNNs in a fully convolutional manner to generate heatmaps of joint locations
[5]. In general, predicting heatmaps showed to be more robust than directly
regressing pixel positions. Recent state-of-the-art pose estimators often adopt
variants of stacked hourglass networks (SHGs) [6] as basic building blocks. SHGs
capture both local and global context within multi-scale CNN architectures.
Stacking multiple of these hourglasses combined with intermediate supervision
further improves the network’s final performance.

The most recent methods described above model the human body only im-
plicitly. In this work we aim at explicitly regularizing poses and therefore consider
research that uses global priors in neural networks. Convolutional Autoencoders
(CAEs) [7] were introduced as unsupervised feature extractors. They reduce the
input data with spatial filters and pooling operations into a latent space from
which the original input must be reconstructed. The learned features from the
encoder can then be reused in a supervised classification task. [8] showed that the
CAEs latent space could also be used to regularize segmentation of ultrasound
images. Therefore during training, the model predictions are forced to follow the
distribution of the learnt low dimensional representations of priors. In the field
of human pose estimation [9] trained an autoencoder on 3D joint locations to
regress the 3D positions from 2D images via its regularized latent space.

1.2 Contribution

In this work we investigate how SHG, a state-of-the art human pose estimator,
performs in a challenging clinical setting. We show that SHG models trained
on normalized depth images yield a similar performance on the MVOR dataset
[1] as RGB based methods and can therefore conclude that the use of depth
images is a suitable image modality to tackle privacy concerns in visual health
care applications. Given the small amount of training data (in contrast to non-
clinical settings), we observe frequent anatomically implausible pose predictions.
We therefore propose a CAE based postprocessing of predicted poses. Our ex-
periments show that this new approach can reliable recover poses from input
perturbations such as joints that are missing or symmetrically switched.
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2 Materials and methods

Our architecture for regularized pose estimation consists of two independent
components – an SHG that predicts heatmaps from raw input data and a CAE
to recover plausible poses from the initial joint locations. Fig. 1 for a schematic
overview of the two-stage pipeline.

2.1 Pose estimation

Pose estimation of input image data, e.g. RGB or depth, is conducted with SHGs
from [8]. The output of the network is a heatmap with N channels, where N is
the number of landmarks to detect. The final predictions are given by the maxi-
mum activation of the heatmap. Ground truth targets consist of a 2D Gaussian
(kernel) centered on the corresponding joint location. One hourglass consists of
multiple convolution and pooling layers to process features down to a very low
resolution, whereby at each pooling step one further convolution is applied at the
current level and added to the corresponding layer on the symmetric bottom-up
sequence. Multiple hourglasses with intermediate supervision can be stacked to
further improve the performance.

2.2 Pose regularization

For regularization of implausible poses we propose a convolutional autoencoder
that is trained with different synthetic perturbations on the input data to enforce
the explicit learning of a body pose model. The CAE is composed of two parts,
the encoder and the decoder. In the encoding step a heatmap with N channels
is transformed into a small-low-dimensional feature map (e.g. 4x4 pixels) by a
series of convolution and pooling layers. With every convolution the number of
features is doubled. After the last pooling layer the spatial relation is broken and
the flattened tensor is fed into a two-layer neural network. The number of output
features of the last linear layer specifies the dimension of the latent representation
and should be small enough to force the CAE to learn a representative body
pose embedding. The decoder reverses the operations of the encoding, whereby

Fig. 1. We propose a two-stage architecture for regularized pose estimation from single
depth images. A stacked hourglass network infers heatmaps for human joint locations.
In a subsequent step a convolutional autoencoder corrects implausible pose predictions.
The two networks are trained separately, whereby the pose regularizer is explicitly
forced to learn a body model via perturbations of the input data.
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head shoulder elbow wrist hip mean

SHGdepth 97.6 90.5 78.2 80.0 71.2 83.5

SHGrgb 97.0 90.5 77.4 79.5 71.7 83.2

OpenPosergb 91.0 88.8 74.5 58.1 56.4 73.8

AlphaPosergb 87.7 88.9 77.8 64.7 61.8 76.2

Table 1. Independent
quantitative evaluations for
pose estimation.

convolutions and pooling operations are replaced by transposed convolutions and
indexed unpooling, respectively. To ensure that the CAE can actually act as a
pose regularizer typical pose errors are explicitly incorporated in the training.
In this work we propose three different synthetic augmentations: swapping two
corresponding joints of the left and right body part, removing a single joint
and applying a high random offset to one of the joints. All input channels are
randomly scaled and Gaussian noise is added to further reduce the risk of learning
an identity mapping.

Fig. 2. Qualitative and quantitative results on the MVOR dataset. The example images
show ground truth (left), SHG predictions (middle) and CAE regularized joints (right).
Body poses were inferred from depth frames and overlayed on rgb images for better
visualization.
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Table 2. Independent quantitative evaluations for
pose regularization.

w/o reg. CAE reg.

swap 80.3 97.1

remove 90.0 96.6

offset 90.7 96.5

3 Results

All experiments were conducted on the MVOR dataset [1]. It consists of 732
multi-view frames from three RGB-D cameras providing registered depth and
anonymized rgb images synchronized in time. The images were recorded in an
operating room at the University Hospital of Strasbourg over a period of four
days. Each day was used as one fold in a 4-fold cross validation. For the task of 2D
pose estimation the ground truth annotations consist of 2926 bounding boxes and
upper-body poses. As evaluation metric we use percentage of correct keypoints
with a threshold of 0.2 (PCK), whereby a prediction is assumed as correct if it
falls within 0.2 ·max(bboxh, bboxw) pixels of the ground truth annotation.

3.1 Pose estimation

We first evaluate the pose estimation network on both image modalities, depth
and RGB. The SHG with two stacks is implemented in PyTorch. Training was
performed for 50 epochs with the Adam optimizer and an initial learning rate
of 2.5e−4. The objective function is the mean squared error between the pre-
dicted and ground truth heatmaps. We use random affine transformations to
augment the input data. For training with depth images it was crucial to nor-
malize each image independently to correct for different distances of the person
to the camera.

Fig. 2 shows the results of the SHG models. Training with the two image
modalities gives a similar PCK of approximately 83.5. For comparison, PCK
values of two further pose estimation methods, OpenPose[10] and AlphaPose[11],
are reported from [1]. We note that both estimators are pretrained on MPII
without fine-tuning on MVOR.

3.2 Pose regularization

The general training setting is the same as for our pose estimation network.
The CAE encodes body poses in a 16-dimensional latent vector. During training
Gaussian noise with a std of 0.05 is added to the input heatmap and one of the
three perturbations (‘swap’, ‘remove’, ‘offset’) is applied with a probability of 0.5
each. We evaluate the capability of the CAE to recover plausible poses for each
input perturbation independently by applying the corresponding augmentation
strategy on all test images. In a last experiment we regularize the predicted
heatmaps from the SHG by feeding them directly into the CAE.

The isolated evaluation of our CAE shows improved mean PCK values of 80.3
to 97.1, 90.0 to 96.6 and 90.7 to 96.5 for the swap, remove and offset perturbation,
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respectively. The subsequent regularization of the SHG predictions on depth
images leads to a mean PCK of 84.4. Qualitative results in Fig. 2 visualize the
regularization of implausible and incomplete poses (Tabs. 1 and 2).

4 Discussion

We successfully validated a state-of-the-art pose estimator, namely SHG, for
upper body pose estimation in a new challenging clinical environment. Thereby,
we could show that depth frames as input modality reached a better performance
than blurred RGB images, implying that depth information can be a natural
choice for computer vision algorithms in health care applications that depend
on anonymized input data. Our CAE based regularization can reliable recover
plausible poses from a set of input perturbations and as a simple and independent
post processing step the CAE leads to a small improvement in mean PCK.
To further improve on the results the CAE could be incorporated in an end-
to-end training in the pose estimation step, e.g. using the latent space for a
regularization loss as in [9]. Finally, we believe our self-supervised regularization
method has great potential for future use in landmark detection and foresee
further research in different domains, e.g. localisation in CT or MRI volumes.
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Chest radiography is the most common clinical examination type. To im-
prove the quality of patient care and to reduce workload, researchers started
developing methods for automatic pathology classification. In our paper [1], we
investigate the effect of advanced image processing techniques – initially devel-
oped to support radiologists – on the performance of deep learning techniques.

First, we employ bone suppression, an algorithm to artificially remove the
rib cage in chest X-ray images. Secondly, we use automatic lung field detection
to crop images to the lung area. Furthermore, we consider the combination of
both. For convolutional neural network (CNN) training and evaluation, DICOM
images from the Indiana dataset (Open-I [2]), were examined by two expert
radiologists and annotated with respect to eight different pathologies. We pre-
train our CNN on the largest publicly available X-Ray dataset (ChestX-ray14)
and fine-tune it by using the DICOM data.

In a five-times re-sampling scheme, we use receiver operating characteristic
(ROC) statistics to evaluate the effect of the pre-processing approaches. Using a
convolutional neural network (CNN), optimized for X-ray analysis, we achieve a
good performance with respect to all pathologies on average. While, the combi-
nation of bone suppression and lung field detection improves slightly the average
ROC area from 0.891 ± 0.013 to 0.906 ± 0.012. Contrary, for selected patholo-
gies, a substantial improvement can be reported i.e. for mass the area under the
ROC curve increased by 9.95%. The ensemble with pre-processed trained models
yields the best overall results with 0.912± 0.011 AUC on average.
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Abstract. For lung cancer staging, the involvement of lymph nodes
in the mediastinum, meaning along the trachea and bronchi, has to be
assessed. Depending on the staging results, treatment options include
radiation therapy, chemotherapy, or lymph node resection. We present
a processing pipeline to automatically generate visualization-supported
case reports to simplify reporting and to improve interdisciplinary com-
munication, e. g. between nuclear medicine physicians, radiologists, ra-
diation oncologists, and thoracic surgeons. To evaluate our method, we
obtained detailed feedback from the local division of nuclear medicine:
Although patient-specific anatomy was not yet considered, the presented
approach was deemed to be highly useful from a clinical perspective.

1 Introduction

Worldwide, lung cancer has the highest incidence and mortality rates [1]. Popper
[2] reports that depending on the type of lung carcinoma, cancer cells can migrate
via blood vessels and cause distant metastases in the brain, bones, and the
adrenal glands. Furthermore, they can also migrate via the lymphatic system
and cause lymph node metastases.

In addition to the direct assessment of lung carcinomas, e.g. measuring their
size and examining their shape, and whether distant metastases are present, the
involvement of the mediastinal lymph nodes has to be taken into consideration
in order select the right treatment option for the individual patient. Mountain et
al. [3] introduced the lymph node map that enables a uniform classification for
lung cancer staging by grouping lymph nodes into lymph node stations. Multiple
extensions and variations of this classification exist. For example, Rusch et al.
[4] decreased the classification granularity by grouping stations into zones.

We present our processing pipeline that automatically generates case reports
(Fig. 1). Our approach is related to the tumor therapy manager by Rössling et al.
[5], which examines lymph node levels to support treatment planning for cases
with head and neck cancer. Additionally, it is also related to the tool of Birr et al.
[6], which creates interactive oncology reports for the operation planning of lung
tumors. Here, reports are used to document medical findings, and to support



186 Merten et al.

Fig. 1. A detailed overview of the processing pipeline to generate visualization-
supported case reports for lymph node metastases for lung cancer staging.

interdisciplinary communication between physicians that make diagnoses and
surgeons, e. g. to plan lymph node resections.

2 Materials and methods

The processing pipeline was implemented using MeVisLab 2.8.2 [7] and a detailed
overview of the pipeline is depicted in Fig. 1.

2.1 Structure segmentation

For the first step, a computed tomography (CT) scan is used to create initial seg-
mentation masks for important anatomical structures, namely the trachea, both
lungs, the aorta, and the clavicle, which are then used to define lymph node

Fig. 2. A focused depiction of the lymph node stations
1L/R, 2L/R, 4L/R, and 5 (Tab. 1).
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stations. Considered stations, their anatomical location, and how they are geo-
metrically encoded in the resulting visualizations and case reports are compiled
in Tab. 1.

To obtain these segmentation masks, a region-growing approach with manual
seed point definition was used. This is possible since the radio densities of the
aforementioned and nearby structures are different enough to prevent an over-
segmentation. However, to create lymph node stations, further processing was
necessary (Fig. 1 and 2). For our results, this was done manually: Starting a
region-growing in the aortic arch included large parts of the heart, ascending
arteries, and the abdominal aorta. Therefore, the aorta’s segmentation mask was
cut by defining clipping planes to exclude not needed anatomy. Two additional
planes were then used to separate station 5 from the aorta.

All other stations are geometrically encoded using the trachea surface mesh.
First, to separate the left and right lymph node stations, the segmentation mask
was divided in the middle from the top to the carina. This processing step was
automated by computing the axis-aligned bounding box for each axial slice and
separating the left and right half. The horizontal cuts were also done manually
using the vertical center of the clavicle (stations 1 and 2) and the upper edge
of the aortic arch (stations 2 and 4). In Fig. 2, this is depicted in detail. To
separate the stations 10, 11 and 12, the skeletonization method of Selle et al. [8]
was used, which is implemented in the DtfSkeletonization module in MeVisLab
and resulted in a directed graph with the root node at the top of the trachea.
While graph nodes represent airway branching points, graph edges represent
the intermediate airways between these points. The airways behind the first
bifurcation that divides the trachea into the primary bronchi are assigned to the
stations 4L and 4R. Near the hilum, the primary bronchi are divided to separate
the stations 4 and 10 from each other. The subsequent edges are assigned to the
stations 10 (primary bronchi near hilum to lobar bronchi), stations 11 (lobar
bronchi), and stations 12 (subsequent bronchi after lobar bronchi). Finally, to
create station 7 at the bifurcation of the trachea, clipping planes were used to
create the upside down, saddle-like geometry.

Although no lymph node stations were encoded using the lung parenchyma,
it was segmented and visualized to create a visual context for the airways. How-
ever, segmenting the lung parenchyma via region-growing results in holes due
to a rather high contrast between parenchyma and blood vessels. Therefore, a
morphological closing operator was applied to close major holes.

2.2 Vertex mesh generation

For each segmentation mask, a surface mesh is generated using the neighboring
cells algorithm of Bade et al. [9], which is implemented in the WEMIsoSurface
module in MeVisLab. After mesh generation, the Laplacian mesh smoothing
from the WEMSmooth module is applied to all meshes to reduce staircase arti-
facts and to enhance the visual separation between adjacent lymph node stations
by creating ridges along mesh borders.
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Table 1. Used lymph node stations, their anatomical location, and how they are
geometrically encoded in the visualizations and case reports. The anatomical directions
sinistra (left) and dextra (right) are abbreviated with L and R, respectively.

Lymph Node Station Anatomical Location Geometric Encoding

1L & 1R Supraclavicler Trachea, above clavicler

2L & 2R Upper Paratracheal Trachea, above aortic arch

4L & 4R Lower Paratracheal Rest of Trachea until Hilum

5 Subaortic Segment at aortic arch

7 Subcarinal Trachea, just above carina

10L & 10R Hilum Primary bronchi near Hilum

11L & 11R Interlobar Near Hilum to lobar bronchi

12L & 12R Lobar Subsequent bronchi

3 Results

In the last processing step, the previously created meshes are visualized and
color-coded (Fig. 3). To create the color-coding, the user has to import a patient
database with one or multiple cases that include the patient name, gender, and
the individual metastases findings for each lymph node stations. We used the
comma-separated values (CSV) file format, because it can easily be generated
and processed. Using the slider at the top right, users can interactively browse
through all imported patients and the color-coding is adapted with respect to a
patient’s individual findings. Additionally, the color-coding for the lymph node
stations and anatomic landmarks can be changed. Furthermore, the opacities of
the landmarks can be changed interactively. To do that, the order-independent
transparencies method of Barta et al. [10] was implemented.

At the bottom right, users can export screenshots of the rendering canvas
on the left and automatically generate case reports in the portable document
format (PDF) by defining an export path. The internal case report generation
pipeline is depicted in Fig. 4: Information about the patient and a screenshot of
the currently presented 3D visualization are collected and merged via Python
scripting in a LATEX source file. When all information are present, a PDF case
report is generated by invoking a LATEX program, e. g. pdflatex.

4 Discussion

To evaluate our developed method, we received detailed feedback from our local
division of nuclear medicine. First, the clinical suitability of the presented geo-
metric encoding of lymph node stations was assessed. On the one hand, it was
noted that the current approach introduces a rather high degree of anatomical
abstraction, because lymph nodes are separate anatomic structures, but at this
moment, they are represented via tracheal mesh geometry (Tab. 1). On the other
hand, the current approach was found to be easy to understand as well as to
make clinical reports more straightforward to interpret.
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Fig. 3. The graphical user interface with the resulting lymph node station visualization.
On the right, the color-coding of the stations and anatomic landmarks can be changed.
Furthermore, the individual metastases findings are presented in a list. At the bottom
right, users can export automatically generated case reports (Fig. 4).

For now, obtaining the initial segmentation masks and separating them into
lymph node stations was done manually. Our clinical cooperation partners stated
that segmenting patient-specific anatomy for each new case would be too time-
consuming in a clinical workflow, however, it was also mentioned that, currently,
this was not necessary. Although this is not a favorable condition, it can be
argued that always using the already obtained set of segmentation masks and
surface meshes can be an advantageous, because the resulting case reports are

Fig. 4. A detailed overview of the case report generation pipeline. A sreenshot of the 3D
visualization is merged with patient information and individual lymph node metastases
findings from the patient database (PDB; Fig. 1). All information are collected via
Python scripting and are then compiled in a case report via LATEX.
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uniform and comparable to each other. Moreover, this increases the familiarity
with visualization-supported reports.

For lung cancer staging, our clinical colleagues use combined PET/CT scans
with the F18-FDG radionuclide, which are not used in the current processing
pipeline. Related to the tumor therapy manager by Rössling et al. [5], it would be
desirable to extend the presented pipeline towards a computer-assisted diagno-
sis prototype, which enables an automatic derivation of staging suggestions from
suspicious metabolic activity of lymph nodes. Currently, users are required to cre-
ate and maintain an additional database with individual lymph node metastases
findings, however, this can easily be done using table processing software. Fur-
thermore, regarding different staging classifications, e. g. by Mountain or Rusch
et al. [3, 4], the presented processing pipeline and GUI can easily be adapted,
which enables fast software tailoring for different clinical workflows. Finally, we
searched for potential clinical applications areas with our cooperation partners:
From the clinical point of view, resulting visualization-supported reports are
seen as a very helpful addition for interdisciplinary communication scenarios,
e. g. tumor board reviews, the planning of lymph node resections, or for the
documentation in the context of clinical trials.
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Abstract. In image guided interventions, the radiation dose to the pa-
tient and personnel can be reduced by positioning the blades of a colli-
mator to block off unnecessary X-rays and restrict the irradiated area to
a region of interest. In a certain stage of the operation workflow phase
detection can define objects of interest to enable automatic collimation.
Workflow phase detection can be beneficial for clinical time management
or operating rooms of the future. In this work, we propose a learning-
based approach for an automatic classification of three surgical workflow
phases. Our data consists of 24 congenital cardiac interventions with a
total of 2985 fluoroscopic 2D X-ray images. We compare two different
convolutional neural network architectures and investigate their perfor-
mance regarding each phase. Using a residual network, a class-wise av-
eraged accuracy of 86.14% was achieved. The predictions of the trained
models can then be used for context specific collimation.

1 Introduction

With high precision and real-time imaging, C-arm fluoroscopy is the common
modality of choice for image guided interventions to enable minimally invasive
procedures [1]. However a major problem is the amount of radiation exposure to
the patient and personnel during operations like cardiac resynchronization ther-
apy, endovascular aneurysm repair, or congenital cardiac disease treatment [2].
Especially in latter intervention, the majority of the patients are underage and
often have to undergo this process several times, thus, the total dose received
can have a severe impact on their health [3].

Therefore, the reduction of unnecessary radiation is one of the most essential
tasks in image-guided therapies. Collimation is a widespread approach to block
and limit X-rays to a certain field of view without losing important information.
One way of adjusting the collimator’s blades is to do this manually by the physi-
cian himself, which leads to interruptions and slows down the clinical workflow.
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Hence, a desired method is the automatic detection of a region of interest that
will determine the irradiated area in the given context.

Workflow phase detection can be a useful strategy to define an object of in-
terest and reposition the collimator depending on the specific stage of an opera-
tion. A state-of-the-art method to classify a cholescystectomy into seven phases
by DiPietro et al. [4] includes the analysis of 15 different sensor signals. An
algorithm comparison between a support vector machine, conditional random
forest, and hidden Markov model showed that the latter performed best with
an accuracy of 81.1% compared to the given ground truth. On the same task,
a learning-based method by Yengera et al. [5] uses videos as input for a net-
work, consisting of a convolutional neural network (CNN) and a long short-term
memory. This method achieves an accuracy of 89.6%.

In this work, we investigate a learning-based approach for workflow phase de-
tection of intra-operative fluoroscopic images from congenital cardiac interven-
tions. This has already been investigated in a similar way by Alhrishy et al. [6]
using a network consisting of two convolutional layers. In addition to a more
powerful network, we extend their work by taking a closer look at the networks
performance for each workflow phase. The aim is to automatically identify three
different surgical workflow phases. This information can then be used for context
specific collimation.

2 Materials and methods

2.1 Data

Our data consists of 2985 grayscale 2D X-ray images from 24 clinical cases of
congenital cardiac disease treatments, which are subdivided into three workflow
phases:

0. Navigation phase: insertion of guidewires and catheters, Fig. 1 a);
1. Deployment phase: transport and deployment of a therapeutical device (e.g.

stent, ballon, valve), Fig. 1 b);

(a) Phase 0 (b) Phase 1 (c) Phase 2

Fig. 1. Example images for the three phases of congenital cardiac treatments. (a) Nav-
igation phase. (b) Pre-deployment phase. (c) Post-deployment phase.
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2. Post-deployment phase: inspection of deployed device, Fig. 1 c).

Every frame was labeled manually by a medical expert with two years of ex-
perience. The corners of each image are blacked out for anonymization purposes.
The aim is to train a network to match its prediction ŷ ∈ R

c with the ground
truth label y ∈ R

c for a given image X ∈ R
h×w, where c corresponds to the

number of classes, h to the height and w to the width of an image.

2.2 Preprocessing

Every image goes through several preprocessing steps for data augmentation and
more stability during training. Some images showed artifacts in form of white
lines caused by the collimator or filter positioning during the intervention. In
cases where the lines are located within the irradiated area (Fig. 2 a)), the data
is manually excluded from each data set. The remaining artifacts in all sets are
cleared with a contour analysis, setting every pixel outside the detected countour
of the frame to 0 to prevent the network from learning them as features. An
example for this is shown in Fig. 2 b) - d). The training data is then normalized
in a range between [0, 255] to prepare it for data augmentation. To stay close to a
realistic case of an image guided intervention, only specific kinds of augmentation
methods are used: horizontal flip, rotation of ±15◦, translation in x-/y-direction
by ±100 pixels, Gaussian blur, random noise, and random contrast.

After augmentation, the image is again normalized to a range of [0, 1]. Due
to the memory limitation of the graphics card and time consumption of the
training, the images are downscaled from their original resolution of 1024×1024
to 256 × 256. At this patch size it is still possible for a human to classify every
image correctly. It has to be noted that the artifact removal for all sets and the
data augmentation of the training set is performed on the original size.

2.3 Data composition

The clinical cases are assigned to training, validation, and testing set such that all
sets contain approximately the same relative proportion of each phase. It should

(a) (b) (c) (d)

Fig. 2. Example images with artifacts. (a) Intern: Artifacts inside the irradiated area.
(b) Extern: Artifacts outside the irradiated area. (c) Contour analysis: Red contour
marking the boundary of the irradiated area. (d) Cleared: Image after artifact removal.
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be pointed out that the images from one intervention are not split amongst two
or more sets. Without data augmentation of the training set the split between
training, validation, and testing is 62.5%, 16.4%, and 21.1%, respectively. The
data is highly unbalanced, both with respect to the number of images per inter-
vention and phase. To avoid overfitting, the cases are sampled such that every
case is equally represented by the same number of images. Thus, the dependency
on interventions with many image sequences is decreased. Furthermore, to tackle
the issue of uneven distribution of labels, the training data is also sampled over
its classes. This means that during training, we sample images such that all
phases are presented to the network with the same frequency.

2.4 CNN architectures

In this paper, two different networks are compared, an adapted AlexNet [7] and
a ResNet18 [8]. For both CNNs the 4D input tensor contains grayscale images
of the resolution 256× 256. All weights of the networks are He initialized as this
works best with ReLU activations according to He et al. [9].

The adapted AlexNet differs from its original architecture [7] in respect to the
amount of filters applied for convolution, kernel size of the first layer, number
of neurons in the fully connected layer, and batch normalization after every
convolutional layer instead of local response normalization after first and second
layer. The first layer applies f1A = fA initial filters, with fA ∈ {8, 16, 32, 64}.
The number of neurons in the first two fully connected layers are d1/2 = d, with
d ∈ {16, 32, 64}, and are regularized with a dropout rate of 50%. The model
for the adapted AlexNet is visualized in Fig. 3.

The structure of the ResNet18 proposed in this work refers to its original
architecture introduced by He et al. [8], however, with some minor differences
regarding the kernel size of the initial convolution and the strides throughout
the network. The adapted ResNet18 applies f1R = fR filters for the first convo-
lutional layer with kernel size 3 × 3 and stride of 2, with fR ∈ {64, 128}. The
output is max-pooled with a 3× 3 kernel and stride of 2 before being processed
by the first residual building block. Every block convolves with a stride of 1, with
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Table 1. Recall for each phase and balanced accuracy of every set for AlexNet and
ResNet18. The model with the best balanced accuracy for validation set is shown.

Network Set Phase 0 Phase 1 Phase 2 Bal. acc.

Training 96.16% 99.95% 99.61% 98.58%

AlexNet Validation 96.64% 35.29% 65.66% 65.86%

Testing 86.40% 80.49% 60.90% 75.93%

Training 95.84% 100.0% 98.80% 98.21%

ResNet18 Validation 89.36% 91.18% 71.72% 84.08%

Testing 83.77% 92.68% 81.96% 86.14%

the exception of the very first convolution of the initial building block, where
the stride is 2. At the end of each block the amount of filters is doubled. The
last layer of both networks is a fully connected layer that maps its input to the
number of classes and applies a softmax activation, representing the probabilities
for every image to belong to the respective phase. Both networks were trained
by optimizing the cross entropy function loss using the ADAM optimizer.

3 Results

The training is performed with a grid search over several parameters. For AlexNet,
we vary the number of initial filters, the learning rate, the number of fully con-
nected neurons, and the batch size. For each setting, we train the network for
100 epochs. For ResNet18, the parameters are restricted to the number of filters
in the first layer and learning rate with 50 epochs for every combination. To
take the uneven distribution of phases in validation and test set into account, we
evaluate the performance of the networks using balanced accuracy. We select the
trained network that achieves the highest balanced accuracy on the validation
set. The performance of AlexNet and ResNet18 is summarized in Tab. 1 showing
the accuracy for every phase and the overall balanced accuracy, respectively.

4 Discussion

The evaluation shows that ResNet18 achieved better classification results when
compared to the adapted AlexNet. However, both networks are overfitting on the
training set, and curiously perform less accurate for the validation set than for the
testing set. The latter can be explained by fact that the validation set contains
several inconclusive images, which the models are not trained for, e.g. double
or hardly visible stents. ResNet18 seems to be able to deal with these special
images better than AlexNet. AlexNet especially misclassified images depicting
stent markers in phase 1, which are frequently represented in the validation, but
not in the testing set. In general, the investigated data set is highly diverse which
makes workflow phase classification a very challenging task. In addition to high
variations in image quality, we see a number of structures in the images that are
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not directly related to the workflow phase, such as contrast agent injections or
transesophageal echoprobes. A larger data set that better represents the variety
of possible images will likely help with misclassifications in these cases.

In this work, we compared two CNN architectures to classify congenital
cardiac interventions into three workflow phases. Our evaluation showed that
ResNet18 performed better than the adapted AlexNet when confronted with the
same task. Thus, it can be hypothesized that increasing network depth results
in a higher accuracy. We propose that our model for workflow phase detection
can be combined with device detection approaches like intraoperative stent seg-
mentation [10] or can be adapted for other image guided interventions to benefit
not only automatic collimation, but also clinical time management or operating
rooms of the future. This investigation presents promising first steps towards
workflow phase classification. To allow for intraoperative use, the robustness of
the classification has to be further improved. Further research could examine dif-
ferent CNN architectures with other training data and regularization methods
to improve the performance and stability of this strategy.
Disclaimer: The methods and information presented here are based on research and
are not commercially available.
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The growing popularity of black box machine learning methods for medical
image analysis makes their interpretability to a crucial task. To make a system,
e.g. a trained neural network, trustworthy for a clinician, it needs to be able
to explain its decisions and predictions. In our work we tackle the problem of
explaining the predictions of medical image classifiers, trained to differentiate
between different types of pathologies and healthy tissue [1].

There is a variety of neural network explanation methods, such as gradCAMs
and guided backpropagation that directly use the learned network weights to
deduct the most important image features. However, such methods are based on
heuristics and depend on the network architecture. Another intuitive solution
to determine which regions of an image influence the trained classifier is to find
out whether the classifier changes its prediction when those regions are deleted.
This idea is model-agnostic and can be formulated as an explicit minimization
problem and thus efficiently implemented on the GPU. However, the meaning
of “deletion”of image regions, in our case pathologies in medical images, is not
defined. Usually, deleting image regions would be based on image perturbations,
but intuitive solutions like replacing the values by zeros or blurring regions, may
not have the desired effect for medical applications.

We contribute by defining the deletion of suspicious regions, as the replace-
ment by their healthy looking equivalent generated using a variational autoen-
coder (VAE). We train the VAE on healthy images only and thus expect it to
only be able to reconstruct healthy looking images in test phase even if the in-
put contains pathologies. This healthy reconstruction is then used to perturb
the pathological regions. In our tests on retinal OCTs with age-related macular
degeneration and brain MRI images with lesions, we show that this perturba-
tion method outperforms other perturbation techniques and shows more robust
results compared to heuristic methods.

References

1. Uzunova H, Ehrhardt J, Kepp T, et al. Interpretable explanations of black box
classifiers applied on medical images by meaningful perturbations using variational
autoencoders. Proc SPIE. 2019;Accepted.



Abstract: Deep Transfer Learning for Aortic
Root Dilation Identification in 3D Ultrasound

Images

Jannis Hagenah1, Mattias Heinrich2, Floris Ernst1

1Institut für Robotik und Kognitive Systeme, Universität zu Lübeck
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Valve-sparing aortic root reconstruction presents an alternative to valve re-
placement. However, choosing the optimal prosthesis size for the individual pa-
tient is a critical task during surgery. To assist the surgeons in their decision
making, a pre-operative surgery planning tool based on 3D ultrasound data has
been proposed. One step in the workflow is the automatic discrimination of
healthy and pathologically dilated aortic roots. Up to date, hand-crafted fea-
tures were extracted from the images for this purpose of training a classifier. A
study showed the limited classification accuracy of this method, indicating that
feature learning would present a promising alternative. However, training deep
neural networks requires large datasets.

In this work, we propose transfer learning to use image features derived by
deep neural networks on the available very small data sets [1]. For this purpose,
we used the pretrained deep neural network VGG16. We used the activation of
the last convolutional layer as extracted features of the input image.

To simplify the problem, we manually identified two prominent horizontal
slices through the ultrasound volume: The coaptation plane and the commis-
sure plane. We propagated both images through the network and stitched the
resulting features together to describe one aortic root sample. We did this for the
whole data set of 48 images (24 healthy, 24 dilated). On the resulting dataset,
we trained a Random Forest classifier (400 trees) and evaluated the classification
accuracy using 10-fold cross validation.

Using the transferred deep features we could reach a classification accuracy
of 84 %, which clearly outperformed the hand-crafted features (71 % accuracy).
Adding the hand-crafted features to the transferred ones did not increase the
accuracy (83 %) Hence, all of the information contained in the hand-crafted fea-
tures can be provided using transfer learning. Even though the VGG16 network
was trained on RGB photos and different classification tasks, the learned feaures
are still relevant for ultrasound image analysis of aortic root pathology identifi-
cation. Hence, transfer learning makes deep learning possible even on very small
ultrasound data sets.

References

1. Hagenah J, Mattias H, Floris E. Deep transfer learning for aortic root dilation
identification in 3D ultrasound images. Curr Dir Biomed Eng. 2018;4.1:71–74.



Abstract: Leveraging Web Data for Skin Lesion
Classification

Fernando Navarro1, Sailesh Conjeti2, Federico Tombari1, Nassir Navab1,3

1Computer Aided Medical Procedures, Technische Universität München, Germany
2 Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany

3Computer Aided Medical Procedures, Johns Hopkins University, USA

fernando.navarro@tum.de

The success of deep learning is mainly based on the assumption that for
the given application, there is access to a large amount of annotated data. In
medical imaging applications, having access to a big-well-annotated data-set is
restrictive, time-consuming and costly to obtain. Although diverse techniques as
data augmentation can be leveraged to increase the size and variability within the
data-set, the representativeness of the training set is still limited by the number
of available samples. Furthermore, a small-size and well-annotated data-set can
not guarantee the generalizability to unseen samples.

As a consequence for the aforementioned problem, we have proposed in [1]
to utilize the vast amount of free available data from the web to alleviate the
need of a large-well-annotated data-set in the so-called Webly Supervised Learn-
ing methodology presented in [2]. Harvesting images from the web presents the
opportunity to increase the variability and heterogeneity of the training set at
the cost of label noise. These label noises include cross-domain: retrieved images
opposite to the dermatology domain and cross-category: retrieved images visu-
ally similar to the query image yet belonging to a different class. To overcome
the first type of noise we have proposed a search by image technique to increase
the search specificity and retrieve only images visually similar to the query. The
second type of noise is reduced by modeling the noise in the data-set with a class-
transition matrix, estimated from the web-retrieved images as proposed in [3].
To the best of our knowledge, our work has been the first applying webly super-
vised learning in medical imaging. To validate our methodology, we have tested
our system in the context of ten-class fine-grained skin lesion classification. Our
results show that the proposed methodology increase the overall classification
accuracy from 71.25 % to 80.53 % due to the web-supervision.
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Kurzfassung. Ziel der vorliegenden Machbarkeitsstudie ist es, zu prü-
fen, ob eine bildbasierte TICI-Klassifikation von ischämischen Infark-
ten mittels aktueller Machine Learning-Methoden automatisiert werden
kann. Der TICI-Score (Thrombolysis in Cerebral Infarction) beschreibt
den lokalen Befund am Infarktort und nachgeschaltete Hirndurchblu-
tung nach endovaskulärer Behandlung. Die zugrunde liegenden Bild-
daten sind (2D+t)-Bildserien aus zwei orthogonalen Ansichten (lateral
und anterior-posterior), die mittels digitaler Subtraktionsangiographie
(DSA) aufgenommen wurden. Basierend auf 698 Bildsequenzen wurde
untersucht, inwieweit mittels CNN (Convolutional Neural Network) an-
hand von entweder aus den Zeitserien abgeleiteten Minimum Intensity
Projection-Daten oder unter expliziter Berücksichtigung der Zeitserien-
information eine korrekte Klassifikation erfolgt. Im Zuge dessen wur-
den im Hinblick auf die zu erwartende Komplexität verschiedene Kon-
figurationen/Kombinationen von Verschlussort und TICI-Score definiert
und analysiert. Die Ergebnisse zeigen, dass es möglich ist, TICI-Score
und Verschlussort von ischämischen Infarkten zumindest bei stark un-
terschiedlichen TICI-Scores verlässlich automatisiert zu bestimmen; die
Machbarkeit wird belegt.

1 Einleitung

Digitale Subtraktionsangiographie (DSA) ist derzeit die klinisch etablierte Bild-
modalität zur Diagnose von zerebralen ischämischen Schlaganfällen. Bei den re-
sultierenden Datensätzen handelt es sich um 2D-Bilddaten in zeitlicher Abfolge,
d.h. (2D+t)-Bilddaten. Die Diagnose selbst erfolgt über sowie die Bestimmung
des Schweregrads des Infarkts. Typische Verschlusslokalisationen finden sich im
Bereich des Carotis-T (T-Infarkt) und der Arteria cerebri media (M1-Infarkt).
Der Schweregrad des Infarkts resultiert aus der residuellen Menge des durch den
Verschluss strömenden Blutes bzw. der Durchblutung nachgeschalteter Hirnre-
gionen. Das Ergebnis nach endovaskulärer Behandlung wird gemäß TICI-Score
(Thrombolysis in Cerebral Infarction) beurteilt [1]. Der Score reicht von 0 bis 3,
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wobei Grad 2 weiter in 2a und 2b unterteilt wird. Ein TICI-Score 0 bedeutet,
dass keine stattfindet; Grad 3 beschreibt eine vollständige (Abb. 1; TICI-Grad
1: kaum Perfusion, Grad 2a: teilweise Perfusion; Grad 2b: komplette bei jedoch
unvollständigem Stromgebiet).

Aktuell erfolgt die TICI-Klassifizierung der Infarkte durch den behandeln-
den Radiologen. Die visuelle Einschätzung unterliegt jedoch einer starken Ob-
servervariabilität [2] und ist insbesondere im Hinblick auf größere Studien mit
einem nicht vertretbaren Zeitaufwand verbunden. Folglich zielt die vorliegen-
de Arbeit mittelfristig auf die Automatisierung von Identifikation, Lokalisierung
und TICI-Klassifizierung von zerebralen ischämischen Infarkten ab. Verwand-
te Arbeiten beschäftigen sich momentan im Wesentlichen mit der Vorhersage
des Outcomes für den Patienten [3] oder der Bestimmung des Infarktvolumens
[4]. Die automatisierte Bestimmung des TICI-Scores, insbesondere unter Ver-
wendung von klinischen DSA-Bilddaten, ist unseres Wissens nach bislang nicht
näher betrachtet worden; die vorliegende Arbeit repräsentiert entsprechend einen
ersten diesbezüglichen Ansatz. Aufgrund des großen Erfolgs von Convolutional
Neural Networks (CNNs) zur Klassifikation von Bilddaten wird auf eine (einfa-
che) CNN-Architektur zur TICI-Klassifizierung zurückgegriffen.

2 Material und Methoden

2.1 Verwendete Bilddaten

Für jeden Patienten lagen je ein prä- und ein postinterventionell aufgezeichne-
ter Datensatz mit jeweils simultan aufgezeichneten DSA-Datensätzen in late-
raler und anterior-posteriorer Ansicht vor (isotrope räumliche 0,19mm; zeitli-
che 0,33 s; je Sequenz zwischen 6 und 24 Frames). Visuelle Lokalisierung und
TICI-Klassifizierung erfolgte durch einen klinischen Experten; jeweilige Anga-
ben dienten als Ground Truth. Die Verteilung der verfügbaren Daten gemäß
Infarktlokalisierung und TICI-Score ist Tab. 1 zu entnehmen.

2.2 Bilddatenvorverarbeitung

Als erster Schritt der DSA-Datenvorverarbeitung wurden die aufgabenspezifisch
relevanten Strukturen (d.h. kontrastmitteltragende Stukturen) schwellwertba-
siert vorverarbeitet: Intensitätswerte oberhalb des Schwellwerts wurden mittels

Abb. 1. Beispieldaten (ober
Reihe: laterale Ansicht; unte-
re Reihe = anterior-posteriore
Ansicht) für einen T-Verschluss
mit TICI-Score 0 (links), einen
M1-Verschluss mit Score 0 (Mit-
te) sowie einen Datensatz mit
Score 3 (rechts). Bei den Bildern
handelt es sich um Minimum In-
tensity Projecions (minIP) ent-
lang der Zeitachse.
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Tabelle 1. Datensatzübersicht, aufgeschlüsselt nach Ort des Infarktes und korrespon-
dierendem TICI-Score. Werte in Klammern bedeuten, dass die korrespondierenden
Klassen aufgrund der geringen Fallzahl nicht weiter betrachtet wurden.

Ort TICI 0 TICI 1 TICI 2a TICI 2b TICI 3 gesamt

M1 256 46 101 113 – 525

T 58 (6) (13) (18) – 58

gesamt 323 46 101 113 115 698

des Schwellwertes überschrieben und der resultierende Dynamikbereich auf das
Intervall [0;1] skaliert. Der Schwellwert wurde anhand ausgewählter Datensätze
heuristisch optimiert und auf alle anderen Daten übertragen. Hierdurch wurde
z.B. der Einfluss von Bildartefakten reduziert.

Zur effizienteren Verarbeitung der Daten mittels CNN wurden aus jeder der
resultierenden (2D+t)-Bildserien drei Datensätze abgeleitet: eine Minimum In-
tensity Projection (MinIP) entlang der zeitlichen Achse, die sämtliche verfügba-
ren Frames des Patienten umfasst (MinIP-A); eine zeitliche MinIP, die auf Basis
von lediglich den neun Frames berechnet wurde, die den Zeitpunkt umschließen,
der die geringste Intensität aufweist (MinIP-9F; integriert über den gesamten
Bildbereich); ein (2D+t)-Datensatz, der vorgenannte neun Frames enthält (3DC-
9F). Für den Fall, dass eine Serie weniger als 9 Bilder enthält, wurden erster und
letzter Frame repliziert. Eine zeitliche MinIP hat den Effekt, dass für jedes Voxel
der Intensitätswert zum Zeitpunkt der lokal maximalen Durchblutung (bzw. der
maximalen Kontrastmittelkonzentration) abgebildet wird und somit der Infarkt-
bereich bzw. nicht- oder schlechter durchblutete Bereiche hell im Bild erscheinen.
Die vorgenannte Einschränkung auf neun Frames (siehe MinIP-9F und 3DC-9F)
soll Unsicherheiten z.B. durch retrograde reduzieren.

Jeweilige Bilddaten wurden von einer ursprünglichen Größe von 1024 × 1024
Pixel auf eine Größe von 512 × 512 Pixel reduziert.

2.3 CNN-Architektur und Datenverarbeitung

Die Architektur des zur Klassifikation verwendeten CNNs orientierte sich an er-
folgreichen Designs des ResNets [5]. Das verwendete Netzwerk bestand aus neun
2D-Convolutional- und fünf 2D-Maxpooling-Schichten; zur Klassifikation dienten
drei weitere Linear-Layer. Um die Robustheit der Klassifikation zu erhöhen, wur-
den zudem Dropoutlayer (Dropoutrate 0,5) vor den ersten beiden Linear-Layern
und Batchnormalisierung vor den Maxpooling-Schichten genutzt [6]. Als Aktivie-
rungsfunktion diente ReLU; als Verlustfunktion wurde Cross Entropy genutzt;
Parameteroptimierung erfolgte mittels des Adam-Optimierers.

Als CNN-Eingabe dienten zunächst die MinIP-A- und MinIP-9F-Bilddaten.
Laterale und anterior-posteriore Ansicht wurden gleichzeitig, d.h. als kombinier-
te zweikanalige Eingabe, genutzt. Für entsprechende Experimente wurde eine
Lernrate von 0,001 genutzt.
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Zur Verarbeitung der 3DC-9F wurde ebenfalls das genannte CNN-Design
verwendet (Lernrate 0,0025); dem 2D-CNN wurde jedoch eine 3D-Convolution-
und eine Maxpooling-Schicht vorgeschaltet.

2.4 Experimente und Auswertestrategie

Um die Machbarkeit der CNN-basierten TICI-Score-Bestimmung zu untersuchen
und Herausforderungen zu identifizieren, wurden Experimente zu verschiedenen
Kombinationen von Infarkt-Schweregrad und - durchgeführt.

Paarweise Differenzierung von TICI-Scores Beginnend mit der visuell ein-
fachen Unterscheidung von TICI 0- und TICI 3-Daten wurde die Schwierigkeit
sukzessive erhöht und insbesondere die Differenzierung

”
benachbarter“ TICI-

Scores als individuelle 2-Klassenprobleme betrachtet (TICI 0 vs. TICI 1, TICI 1
vs. TICI 2a, etc.). Diese Substudie wurde unter Verwendung der Bilddaten mit
M1-Verschluss durchgeführt.

Differenzierung aller TICI-Scores Basierend auf den M1-Verschlussdaten
wurde in der nächsten Substudie die Differenzierung sämtlicher TICI-Scores an-
hand der vorgenannten M1-Verschlussbilddaten evaluiert.

Differenzierung nach Infarktlokalisation Abschließend wurde die Differen-
zierung von M1-TICI 0- und T-TICI 0-Verschlussdaten (2-Klassenproblem) sowie
von M1-TICI 0-, T-TICI 0- und TICI 3-Daten (3-Klassenproblem) untersucht.
Auf eine Betrachtung der weiteren T-Verschlussdaten wurde aufgrund der gerin-
gen Anzahl verfügbarer Daten verzichtet.

Alle Experimente wurden jeweils auf Basis der MinIP-A-, MinIP-9F- und
3DC-9F-Daten und als 5-fache Keuzvalidierung durchgeführt; die Gößte der
Klassifizierung wurde mittels Korrektklassifikationsrate quantifiziert. Um eine
balancierte Klassenverteilung während des Trainings zu gewährleisten, erfolgte
ein Oversampling der unterrepäsentierten Klassen.

3 Ergebnisse

Die Ergebnisse sind für die betrachteten Kombinationen von Infarktort und
TICI-Score in Tab. 2 zusammengefasst; die verwendeten Testdatensätze waren
hinsichtlich der Klassenbesetzung balanciert.

3.1 Paarweise Differenzierung von TICI-Scores

Die Unterscheidung von M1-TICI 0-Infarkten und infarktfreien (TICI 3) Bil-
dern zeigen erwartungsgemäß mit im Schnitt 89% und weitestgehend unabhängig
von dem betrachteten Bildformat (MinIP-A, MinIP-F9, 3DC-9F) die höchsten
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Tabelle 2.Korrektklassifikationsraten der durchgeführten Experimente zur paarweisen
Differenzierung von TICI-Scores für M1-Verschlussdaten. (Angabe: Mittelwert [mini-
male; maximale Rate] der verschiedenen Durchläufe der Kreuzvalidierung).

Betrachtete Scores MinIP-A MinIP-9F 3DC-9F

TICI 0 vs. TICI T3 0,89 [0,87; 0,92] 0,89 [0,82; 0,92] 0,89 [0,88; 0,90]

TICI 0 vs. TICI 1 0,73 [0,69; 0,82] 0,79 [0,69; 0,84] 0,81 [0,74; 0,88]

TICI 1 vs. TICI 2a 0,61 [0,36; 0,73] 0,68 [0,55; 0,77] 0,73 [0,65; 0,75]

TICI 2a vs. TICI 2b 0,66 [0,52; 0,88] 0,69 [0,56; 0,84] 0,74 [0,72; 0,78]

TICI 2b vs. TICI 3 0,50 [0,43; 0,56] 0,51 [0,45; 0,58] 0,50 [0,39; 0,60]

Alle 0,55 [0,45; 0,60] 0,56 [0,51; 0,61] 0,55 [0,49; 0,58]

Tabelle 3. Ergebnisse der Experimente zur gleichzeitigen Differenzierung aller TICI-
Scores, basierend auf M1-Infarkten (Darstellung: Mittelwert sowie minimale und ma-
ximale Korrektklassifikationsraten der Durchläufe der Kreuzvalidierung).

TICI 0 TICI 1 TICI 2a TICI 2b TICI 3

A 0,71 [0,57;0,87] 0,50 [0,19;0,77] 0,59 [0,40;0,79] 0,49 [0,35;0,71] 0,45 [0,38;0,52]

B 0,77 [0,67; 0,84] 0,49 [0,34;0,58] 0,57 [0,42;0,65] 0,50 [0,37;0,61] 0,49 [0,33;0,66]

C 0,65 [0,50;0,73] 0,59 [0,42;0,67] 0,56 [0,48;0,71] 0,49 [0,44;0,56] 0,44 [0,40;0,53]

Korrektheitsraten. Die Differenzierung von M1-Infarkten mit den TICI-Scores
0/1, 1/2a, 2a/2b, zeigen niedrigere Korrektheitswerte, die jeweils jedoch deut-
lich oberhalb einer zufallsbasierten Klassifikation liegen. Letzteres gilt nicht mehr
für die Differenzierung von TICI-Scores 2b und 3.

3.2 Differenzierung aller TICI-Scores

Alle getesteten CNN-Ansätze führten zu einer Gesamtkorrektklassifikationsrate
von etwa 55%. Jeweilige Raten für die einzelnen Klassen sind in Tab. 3 auf-
geführt. Wie aufgrund o.g. Resultate zu erwarten, ist auch bei gleichzeitiger
Betrachtung aller Klassen die Klassifikation von TICI 0-Infarkten am verläs-
slichsten. Bei detaillierten Betrachtung der Ergebnisse ist festzustellen, dass ein
Großteil der Fehlklassifikation der TICI 1-Infarkte auf TICI-Scores 0 und 2a
entfallen. Gleiches gilt im Wesentlichen für die anderen TICI-Scores; insgesamt
werden > 90% der Daten entweder dem korrekten oder einem direkt

”
benach-

barten“ Score zugeordnet.

3.3 Differenzierung nach Infarktlokalisation

Die Unterscheidung von T- und M1-Infarkten mit TICI-Score 0 gelingt mit ver-
gleichsweise hoher Genauigkeit (Korrektheitsraten > 85% für alle Bildformate).
Das korrespondierende Dreiklassenproblem führt zu ähnlichen Werten (Korrekt-
klassifikationsraten von im Schnitt etwa 85% für alle Bildformate).
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4 Diskussion

Ziel der vorliegenden Arbeit war es, zu beurteilen, ob es möglich ist, Ort und
Schweregrad von zerebralen ischämischen Infarkten automatisiert anhand von
DSA-Daten mittels Convolutional Neural Networks (CNNs) zu bestimmen.

Die Resultate zeigen, dass Fälle mit niedrigem TICI-Score und verschiede-
ner Infarktlokalisation vergleichsweise gut von TICI 3-Daten differenziert werden
können. Insbesondere die Differenzierung von TICI 2b und TICI 3 stellt hinge-
gen eine Herausforderung dar (Korrektheitsraten bei 2-Klassenproblem nicht von
Zufallszuordnung zu unterscheiden). Bei Interpretation der genannten Korrekt-
klassifikationsraten sollte jedoch auf das grundlegende Problem einer in Teilen
subjektiven, literaturübergreifend nicht einheitlichen Definition von TICI-Scores
berücksichtigt werden [7]. Neben weiterer methodischer Entwicklung wird ent-
sprechend in Fortführung der begonnenen Arbeiten eine systematische Evalua-
tion von Intra- und Interratervariabilitäten bei TICI-Scorezuweisung erfolgen.

Der Vergleich der Resultate für MinIP-A, MinIP-9F und 3DC-9F zeigt im
Schnitt leicht bessere Korrektheitsraten für 3DC-9F. Diese gehen jedoch auf-
grund der Verwendung der 3D-Convolution-Schicht einher mit einem deutlich
erhöhten Zeitaufwand für das Training des Netzwerks.

Insgesamt ist das Gesamtergebnis dieser ersten Studie zur automatisierten
TICI-Klassifizierung in klinischen DSA-Daten als ermutigend zu beurteilen; die
prinzipielle Machbarkeit der automatisierten Bestimmung des TICI-Scores und
des Ortes von ischämischen zerebralen Infarktes wurde in großen Teilen belegt
und motiviert weitergehende Untersuchungen.

Danksagung. Gefördert durch das Forschungszentrum Medizintechnik Ham-
burg (02fmthh2017).
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Abstract. Currently in Magnetic Resonance Imaging (MRI) systems,
most hardware failures are only detected after a component has stopped
functioning properly. In many cases, this results in a downtime of the
system. Moreover, sometimes defective parts are not identified correctly,
which may result in more parts than necessary being replaced, causing ex-
tra costs. Often in MRI systems, hardware related problems have an im-
pact on image quality. Given an imaging protocol and a well-functioning
MRI system, certain image quality metrics have a normal range in a
given patient population. Thus, such metrics will present a measurable
behavior change in case of a hardware problem. We identified such simple
and powerful metrics for signal-to-noise ratio, noise variance and sym-
metry in images for hardware failures related to Shimming and Local RF
coils in this work. To be able to calculate these metrics with every MRI
image during the clinical workflow, another constraint is the computa-
tion time. With the performance of quality metrics on machine learning
algorithms and computation time, we are able to identify the failing MRI
components with an accuracy of up to 0.96 AUROC.

1 Introduction

In Magnetic Resonance Imaging (MRI) systems, several factors can cause fail-
ures such as, installation environment and equipment usage. If the failure cause
is misidentified, the downtime is prolonged causing further inconvenience. Cur-
rently, the failure causes are investigated manually by the customer service en-
gineer on site which requires time, leading to further unavailability for measure-
ments. In literature, Kuhnert et al. [1] demonstrate that meta information from
MRI log files is already sufficient to estimate imaged body part without looking
at the image. Lorch et al. in, [2] present a method to detect motion artifact in
MRI data based on image-derived features. Peltonen et al. in, [3] propose to use
the patient 3D FLAIR volumes to assess the image quality as a replacement of
specialized phantom Quality Assessment (QA) procedures. While the need of
QA procedures in medical equipment is highly emphasized, much less investiga-
tion on detecting the concrete hardware failures with image quality is carried
out. In this work, we present a method to detect failing hardware components
with the help of image quality metrics.
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1.1 Hardware failures

Inhomogeneous magnetic field To acquire the distortion-free images that
also correctly represent the imaged body part, the homogeneity in static mag-
netic field B0 is of crucial importance. There are many reasons such as objects
in MRI system’s immediate environment and the patient himself, can have an
impact on the magnetic field’s homogeneity. Shimming is the technique used to
correct such inhomogeneities in the magnetic field. Using ferromagnetic pellets
inside of the magnet bore, static homogeneity can be achieved. This technique
is known as passive shimming. To correct for the patient specific inhomogeneity
in B0, specialized shimming coils are used. Through these shimming coils cur-
rent is passed to generate a corrective magnetic field. This technique is known
as active shimming. The current that needs to pass through the shimming coil
in each direction is calculated using the spherical harmonic (SH) function. If
there is a defect in the shimming coil, the homogeneity in the magnetic field
could be disturbed due to incorrect shimming. The images generated in such in-
homogeneous magnetic fields may contain artifacts and distortions reducing its
diagnostic value. We look into symmetry as an image quality metric for detecting
failures related to shimming coil.

Defective RF coils Wear and tear is a very common failure mode of the
local RF coils. Over the time, due to usage or the intensity of the measurement
protocols, the failure modes such as failing noise amplifiers, frequency side bands
or fuses can occur, allowing more noise in the received signal and thus in the
reconstructed image. Such a gradual change in image quality is difficult to detect
unless certain quality analysis measures are being taken at regular interval of
time. In this work, we present a method to constantly analyze the quality metrics
such as noise and signal-to-noise ratio to detect failures before they can cause
an unavailability of the MRI system.

2 Materials and methods

In this section, we present the mathematical models used for calculating image
quality metrics related to the hardware failures and the methods used to evaluate
these image quality metrics for its correlation with the hardware failures and
computation time.

2.1 Image quality metrics

We implemented mathematical models ranging from low to high in their com-
plexity to test if high complexity also leads to higher correlation with hardware
failure and thus higher rate of failure detection.

The human body has an extrinsic bilateral symmetry in most cases. The brain
however also has an intrinsic left-right bilateral symmetry. If the magnetic filed
homogeneity is disturbed, the inherent structural or morphological symmetry
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Table 1. The abbreviations and explanation of all the mathematical models imple-
mented to calculate image quality metrics.

Abrv. Implemented quality metric

Symmetry

CLR Cross-correlation between left and right half

CAB Cross-correlation between upper and lower half

PLR Phase only correlation between left and right half

PAB Phase only correlation between upper and lower half

MLR Mutual information between left and right half

MAB Mutual information between upper and lower half

GRM Mean of the gradient magnitude calculated using sobel operators

Noise

SHM A 3× 3 high-pass filter with MAD

HLH A 2× 2 high-pass filter with MAD

HLM HH sub-band of the Haar wavelet transform with MAD

HWS HH sub-band of the Haar wavelet transform with SD

DWS HH sub-band of the Daubechies wavelet transform with SD

LAP A fast noise variance method using Laplacian as presented in [4]

Signal-to-noise Ratio

SSR Average of intensity value on whole image and noise variance using HLH

RSR Average of intensity value on a central ROI and noise variance using HLH

SRS Signal on the segmented (intensity > 10) image and noise using HLH

SSS Signal on the segmented ROI and noise on ROI using HLH

SHD Haar DWT, SD of LL-subband as a signal, SD of HH subband as noise

SDW Daubechies DWT, SD of LL-subband as a signal, SD of HH subband as noise

of the brain may no longer be present in the image. For this image quality
metric, we used reference methods as we as a no-reference method: GRM. For
noise variance the methods were based on Standard Deviation (SD) and Median
Absolute Deviation (MAD). The SNR was calculated on a ROI, whole image
as well as segmented image using various methods including Discrete Wavelet
Transform (DWT). The brief description is presented in Tab. 1.

2.2 Evaluation methods

Data To study the image features, brain MRI images of 29 volunteers on a
1.5T system using clinically validated diagnostic protocols [5] were acquired,
using 3 defective and 1 normal 20 channel head/neck RF coil. The image data
for inhomogeneous magnetic field was acquired with normal coil by modifying
the 1st and 2nd order SH functions on echo planner diffusion sequences. We use
the mathematical models discussed in Section 2.1 to extract the features from the
DICOM images. For symmetry, the failure mode only had an influence on images
acquired with echo planner diffusion sequences and only on the middle slides.
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Thus, limiting our dataset for symmetry analysis to 1,077 images. Whereas, the
final dataset for noise and SNR contained 18,835 images.

Evaluation criteria We used the machine learning (ML) methods to find the
predictive performance as well as the correlation of mathematical models dis-
cussed in Section 2.1 with the hardware failure. Each of the image quality metric
related to hardware failures was evaluated individually, making it a binary clas-
sification problem. The classification methods used are: Decision Tree, Support
Vector Machine and Logistic Regression with 5-fold cross-validation on a bal-
anced data with 60% training and 40% test partition with the values calculated
using mathematical models as input features. The ML algorithms were used with
the optimal parameters to ensure the validity of the results in python’s sklearn
package. We compared the performance of single feature as well as combination
of features as an Average of Area under the Receiver Operating Characteristic
curve (Avg. AUROC) on the three selected ML algorithms.
The performance of each feature is also evaluated for the time it takes for feature
computation on a given machine. The machine we use here is 64 bit system with
4 logical cores and 2.93 GHz of clock speed.

Energy function To come to a final conclusion about which features or com-
bination of features should be chosen, we introduce an Energy function. This
Energy function is calculated with Avg. AUROC and Time per image in ms
by each feature or combinations of features. An improvement in Avg. AUROC,
allows a longer computation time up to a certain limit. The formula is:

Energy =
Average of AUROC

Time per image in ms
(1)

3 Results

In the following, the performance of ML algorithms applied on features and
feature combinations are presented along with the results of the energy function.
As shown in Fig. 1, all the compared symmetry features have an Avg. AUROC
of 0.75 and above while the computation time varies between 4 ms for CLR to
300 ms for ALL features on a single image. For noise variance, the computation
time of features is in the same range from 20 ms to 40 ms. Due to this, the
Energy function values also vary but in a smaller range, as seen in Fig. 2. All
the features here however have a value of above 0.8 on Avg. AUROC. Most
features as well as combination of SNR calculation have value of above 0.8 on
Avg. AUROC except wavelet based features SDW and SHW. As seen in Fig. 3,
the energy function values vary highly due to varying computation time of the
features.
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Fig. 1. Symmetry: results evaluation.

4 Discussion

As observed in the Section 3, the single features such as CLR in symmetry, DWS
in noise and SRS in SNR, have higher value on Energy function. Because of
lower computation time and with Avg. AUROC of 0.8 and above, single features
are a better compromise between the two most important criteria. Although
single feature may be sufficient to detect the failing hardware component, the
combinations of features GRM-CLR, LAP-HWS and RSR-SRS have a better

Fig. 2. Noise: results evaluation.



MRI Hardware Failures 211

Fig. 3. SNR: results evaluation.

performance on ML algorithms with Avg. AUROC above 0.9, suggesting higher
correlation with the respective hardware failure and better modeling of the un-
derlying variability in data due to varying sequences and measured population.
With these results we conclude that, the image quality metrics investigated in
this thesis, are capable of classifying the images generated with normal vs de-
fective MRI hardware component on ML algorithms. As a next step, more such
image quality metrics will be implemented for range of hardware components to
improve the services and availability of the MRI system.
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Abstract. Automatic task-based image quality assessment has been of
importance in various clinical and research applications. In this paper,
we propose a neural network model observer, a novel concept which has
recently been investigated. It is trained and tested on simulated images
with different contrast levels, with the aim of trying to distinguish images
based on their quality/contrast. Our model shows promising properties
that its output is sensitive to image contrast, and generalizes well to
unseen low-contrast signals. We also compare the results of the proposed
approach with those of a channelized hotelling observer (CHO), on the
same simulated dataset.

1 Introduction

Medical image analysis techniques have been largely applied to clinical diagno-
sis in a variety of imaging modalities, including mammography. An important
auxiliary task for any such application is to evaluate the image quality. Human
observers are the ideal reference, but too costly for frequent studies and in many
cases unavailable.

As a surrogate, mathematical model observers are popular among task-based
image quality assessment since 90s [1]. In a detection task, model observers are
trained to distinguish between signal-present and signal-absent images, and its
performance is used to assess image quality. However, a mathematical model
observer requires prior knowledge about the signal, which is challenging when
dealing with low-contrast images [2].

While classic model observers follow the concepts given by Barrett et al. [1],
in recent years there have been attempts to use other algorithmic concepts [3].
With the advent of wide-spread use of deep neural networks, Alnowami et al. [4]
proposed a deep learning-based model observer and highlighted its promising
performance on both clinical and simulated mammography images. However, the
model in this paper contains 5 convolutional layers and more than 570 kernels,
requiring significant computational resources, more training data and a long
training time. This motivates us to employ emerging deep learning techniques to
design a more compact model, with fewer trainable parameters. Our goal is to
train a network with affordable cost that generalizes well, and is able to identify
the presence or absence of signals in unseen lower contrast images.
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2 Materials and methods

2.1 Data set

To train, validate and test the different designs of model observers we used a
synthetic database generated using an image creation pipeline from the Conrad
framework [5]. The simulation is a re-implementation of parts of a toolbox that
has been suggested previously for studies of model observers [6]. Here, a Gaussian
shaped signal is modeled by

s(x, y;A, s) = Ae−
x2+y2

2s2

and its contrast and size are parameterized by A and s, respectively. For a noisy
background two separate random image components are drawn from a normal
distribution. Noise structure is simulated for both components by convolution of
each with a cone-filter, represented as

c(x, y) =

{
0 if |x| < 3Δx ∧ |y| < 3Δy

1√
x2+y2

otherwise

where, Δx × Δy denotes the pixel dimensions. One of the components is con-
sidered the background structure as it would appear as tissue in clinical images.
The other serves as noise that would originate from an image acquisition process.
Both components are weighted with constant factors and merged to background

images bi, i = 1, ..., N such that signal-present and signal-absent images I
(p)
i and

I
(a)
i , respectively, can be created as

I
(p)
i = si + bi, I

(a)
i = bi

All images are of size 200× 200 pixels. We simulate 5 groups of images, each
group comprising 240 signal-present images and 240 signal-absent images. Signal
intensity of the signal-present images is controlled to span 5 different levels such
that images in group 1 are of the highest contrast, while images in group 5 are
of the lowest contrast. Signals in group 5 are hardly visible to the human eye
(Fig. 1). All signal-absent images contain only background information and are
statistically similar. In order to prevent the neural network from learning only
mean or variance features, we normalize each image in a pre-processing step, so
that they all have the same mean and variance. We evenly assign one-sixth of
the data set to a testing set, and the rest are further employed as the training
and validation pool.

2.2 Classic model observer

A frequently studied task for model observers is the detection task which in its
basic form involves the detection of a known signal at a known location. Based
on the performance of a model observer on a selected data set a certain degree
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of image quality can be assessed [7]. The channelized hotelling observer (CHO)
is a group of observers that produce its decision metric from a feature descrip-
tion of the image data. The well-known Laguerre-Gauss channels [8] produce a
set of rotationally-invariant features. Thus well applicable for Gaussian signal
shapes [9], we compute scores for all tested contrast levels using such a classic
model observer, namely, a CHO with 10 Laguerre-Gauss channels. The width
parameter that controls the area which is effectively taken into account for the
feature computation is selected as 4s, where s is the size parameter of the signal.

The detectability index SNRλ is associated with a model observer via its test
statistic λ [7]. It is a figure of merit of how separable the two groups are w.r.t.
λ and is defined as

SNRλ =
E(λ|signal)− E(λ|no signal)√

0.5 (Var(λ|signal) + Var(λ|no signal))

We choose this model observer and its figure of merit for comparison with
the proposed approach using a neural network.

2.3 Neural network architecture and training strategy

In this paper, we propose a convolutional neural network with 2 convolutional
layers. The first convolutional layer has 6 kernels of size 11 × 11, followed by a
rectified linear unit (ReLu) activation, batch normalization and an 8 × 8 max-
pooling with 2×2 stride. The second convolutional layer has 3 kernels of size 5×5,
followed by ReLu activation, batch normalization and a 2× 2 max-pooling with
2 × 2 stride. The output is then passed to two fully connected layers to reduce
the dimension to 2 corresponding to the number of classes. A softmax layer
is employed as the final classification layer, with a cross entropy loss function
(Fig. 2). This neural network serves as a model observer and predicts a score

Fig. 1. From left to right: Examples images from highest to lowest contrast (groups 1-5)
with signal present (first row), and signal absent (second row). The images shown above
are aimed for better visualization, while the actual data are normalized as described
in the text.
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between 0 to 1.0 as to how likely the image contains a signal. In validation a
classification is achieved based on a probability threshold of 0.5.

In order to train the network, we employ the Adam optimizer, with the
learning rate set to 1e−5. The neural network is trained to a maximum of 300
epochs, and after 100 epochs, an early stopping criterion is called if the validation
loss has not improved in the preceding 20 epochs. To evaluate the robustness
of the neural network and to detect signals in unseen lower contrast images, we
always leave out group 5 from the training and validation data sets. A 5-fold
cross validation is carried out and consequently, five different sets of weights are
trained for our network. We employ these as five individual models in the test
phase, using samples from group 5 in the test set.

Besides the probability output from the network itself as a measure of detec-
tion confidence, these outputs were also considered as decision scores. By this
analogy, SNRλ can be evaluated for the neural network as well, which allows to
qualitatively compare both methods for different contrast levels.

3 Results

We test both classic and neural network based model observers on the test data
samples which are separated randomly before the training takes place. As we
do 5-fold cross validation in training, we further combine the results from 5
different weight sets by averaging the softmax scores sample-wise. In (Tab. 1)
we show its classification accuracy on the test data with adjusted threshold. The
accuracy and sensitivity show very good performance in the first 3 groups and
decrease as contrast levels go lower. (Fig. 3) shows typical training curves in our
experiments, where in this case early stopping criterion was called at epoch 140.

Fig. 2. Illustration of the neural network structure.
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Table 1. Performance of the combined neural network model on test data.

Contrast Level Accuracy Accuracy(CMO) Sensitivity Specificity

1 (highest) 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0

4 0.975 1.0 0.975 0.975

5 (lowest) 0.9 0.95 0.9 0.9

(Tab. 2) shows SNRλ values for both classic model observer and our proposed
neural network. It can be seen that both models have high SNRλ on higher
contrast levels, and lower SNRλ on contrast level 4 and 5. Our proposed neural
network’s ability to distinguish signal-present images from signal-absent images
shows a comparable decreasing trend to the classic model observer. Furthermore,
The result of our novel model observer suggests the presence of a significant
difference between level 1-3, and the two lowest contrast levels, than within level
1-3, which can be seen as alternative reference to human performance (Fig. 1).

4 Discussion

In this paper, we propose a neural network as a model observer. The network
is trained with simulated images of four different contrast levels and tested on

Fig. 3. Train and validation accuracy along training epochs.
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Table 2. SNRλ on test results from both model observers.

Contrast Level Classic Model Observer Proposed Neural Network

1 (highest) 10.7 10.5

2 8.0 10.3

3 6.5 9.4

4 5.0 6.1

5 (lowest) 3.4 2.0

images with similar contrast, as well as an unseen lower contrast. The results
highlight the model’s potential for predicting human performance qualitatively
as its classification performance declines with the image contrast, while still being
able to detect signals in some of the very low-contrast images. Furthermore, the
performance is comparable to a classic model observer. Compared with other
techniques, our model requires little knowledge about the signal and demands
only reasonable training time. We believe our proposed model observer can also
be applicable to clinical data, to assess image quality, among other tasks. For
instance, training a network on simulated high- and low-contrast images and then
evaluating it on real mammography images, to distinguish between high and low
contrast samples, may provide a means for automatically detecting lesions and
microcalcifications, which will be a topic of future work.
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Currently, it is common practice to use three-dimensional (3D) printers not
only for rapid prototyping in the industry, but also in the medical area to cre-
ate medical applications for training inexperienced surgeons. In a clinical train-
ing simulator for minimally invasive bone drilling to fix hand fractures with
Kirschner-wires (K-wires), a 3D printed hand phantom must not only be geo-
metrically but also haptically correct. Due to a limited view during an operation,
surgeons need to perfectly localize underlying risk structures only by feeling of
specific bony protrusions of the human hand.

The goal of this experiment is to imitate human soft tissue with its haptic
and elasticity for a realistic hand phantom fabrication, using only a dual-material
3D printer and support-material-filled metamaterial between skin and bone. We
present our workflow to generate lattice structures between hard bone and soft
skin with iterative cube edge (CE) or cube face (CF) unit cells. Cuboid and
finger shaped sample prints with and without inner hard bone in different lattice
thickness are constructed and 3D printed.

The most elastic available rubber-like material is too firm to imitate soft
tissue. By reducing the amount of rubber in the inner volume through support
material (SUP), objects become significantly softer. This was confirmed by an
expert surgeon evaluation. Subjects adjudged 3D printed finger samples in CF
design as realistic compared to the haptic of human tissue with a good palpable
bone structure. Blowy SUP is trapped within a lattice structure to soften rubber-
like 3D print material, which makes it possible to reproduce a realistic replica of
human hand soft tissue [1].
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Abstract. In interventional angiography, kinematic simulation of robotic
system prototypes in early development phases facilitates the detection
of design errors. In this work, a game engine visualization with output
is developed for such a robotic simulation. The goal of this is a better
perception of the prototype by more realistic visualization. The achieved
realism is evaluated in a user study. Additionally, the inclusion of real
rooms’ walls into the simulation’s collision model is tested and evaluated,
to verify smartglasses as a tool for interactive room planning. The walls
are reconstructed from point clouds using a mean shift segmentation and
RANSAC. Afterwards, the obtained wall estimates are ordered using a
simple neighborhood graph.

1 Introduction

This work is based on a kinematic robot simulation, developed for the purpose of
risk detection at interventional angiography system prototypes. It uses models
directly exported from computer-aided design (CAD) software. The main func-
tionalities are collision detection and angulation testing. Graphical output, with
Visualization Toolkit (VTK), is plain, functional and therefore sufficient for the
purposes of most engineers. Despite this, for a better understanding of those
prototypes and realistic demonstrations, it would be helpful to use the software
for more realistic visualization in AR and VR. One possibility to boost the vi-
sual quality and to use both – AR and VR – is an implementation with a game
engine. These provide low-cost solutions for superior visualization. Furthermore,
they offer portability to multiple platforms, AR and VR.

Today’s game engines are capable to cover a large variety of use cases. Also
in scientific visualization, where the variety of usage fields is large and includes
military simulations, virtual museums or archaeological site reconstruction. In
science – according to Cowan and Kapralos – the most popular are the multi-
purpose Unity and Unreal engines [1]. For an evaluation of different operation
schemes in robotics, Andaluz et. al. used Unity3D for the simulation of robotic
arms in combination with Matlab [2]. To improve the remote comprehension of
assembly lines and industrial robots by service technicians, Aschenbrenner et.
al. used a visualization of remote robots’ poses in Unity, both for a desktop
computer and in AR [3]. In the evaluation, participants demonstrated a superior
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comprehension of the setup in AR, compared to video based visualization. For
room capture from data obtained by depth cameras, common plane extraction
approaches include region growing and Hough Transform. With the latter, Oesau
et al. reached an accuracy of 2.3 cm in spatial reconstruction [4, 5].

In this work, the feasibility of a realistic simulation of prototypes’ behavior
in AR is evaluated. This is desired for a better understanding of arbitrary work-
flows – by superior visualization. Also, by an in-situ simulation of different room
setups, a better understanding of those is desired. In Mixed Reality (MR) depth
sensors offer the possibility of interactive room planing, which is the second as-
pect examined. The potential benefit is to demonstrate a setting in-situ and to
identify difficulties due to collisions.

A suitable game engine was investigated for visualization of the simulation.
With the found engine a desktop and an output for the Microsoft HoloLens was
designed, including interactive registration of the simulations’ basic coordinate
system into reality. All visualizations – desktop computer and AR – were eval-
uated with a user study. A in-situ room capture with the depth camera of the
HoloLens is evaluated with a simple room segmentation approach. From the pro-
vided depth data, walls are extracted and integrated into the collision model.
Primarily, depth data belonging to a wall are distinguished from other objects
with mean shift segmentation. From the segmented point clouds, wall models
are generated with the Random Sample Consensus (RANSAC) algorithm and
out of those the room is reconstructed. The quality of the result is measured by
the size deviation to the real rooms.

2 Materials and methods

The game engine of choice was Unity as it is the simplest to develop with –
because of C# scripting – offering both good graphics quality and AR support.
Of the examined engines, Unity has the best and widest compatibility with AR
platforms. A notable consideration was Unreal which offers similar potentials
regarding graphics and platforms. Also, the open source engine Godot, with
advanced 3D effects, although yet lacking AR support.

(a) In VTK (b) In Unity (c) HoloLens output

Fig. 1. Visualization of a robotic angiography system in VTK, Unity and the Hologram
in Augmented Reality on HoloLens.
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2.1 Desktop and augmented reality visualization

A reusable implementation based on IPC was required for both desktop and AR.
The Remote Procedural Calling (RPC) toolkit gRPC was chosen – because of its
good performance and simplicity. A layered architecture was developed around
the offered interface, where each layer applies a common design pattern. The vi-
sualization backend is made flexible and exchangeable, as objects are generated
by an AbstractFactory in the simulation. Objects in the Unity process are rep-
resented by Proxies in the simulation. Access to Unity is simplified by a Facade
mapping the calls to Unity using object ids. For performance reasons, frequent
calls were sent batched, triggered by a timer. The object implementations in
Unity use the Adapter pattern to map calls to Unity’s GameObjects. For thread
safety, a Queue is used to access Unity’s GameObjects.

To obtain an estimate of improvements in a user study, both outputs – VTK
in Fig. 1(a) and Unity in Fig. 1(b) – were demonstrated to the users under
supervision, at the same PC and in a randomized order. They had to rate these
in terms of rendering fluency, intuitiveness, graphical quality and visualization
effectiveness on a scale of 1 (bad) to 5 (excellent). For the study, an excerpt
of potential, sporadic and frequent simulation users – from different interested
areas – were invited to participate. Of those, 18 participated in the study.

Due to the usage of Transmission Control Protocol (TCP) for IPC, the in-
terface could be reused for an AR visualization – demonstrated in Fig. 1(c). Via
a plugin implementing the Observer pattern, changes of the Proxy objects are
mapped to their reflections in AR, resulting in AR objects behaving equal those
on desktop. With the Vuforia toolkit – which uses natural feature detection –
a marker printed on an A4 sheet of paper, was used to register the coordinate
system of the simulation into the real world. Also placement intuitiveness and
the perceived realism of AR content, were evaluated in the user study.

2.2 Room capture

With the HoloLens’ depth camera, the room is captured. This consists of a
two steps procedure. The first is the recording of single wall planes, each time
triggered by the user via gesture input. After the user stops the recording, in the
second step, the walls are ordered by a wall-neighborhood graph to a room. The
Unity class SurfaceObserver provides depth-data as 3D point meshes, which are
used to estimate the real-world measures. The points within the user’s field of
view (FoV) are used to sample the wall. As consequence, only a partial sector
of the wall is used for plane estimation. Additionally, the surface normals are
calculated from the meshes. The feature dimensionality is reduced by a feature
transform of the i-th point x3×1

i ∈ R
3×1 of the point cloud dataset and the

components of its normal n3×1
i =

(
nx
i ny

i nz
i

)	
Therefore, the feature vector

initially consists of surface points and their normals fi =
(
xx
i xy

i xz
i n

x
i ny

i nz
i

)	
From these features, the distance of the point to the camera and the normal
direction are obtained as a reduced feature vector fi:
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fi =
(
sinnx

i cosny
i n3×1

i

	 · x3×1
i

)	
(1)

The transformed data are clustered using mean shift. This does not require a
fixed cluster number and works well for a low number of features. Additionally,
the only required parameter – the kernel width – can be estimated based on real-
world observations [6] (for example the depth measure of cabinets). From the
clustered data – which still contain outliers – the wall planes are estimated by the
outlier-insensitive RANSAC algorithm. To order the obtained wall planes W =
{a, b} via a graph to a room of rectangular walls, the neighborhood probability
is used as weight wab of walls a ∈ W and b ∈ W . It is calculated from the wall’s
normal n3×1

W and the camera (and user’s) C’s position x3×1
C,W at the time of the

recording of a and b. Far away walls are considered as less probable neighbors.
The parameter β weights the inter-wall angle. Only (close-to) rectangular walls
are regarded as possible neighbors.

wab =
(
n3×1

a
	 · n3×1

b + β
)
·
(
||x3×1

C,a −−x3×1
C,b ||2

)
(2)

In the graph the neighbors are obtained by selecting the edges with the lowest
weight between two walls (which do not have 2 neighbors yet). This works for
rectangular rooms. However, it fails if a room has a small cove and the positions
of the camera trajectory are close together for adjacent walls of the cove. The
possible principal accuracy of the HoloLens’ depth camera was tested by esti-
mating the plane of a white wall. The points of the wall, obtained by the depth
camera, represent a plane estimated by Singular Value Decomposition (SVD).
The 3rd singular value σ3 of the SVD was taken as an estimate for the standard
deviation or measurement noise. The standard deviation of the normal direction
was estimated from the singular values σ2 and σ3 of the normal array, as the
normals point in one main direction, which is covered by σ1. The evaluation of
the approach itself was conducted by taking different room sizes (small: 5653
mm x 4039 mm, medium: 6161 mm x 5654 mm and large: 8050 mm x 5743
mm). Additionally, the medium sized room was cluttered with tables, chairs and
packing foil, resulting in a no, medium and maximum clutter setup (Fig. 2(b)).
Those setups serve the purpose of planning in rooms, where a previous system is
still installed or which are not yet empty. The used evaluation measure was the
deviation of the side-lengths of the estimated room towards the ground truth.
As accuracy requirement 5 cm was derived from the IEC 60601-1 norm, taking
10 % of the smallest gap of the squeezing safety distance.

3 Results

In the user study, Unity visualization was rated superior to VTK on desktop.
Using a paired t-test, a significant improvement could be concluded for rendering
performance, visual impression, surface quality and realism. For the visualiza-
tions’ effectiveness, distracting effects and detail quality no significant improve-
ment was observed. In the AR evaluation, the size of the robot, movements and
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Table 1. User study results for the AR visualization.

Percentiles

Property Mean Std. Dev. Median 25% 75 % Acceptance

Realistic Movements 3.17 1.04 3 3 4 4

Realistic Graphics 3.17 1.15 3.5 2.25 4 3

Realistic Dimensions 3.94 0.87 4 3.25 4.75 3

HoloLens’ FoV 1.5 0.62 1 1 2 3

Intuitive Placement 3.11 1.45 3.5 2 4 4

graphics were rated as rather realistic by the majority of participants (Tab. 1).
Users perceived sometimes stuttering movements resulting in less realism. As
the used marker pattern for registration was small (on a A4 sheet) and used
natural feature detection, the robot was often in a skewed position. Also, users
considered the HoloLens’ FoV of 35◦ as too small for the visualization a life-sized
robot. They had to step back several meters from the marker to see the entire

(a) Small room deviation (b) Maximum cluttered room

(c) Medium clutter deviation (d) Maximum clutter deviation

Fig. 2. Deviation in different room setups. The small room could be measured relatively
precise (a). The room was initially empty. To reach the clutter setups, tables and other
furniture were used for medium clutter. Additional packaging foil was used for the
maximum clutter setup (b). The obtained estimates showed large relative deviations
(c, d) and an additional absolute deviation (d) in the clutter setup.
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system and perceived this as a large inconvenience. The principal method of reg-
istering the coordinate systems with printed marker was rated as easy, however
not as intuitive. For the principal accuracy of the HoloLens’ depth camera, the
value σ3 was 24 mm. The singular values of the normals σ2 and σ3 were 0.159
and 0.138. Which results in an angular standard deviation of 9.03◦ and 7.85◦.
For the empty rooms, the size estimation results were in a range of around 10
cm for the small and the large room (Fig. 2(a)). Contrarily in the clutter setups,
the quality of the measurement deteriorated, such that large deviations from the
desired accuracy occurred (Fig. 2(c) & 2(d)).

4 Discussion

With a rather simple architecture and small efforts compared to VTK, an im-
provement of the visualization quality was reached with Unity. Further visual
improvement is possible with low effort, as the Unity visualization is yet un-
polished. In AR it can be concluded, that with some optimizations (optimized
models, fluent movements) a perception of realism, sufficient for the visualiza-
tion of prototypes is feasible. Also, a larger FoV of the smartglasses is required.
A simple, user-friendly registration was achieved. However, this was not precise
due to Vuforia’s natural feature detection approach. Fiducial, squared marker
patterns may solve this. It could be shown, that the integration of empty real
rooms in the simulation is possible with simple methods. However, the accuracy
requirement was failed to achieve as the size estimation error is still too large.
However, the noise measurement indicates that the accuracy requirement is fea-
sible. Using small wall patches with RANSAC resulted in tilted planes in room
capture. Another drawback of the therefore insufficient approach. A possible
solution is the use of constraints or the entire wall’s point cloud.
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Abstract. Deep learning with Convolutional Neural Networks (CNN)
requires large number of training and test data sets which involves usu-
ally time-consuming visual inspection of medical image data. Recently,
crowdsourcing methods have been proposed to gain such large training
sets from untrained observers. In this paper, we propose to establish a
lightweight method within the daily routine of radiologists in order to
collect simple image quality annotations on a large scale. In multiple di-
agnostic centres, we analyse the acceptance rate of the radiologists and
whether a substantial total number of professional annotations can be
acquired to be used for deep learning later. Using a simple control panel
with three buttons, 6 radiologists in 5 imaging centres assessed the im-
age quality within their daily routine. Altogether, 1527 DICOM image
studies (MR, CT, and X-ray) have been subjectively assessed in the first
70 days which demonstrates that a considerable number of training data
sets can be collected with such a method in short time. The acceptance
rate of the radiologists indicates that more data sets could be acquired if
corresponding incentives are introduced as discussed in the paper. Since
the proposed method is incorporated in the daily routine of radiologists,
it can be easily scaled to even more number of professional observers.

1 Introduction

Quality control of radiological images has been an intense field of research in the
last 25 years [1], because it is essential for excluding problematic acquisitions
and avoiding bias in subsequent reading of the images. Also, many image pro-
cessing and analysis techniques rely on a constant image quality and can result
in erroneous conclusion if the image quality is not sufficient.

Automatic image quality control enables technicians at the modality to verify
the image quality directly after acquisition and makes it possible to repeat the
acquisition while the patient is still in the scanner. Quantitative image quality
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measurements have been proposed to facilitate such automatic control [2, 3].
Image quality is not necessarily objective but might be subjectively judged by
radiologists based on their personal preferences: an “optimized” image quality
for one radiologist might not be satisfying for another. Furthermore, it is not
clear if the proposed specific quantitative measurements capture all aspects of
image quality. Thus, a quality-controlled acquisition based on purely quantita-
tive measurements might not differentiate images sufficiently and is preferably
combined with subjective annotations based on visual inspection.

Recently, it has been proposed to train CNN using visual ratings by radi-
ologists in order to incorporate subjective aspects in automatic image quality
control. For example, Esses et al. [4] use a CNN for automated classifying T2-
weighted liver acquisitions in either diagnostic or non-diagnostic quality and
compare this automated approach with evaluation by two radiologists. A similar
approach was suggested in [5] for brain images. Typically, training such CNNs
requires a large number of annotated data sets assessed by experts. In order to
overcome the time-consuming visual inspection of the image data, the authors in
[5] and [6] propose crowdsourcing methods as a means to involve large number
of individuals to rate the large number of training and test image data. With
such an approach it is not clear if all observers are qualified to make such an
assessment and might introduce label noise. In this paper, we propose to in-
corporate a lightweight subjective assessment of the image quality in the daily
routine of radiologists and to use such assessments for a CNN later. We analyse
whether the proposed method is accepted by the radiologist and if the specified
evaluation criteria allows sufficient differentiation of image quality.

(a) (b)

Fig. 1. (a) The assessment control panel placed in front of the radiologists work station.
(b) Written instructions handed to the radiologists.
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Fig. 2. Total number of assessments by radiologists.
Within the first 70 days, in total 1527 annotated DI-
COM studies (MR, CT and X-ray) have been col-
lected with 1175 good, 264 ok and 88 bad rated
studies.

2 Materials and methods

A control panel with 3 buttons is set up at the diagnostic station as shown in
Fig. 1(a). The radiologist assesses the image quality of the entire DICOM study
by pressing one of the buttons (green = “good”, yellow = “ok”, red = “bad”)
at any time during the reading process. Besides the assessment of radiologist, a
screenshot of the Picture Archiving and Communication System (PACS) viewer
is captured and anonymised according to General Data Protection Regulation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Example (a)-(c) MR images of the head region, (d)-(f) CT images of pelvis
region and (g)-(i) X-ray images of hip region annotated as good (green), ok (yellow)
and bad (red).
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(GDPR) to identify which type of sequence the radiologist looked at during the
assessment. It is part of the standard operating procedure (SOP) of all centres,
that patients sign a consent form for improving image quality.

After a brief personal introduction, written instructions on how to provide
subjective assessment of image quality using the control panel as stated in
Fig. 1(b) are handed to the radiologist. In order to minimize the overhead for
radiologists, they are asked to rate the image quality of the entire DICOM study
of the patient instead of rating individual sequences. If he considers an individual
image slice as “ok” or “bad”, then the entire sequence is rated as “ok” or “bad”.
The radiologist enlarges the image sequence in the PACS viewer before submit-
ting his assessment. The acquired screenshot enables the automatic identification
of the individual sequence image through optical character recognition (OCR) of
the PACS text overlays. The radiologist is instructed to rate the DICOM study
with “ok” if at least one of the images in the study is of average quality, but the
diagnostic quality is not affected. The study is rated as “bad”, if the radiologist
feels uncomfortable performing diagnosis based on these images.

3 Results

The control panel is set up in 5 imaging centres in Berlin, Potsdam, Nürnberg,
and Fürth and 6 radiologists were enrolled who read magnetic resonance (MR),
computed tomography (CT) and X-ray studies.

Total collected assessments is shown in Fig. 2 with number of feedbacks
varying from day to day as shown in Fig. 4 whereby the actual image quality
depends on each modality as seen in Fig. 5. An example of anonymised annotated
screenshots of rated images is shown in Fig. 3. The acceptance rate of radiologists,
i.e. the percentage of the rated studies to the total number of read studies, varied
between 2.1% and 100% as shown in Tab. 1 suggesting that even more training
data sets could be acquired if corresponding incentives are introduced. It turned
out, that Radiologist #1 uses a different workstation for reading studies and
hence, rated only 2 studies with the feedback tool. Radiologist #2 rated all the
studies, but he reads only a small number of patients. The largest number of
assessments were received from Radiologist #3 and Radiologist #4 who rated
approximately 68% and 23% of the total assessed DICOM studies, respectively.

Fig. 4. Number of image quality assessments by radiologists per day.
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Fig. 5. Percentage of assessments based on modalities.

All 6 radiologists reported that the proposed method does not interfere in their
daily work. The control panel itself was also judged to be user-friendly.

Fig. 6 illustrates the effect of change in the parameters of an MR protocol
on the assessment of quality at a specific time point.

4 Discussion

We demonstrated that the proposed lightweight method to collect subjective
assessment of image quality from radiologists in their daily routine results in a
considerable number of annotated images in a short amount of time. Within 70
days 1527 DICOM studies have been rated by 6 enrolled radiologists.

The method has several drawbacks. Firstly, it is not compulsory for the ra-
diologists to provide an assessment for each DICOM study. That means only
a fraction of the diagnosed images are actually assessed. Secondly, even though
most images are rated as “good quality” in our study, radiologist might pay more
attention to images of bad quality in general, and, therefore, rate bad quality
images more often than good quality images. Thirdly, the radiologists rate a
large spectrum of images, i.e. different modalities like MR, CT, and X-ray im-
ages and even different types within each modality. It needs to be seen, if CNNs
can be trained on a sub-group of those varieties. Fourthly, the control panel for
the assessment may not be installable at all reading stations because of technical
constraints.

Our initial results suggest that the method could be improved by providing
an incentive to the radiologists such as establishing a process to identify critical
acquisition protocols based on the assessments and adjust their parameters as
shown in Fig. 6. Furthermore, in order to enable assessments on third party or

Fig. 6. Effect of change of MR protocol on the assessment of quality. Radiologist re-
peatedly rated the same protocol as average. After adjusting the parameters of the
protocol on 13/09/2018, the protocol was rated “good” subsequently.
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Table 1. Assessments of each radiologist and their corresponding acceptance rate.

Radiologist Total ratings GOOD OK BAD Unrated Acceptance rate

#1 93 0 0 2 91 2.1%

#2 19 16 3 0 0 100%

#3 2346 975 58 2 1258 44.1%

#4 1198 165 169 24 838 29.9%

#5 408 10 2 18 378 7.3%

#6 675 9 32 42 590 12.3%

remote workstation, a web browser-based widget could be used which would not
require an installation of software on the reading station.

The strength of the proposed method is based on its lightweight approach
which can be incorporated in the daily routine of the radiologist: In contrast to
[4] we were able to enrol more radiologists (6 instead of just 2) and establish
the method at multiple centres, which indicates an easy scale up to even more
radiologists and centres. The approach does not rely on untrained observers like
[5] and [6].

Furthermore, if large number of radiologists participate, there is the prospect
to train CNNs for specific sub-groups of radiologists who would then benefit from
a “personalized” automatic image quality control at the modality.
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2Division of Vascular- and Endovascular Surgery, Department of Surgery,

University Hospital Schleswig-Holstein, Campus Lübeck
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Two-dimensional ultrasound (US) imaging is one of the most common tools
for diagnostic procedures. However, this imaging modality requires highly ex-
perienced and skilled operators to mentally reconstruct three-dimensional (3D)
anatomy from these images. Additionally, the physician’s gaze is focused on the
screen of the US system instead of the probe and patient. In order to overcome
these problems, we propose real-time 3D US in combination with augmented
reality (AR) glasses (specifically Microsoft HoloLens) to render the volume rela-
tive to the US probe [1]. Raw data access to the US system was provided by an
in-house modification and volumes were sent from the US system (GE Vivid 7)
to a computer via Ethernet. On the computer, the data was first converted from
spherical to Cartesian coordinates and then the zeros (mainly presented outside
the pyramid-shaped US volume) were compressed using run-length encoding. A
multi-language remote procedure call (gRPC) was used to transmit the encoded
data from the computer to HoloLens via Wi-Fi. The AR marker attached to the
US probe, which allows the placement of the virtual volume next to the probe,
was tracked using HoloLensARTToolkit. This approach was evaluated regarding
the rate of displayed volumes on HoloLens and the end-to-end latency. US vol-
umes (depth of 15 cm, matrix size in spherical coordinates of 495 x 72 x 26) were
acquired at a frame rate of 13.8 Hz. On HoloLens, the volumes had a matrix size
in Cartesian coordinates of 103 x 74 x 134. Our results show that the volumetric
data was rendered with a time interval of 72 ± 55 ms and an end-to-end latency
of 259 ± 85 ms. The loss-less data encoding allowed a decrease of 63 % in data
size. There is a growing interest in using real-time 3D US for clinical applications
and HoloLens gives the possibility of a more intuitive visualization of volumetric
data than using a standard screen. Future work will evaluate the AR marker
tracking and other transmissions paths in order to lower the end-to-end latency.
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Pádraig Cantillon-Murphy2,3, Lena Maier-Hein4

1Institute for Computer Science, Ulm University of Applied Sciences, Ulm, Germany
2University College Cork, Cork, Ireland

3Tyndall National Institute, Dyke Parade, Cork, Ireland
4Division of Computer Assisted Medical Interventions, German Cancer Research

Center (DKFZ), Heidelberg, Germany

franz@hs-ulm.de

Abstract. Image-guided interventions (IGT) have shown a huge po-
tential to improve medical procedures or even allow for new treatment
options. Most ultrasound(US)-based IGT systems use electromagnetic
(EM) tracking for localizing US probes and instruments. However, EM
tracking is not always reliable in clinical settings because the EM field
can be disturbed by medical equipment. So far, most researchers used
and studied commercial EM trackers with their IGT systems which in
turn limited the possibilities to customize the trackers in order minimize
distortions and make the systems robust for clinical use. In light of cur-
rent good scientific practice initiatives that increasingly request research
to publish the source code corresponding to a paper, the aim of this work
was to test the feasibility of using the open-source EM tracker (Anser
EMT) for localizing US probes in a clinical US suite for the first time. The
standardized protocol of Hummel et al. yielded a jitter of 0.1 ± 0.1mm
and a position error of 1.1± 0.7mm, which is comparable to 0.1mm and
1.0mm of a commercial NDI Aurora system. The rotation error of Anser
EMT was 0.15± 0.16◦, which is lower than at least 0.4◦ for the commer-
cial tracker. We consider tracked US as feasible with Anser EMT if an
accuracy of 1–2mm is sufficient for a specific application.

1 Introduction

Promising contributions in the area of Image-guided interventions (IGT) [1] have
shown a huge potential to improve medical outcome of existing procedures or
allow for new treatment options by enhancing the information available during
the intervention. If, for example, the pose of an ultrasound (US) probe can be
determined accurately, conventional US images can be enhanced in different
ways: (1) preoperative data can be visualized together with US images [2, 3],
(2) instruments can be shown in relation to the US image [2], and (3) 2D US
machines can record 3D images by combing 2D scans from different viewing
angles [4]. If localization data is used to train neural networks, 3D US is later
possible without a tracker [5].
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Key component of many IGT systems is a tracking device, most frequently
used for determining the pose of medical devices. Optical tracking allows for
accurate localization [1], but requires a free line-of-sight (LoS) from a camera
to optical markers which is cumbersome during freehand motion of a US probe.
Electromagnetic (EM) trackers can localize small EM sensors in relation to a
field generator (FG) without LoS [3]. Hence, most US-based IGT systems use
EM tracking for localizing US probes (e.g., [2]). However, meanwhile it is ap-
parent that EM tracking is not always reliable in clinical settings because the
EM field can be disturbed, e.g. by medical devices or the patient stretcher [3].
To study these distortions, standardized assessment protocols for testing EM
trackers in specific clinical environments with a maximum of comparability have
been published [3, 6]. So far, most researchers used and studied commercial EM
trackers with their IGT systems which in turn limited the possibilities to cus-
tomize the trackers in order minimize distortions and make the systems robust
for clinical use.

In parallel, recent discussions in the scientific community yielded the request
to publish all source code of scientific results [7]. In the special case of IGT pro-
totypes, this should at best include the source code for the tracking algorithms.
In this regard, a welcome development is that open-source EM tracking systems
have been published recently [8, 9] and enable researchers to develop IGT sys-
tems with open soft- and hardware. However, these systems have not been tested
in a tracked US context so far and it remains unclear if tracking is accurate and
robust in related clinical environments. In this study, we assess the feasibility of
using the open-source EM tracker (Anser EMT) [9] for localizing US probes in
a clinical US suite for the first time.

2 Materials and methods

2.1 Tracked ultrasound setup

Anser EMT is a open-source EM tracking platform for IGT [9]. Full system
design schematics, instructions, and code can be accessed online1. The flat FG
of Anser EMT creates a magnetic field in a working volume of 25 x 25 x 25 cm3

and is capable of tracking up to 16 EM sensors in the latest version. In this study,
a NDI 5-DOF sensor (Northern Digital, Waterloo, Canada, Model no. 610099)
was used. It was fixed to a linear US probe (type L14-5w) of a Zonare ZS3
Ultrasound System (ZONARE Medical Systems, Mountain View, California) as
shown in Fig. 1.

Anser EMT supports the OpenIGTLink [10] protocol for connection to open-
source IGT toolkits. For this study, the Medical Imaging Interaction Toolkit
(MITK) was connected to the system and the plugin Hummel Protocol Measure-
ments2 was used for further processing and evaluation of the data. All software

1 http://openemt.org
2 org.mitk.gui.qt.igt.app.hummelprotocolmeasurements
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used for this project is available open-source under the link mentioned earlier
and in the MITK repository3.

2.2 Standardized assessment of tracked ultrasound

We used a standardized assessment protocol proposed by Hummel et al. [6] to
assess our tracked US setup. 5 x 5 = 25 positional measurements were performed
on a polycarbonate board (Hummel Board) in a known grid with 5 cm distances
as shown in Fig. 1. Orientational measurements were done in 31 steps of 11.25◦

for a 360◦ rotation the middle of the board. For all positions, 150 measurement
samples were recorded over 10 s at an update rate of 15 Hz.

The jitter error at one position was defined as the root mean square error of
150 samples. To determine positional accuracy, the Euclidean distances between
two adjacent measured sensor locations, each averaged over 150 samples, were
computed. The deviation to the reference of 5 cm was defined as distance error
and determined for all 16 distance measurements (4 horizontal x 4 vertical) of
the 5 x 5 grid. As another measure for positional accuracy, a grid matching
error was determined. This error represents the fiducial registration error (FRE)
obtained when matching the measured grid positions (n=25) to the grid of known
reference positions with the optimal rigid transformation in a least square sense
[11]. The angle differences between pairs of measured orientations and the known
relative sensor rotation of 11.25◦ were determined to get the orientational errors.

The assessment of the tracked US with Anser EMT was performed in a
clinical US suite of the German Cancer Research Center (DKFZ), as shown in
Fig. 1. The Hummel Board was placed at a height of 11 cm above the FG on
the patient stretcher. The FG was aligned in the middle of the covered volume.

3 https://phabricator.mitk.org/source/mitk/
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Fig. 1. Experimental setup in the US suite. A linear US probe is equipped with an EMT
sensor and fixed on a special mount. The mount can be moved to known positions on
the standardized assessment phantom (Hummel Board).
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Table 1. Comparison to the NDI Aurora tracker in the US suite [12]. A subset of
4 x 3 = 12 positions and 180◦ of rotation measurements of the Anser EMT data was
evaluated for this table to be comparable. Note, that the configuration of the field
generator (FG) in [12] was different. We took the results from the bottom level of [12]
which had a similar distance to patient stretcher and FG as in this study.

System Setup Field Generator Prec.[mm] Acc.[mm] Rot 1[◦]

Anser EMT Tracked US Flat FG (below) 0.07 1.11 0.1

Anser EMT US Suite Flat FG (below) 0.18 1.65 <na>

NDI Aurora US Suite Compact FG with US
probe (above) [13]

0.09 1.03 0.4

For comparison, the position measurements were repeated in the same setup on
the patient stretcher but without a US probe (US suite). In addition, reference
data of comparable experiments (position and rotation) in a distortion-free lab
environment (Lab ref) is available from a previous study [9].

3 Results

The precision (jitter error) was 0.1 ± 0.1mm (Lab and Tracked US) and 0.2 ±
0.1mm (US Suite) on average (μ± σ, n=25 grid points) with a maximum error
of 0.7mm. The positional errors of the 5 cm distance measurements on the board
in all setups are shown as boxplots in Fig. 2 and usually stay below 2mm. The
grid matching error was 1.5mm (Lab), 2.2mm (US suite) and 2.9mm (Tracked
US). The average sensor locations in the tracked US setup are visualized in
Fig. 3. Orientation measurements yielded an error of 0.15 ± 0.16◦ (n=31) in
the tracked US setup which was increased by around 0.1◦ compared to reference
measurement (0.04±0.02◦ [9]). All measurements taken in this study are provided
open data in the Open Science Framework4 together with comparative data sets
of other trackers.

4 Discussion

The jitter error of 0.1± 0.1mm and the position error of 1.1± 0.7mm is compa-
rable to 0.1mm jitter and 1.0mm position error of a commercial tracker (NDI
Aurora) in the same environment [12] as shown in Tab. 1. As for the measure-
ments in a laboratory environment in an earlier study [9], the rotational errors of

4 https://osf.io/aphzv/

0 1 2 3 4 5

1
2

3

Fig. 2. Relative position errors of
4 x 4 = 16 measured 5 cm distances
illustrated as box-whiskers plots. The
diamonds show the mean values, the
whiskers the minimum and maximum
values.
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Anser EMT are also small, below 0.3◦ in our measurements, which is better than
published results of other trackers (e.g., at least 0.4◦ [12], but up to 3◦ [13] for a
NDI Aurora system). When looking at the grid matching error, we see a slight
drop in accuracy between US suite (2.2mm) and Tracked US (2.9mm). This is
not reflected by the 5 cm distance evaluation, where the median error is similar
in both setups (1.2mm). If only distances between pairs of points are evaluated,
slight field distortions as we see in the back row of the position measurements
(Fig. 3) can have little effect on the metric, but matching the whole grid can
reveal these distortions. Therefore, we propose to always have a look at both
metrics, and also at the raw data points, when interpreting Hummel protocol
results.

Most errors are relatively small, which is good for the system, but raises the
question if manual measurements are accurate enough to determine its limits
in accuracy. In an earlier study a reference measurement was repeated three
times to analyze reproducibility [13]. The average 5 cm distance error measured
was in the range of 0.3-0.5mm. In case of this study, the difference between the
average errors in the US suite (1.4mm) and Tracked US (1.1mm) setup, as shown
in Fig. 2, might be caused by the natural variation of manual measurements.
However, the results still show, that the errors stay below 1 to 2 mm in most of
the cases and demonstrate a high accuracy for the tracked US setup.

We used a 5 DoF sensor for our experiments. Depending on the application,
6 DoF of the probe are required. In this case either a second 5 DoF sensor or
a slightly bigger 6 DoF sensor can be used. According to our experience with
EM trackers, it is unlikely that a second or different sensor would affect tracking
accuracy or robustness except for slight manufacturing tolerances.
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Fig. 3. 3D visualization of the measurements in the Tracked US setup. Left: 25 grid
points of the position measurements. Only a slight distortion in the middle of the back
row is visible. Right: 32 rotation measurements, visualized as the measured position
together with the sensor coordinate axes in red. The circle shows no visual distortion
of the measurements. Please note that only the sensor axis (longer red line) was clearly
defined because a 5 DoF sensor was used.
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All in all, although the positional error is slightly increased when tracking
the US probe in the US suite, we consider tracked US as feasible with the Anser
EMT system if an accuracy of 1-2mm is sufficient for a specific application.
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Kurzfassung. Elektromagnetische (EM) Trackingsysteme verwenden
zur von OP-Instrumenten am Eingriffsort ein EM Feld, das von einem
Feldgenerator (FG) erzeugt wird. Üblicherweise sind die FG umso größer,
je höher die Reichweite ihres Trackingvolumens ist. Der kürzlich von der
Firma NDI (Northern Digital Inc., Waterloo, ON, Canada) vorgestellte
Planar 10-11 FG vereint erstmals eine kompakte Bauweise und ein da-
zu verhältnismäßig großes Trackingvolumen. Mit einem standardisierten
Messprotokoll wurde der FG auf seine Robustheit gegenüber externen
Störquellen und seine Genauigkeit geprüft. Die mittlere Positionsgenau-
igkeit beträgt 0,59mm(Standard-Setup) bei einem mittleren Jitter von
0,26mm. Der mittlere Orientierungsfehler fällt mit 0,10◦ sehr gering aus.
Der höchste durch ein Metall verursachte Positionsfehler (4,82mm) wird
von Stahl SST 303 hervorgerufen. Bei Stahl SST 416 ist der Positions-
fehler (0,10mm) am geringsten. Im Vergleich zu zwei anderen FG von
NDI erreicht der Planar 10-11 FG tendenziell bessere Genauigkeitsergeb-
nisse. Wegen seiner Kompaktheit und der damit verbundenen mobilen
Einsatzfähigkeit könnte der FG daher dazu beitragen, den Gebrauch von
EM Trackingsystemen in der Klinik zu steigern.

1 Einleitung

Bei medizinischen Interventionen spielt die Beachtung angrenzender Risikostruk-
turen allgemein eine bedeutende Rolle. Durch den Einsatz sogenannter intraope-
rativer Trackingsysteme (IOT) kann die Wahrscheinlichkeit, eine Risikostruktur
ungewollt zu verletzen, minimiert werden. Sie ermöglichen eine genaue von OP-
Instrumenten am Eingriffsort und bieten dem Operateur visuelle Hilfestellungen
durch Augmented-Reality-Darstellungen. In der Neurochirurgie, einem Gebiet,
das besondere Präzision vom Operateur verlangt, kommen IOT standardmäßig
zum Einsatz [1]. In vielen anderen Fachbereichen hingegen hat sich der Routi-
neeinsatz von IOT im Klinikalltag bislang nicht durchgesetzt.
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Wie Studien der vergangenen Jahre belegen, könnten insbesondere mini-
malinvasive Eingriffe im Hals- und Kopfbereich künftig von IOT profitieren. Bei-
spiele hierfür sind perkutane Punktionen wie die Punktion von Knoten innerhalb
der Schilddrüse [2], endoskopische Interventionen wie die Endoskop-geführte Na-
sennebenhöhlenchirurgie [3] oder Kathetereingriffe wie die Thrombektomie zur
Behandlung eines akuten Schlaganfalls. In der aktuellen Forschung zur Throm-
bektomie wird darauf verwiesen, dass ein des Katheters helfen könnte, die Re-
perfusion der Arterien früher zu ermöglichen [4].

Die zur von OP-Instrumenten notwendige Positionsbestimmung der Instru-
mente erfolgt in der Regel durch ein optisches System (Optisches Tracking) oder
durch ein elektromagnetisches (EM) System [5]. Optische Tra-ckingsysteme bie-
ten den Vorteil hoher Positionsgenauigkeit. Allerdings ist zur Positionsbestim-
mung eine durchgängige Sichtlinie (Line-Of-Sight) des optischen Trackers zum
getrackten Objekt notwendig. EM Trackingsysteme benötigen keine Line-Of-
Sight und können daher potentiell bei perkutanen oder endoskopischen Eingriffen
eingesetzt werden. Sie weisen allerdings eine schlechtere Posi-tionsgenauigkeit auf
verglichen mit den optischen Systemen [6]. Für elektromagnetische Trackingsy-
steme wird ein Feldgenerator (FG) benötigt, der im Raum ein EM Feld erzeugt,
in dem EM Sensoren lokalisiert werden können. Das Raumvolumen, in dem die
von EM Sensoren möglich ist, bezeichnet man als Trackingvolumen. Üblicher-
weise nehmen die Größenabmessungen der FG mit der Größe und Reichweite des
Trackingvolumens zu. Je größer der FG ist, umso höher ist der Installationsauf-
wand in der Klinik und umso höher sind die Installationskosten. Dieser Sachver-
halt stellt hinsichtlich der praktischen Anwendbarkeit von EM Trackingsystemen
im Klinikalltag bis heute ein Problem dar. Ein anderes bekanntes Problem von
EM Trackingsystemen ist die mangelnde Robustheit gegenüber externen Stör-
quellen, die das EM Feld des FG verzerren. Eine nahe Platzierung des FG am
Zielbereich kann aber die Robustheit des Systems steigern [7]. Solch eine nahe
Platzierung ist häufig jedoch nur mit FG kompakter Bauweise realisierbar.

Kürzlich stellte die Firma NDI den neuen Planar 10-11 FG vor. Er vereint
erstmals eine kompakte Bauweise (112mm x 97mm x 31mm) und ein dazu ver-
hältnismäßig großes, zylinderförmiges Trackingvolumen (Durchmesser: 340mm,
Höhe: 340mm). Durch die damit verbundene mobile Einsatzfähigkeit könnte der
FG neue Bereiche im klinischen Einsatzgebiet der EM Trackingtechnologie er-
öffnen. Wie in Abb. 1 skizziert ist, ließe sich der FG z.B. in ein Vakuumkissen
integrieren, auf das der Patient seinen Kopf oder seinen Nacken legt. Durch den
geringen Abstand des FG zum Kopf befindet sich der gesamte Kopf des Patienten
im Trackingvolumen des FG.

Abb. 1. Einfaches klini-
sches Setup für Interventio-
nen im Kopf- und Halsbe-
reich: Der FG ist in ein Va-
kuumkissen integriert und
unterhalb des Patienten-
kopfes positioniert.



240 Mittmann et al.

Es soll nun untersucht werden, ob der Planar 10-11 FG trotz seines relativ
großen Trackingvolumens eine vergleichbar hohe Trackinggenauigkeit aufweist,
wie andere FG mit ähnlich großen Trackingvolumina. Von Interesse ist dabei
auch die Robustheit des FG in Bezug auf Metalle medizinischer Instrumente, da
sie die Messgenauigkeit negativ beeinflussen können.

2 Methoden

Zur messtechnischen Bewertung des Planar 10-11 FG wurde das standardisierte
Messprotokoll von Hummel et al. [8] verwendet. Um die Vergleichbarkeit der
Messergebnisse mit früheren Messungen anderer FG zu gewährleisten, orien-
tierten wir uns an den in [7] geschilderten Versuchsaufbauten – dem Standard-
Setup, bei dem der FG seitlich von der Hummel-Messplatte befestigt ist, und
dem Mobile-Setup, bei dem der FG mittig über der Messplatte platziert wird
(Abb. 2). In beiden Setups erfolgten sowohl Positions- als auch Rotationsmes-
sungen. Hierzu wurde der 6DOF Cable Tool; 2,5mm x 11mm von NDI an de-
finierten Positionen auf der Messplatte platziert wie in Abb. 3 veranschaulicht.
Für jede Messposition wurden 150 Messwerte innerhalb von 10 Sekunden mit
einer Updaterate von 15 Hz aufgezeichnet. Die Wurzel aus den mittleren qua-
dratischen Abweichungen (RMSE) der 150 Messwerte wurde als Jitter definiert.
Die Positionsgenauigkeit ermittelten wir mit Hilfe des Mittelwerts der betrags-
mäßigen Differenzen zwischen den berechneten mittleren euklidischen Distanzen
und der real vorliegenden Distanz (5 cm) direkt benachbarter Sensorpositionen
innerhalb des (3 × 4)-Gitters beim Mobile-Setup bzw. des (5 × 6)-Gitters beim
Standard-Setup. Die Wahl der Gittergröße erfolgte beim Standard-Setup ent-
sprechend der Größe des Trackingvolumens. Beim Mobile-Setup orientierten wir
uns an der Gittergröße vorheriger Studien zum Compact FG von NDI [7]. Die
Positionsmessungen erfolgten für beide Setups auf drei verschiedenen Ebenen
(unten, mitte, oben; Ebenenabstand: 5 cm). Den Orientierungsfehler berechne-
ten wir anhand der Winkeldifferenz zwischen Paaren von 32 gemessenen Orien-
tierungen und der bekannten relativen Sensorrotation in Höhe von 11,25◦. Im
Mobile-Setup erfolgten in gleicher Weise wie in [8] Metallmessungen mit vier

Abb. 2. a) Versuchsaufbau beim Mobile-Setup für Messungen der oberen Ebene. Der
FG ist mittig über der Messplatte montiert. b) Versuchsaufbau beim Standard-Setup
für Messungen der unteren Ebene. Der FG ist seitlich von der Messplatte befestigt.
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verschiedenen Metallen: Stahl SST 303, Stahl SST 416, Bronze und Aluminium.
Dabei wurden die Metalle nacheinander in fünf definierten Höhen H1 – H5 im
EM Feld des FG platziert und die Position des fixierten EM Sensors bestimmt
(Abb. 3c). Anhand der Abweichung zur Referenzposition des Sensors konnte
dann der Einfluss des Metalls auf die Messgenauigkeit bestimmt werden.

Zur Untersuchung eines sehr kleinen Mikrosensors, der in Instrumente wie
Nadeln integriert werden kann, erfolgten mit dem Micro 6DOF Sensor (0,8mm
× 9,0mm) von NDI zum Vergleich auf der mittleren Ebene im Standard-Setup
Positions- und Rotationsmessungen entsprechend Abb. 3.

3 Ergebnisse

Die Ergebnisse zu den Positions- und Metallmessungen mit dem Cable Tool-
sind in Abb. 4 dargestellt. Der mittlere Jitter beträgt im Mobile-Setup 0,03mm
und im Standard-Setup 0,26mm. Im Mobile-Setup beträgt die mittlere Positi-
onsgenauigkeit 0,16mm und im Standard-Setup 0,59mm. Der durch ein Metall
verursachte Positionsfehler ist tendenziell umso größer, je näher das Metall am
FG platziert ist. Die größte Abweichung von der Referenzposition wird durch
Stahl SST 303 hervorgerufen (4,82mm). Bei Stahl SST 416 hingegen fällt die
Abweichung am geringsten aus (0,10mm).

Die Orientierungsfehler betragen im Mobile-Setup 0,04◦ | 0,05◦ | 0,22◦ für
ROT 1 | ROT 2 | ROT 3 und im Standard-Setup 0,15◦ | 0,08◦ | 0,06◦.

Die Ergebnisse der Vergleichsmessungen mit dem Mikrosensor fallen in allen
Kategorien schlechter aus. Im Standard-Setup (mittlere Ebene) liegt der Jitter

Abb. 3. a) Messplatte nach Hummel et al. [8]. Eingezeichnet sind die zwei Bereiche, in
denen der EM Sensor mit Hilfe der Sensorhalterung für die Positionsmessungen plat-
ziert wurde im Abstand von je 5 cm. Für die Rotationsmessungen im Standard-Setup
wurde der FG seitlich am oberen Rand des (3×4)–Gitters platziert. b) Sensormontage
an der Sensorhalterung für die Positions- und Rotationsmessungen. Der abgebildete
Kreis umfasst 32 Messpositionen mit einem Winkelabstand von je 11,25◦. c) Mit Hilfe
einer hölzernen Halterung werden 4 verschiedene Metalle nacheinander in den Höhen
H1 – H5 im EM Feld des FG platziert und die Position des Sensors ermittelt.
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bei 0,35mm und der Positionsfehler bei 0,90mm. Der mittlere Orientierungsfeh-
ler von ROT 1, ROT 2 und ROT 3 beläuft sich im Standard-Setup auf 0, 57◦.

Die Rohdaten aller Messungen und die verwendete Software zur Auswertung
der Messdaten sind frei zugänglich 1.

4 Diskussion

Der Planar 10-11 FG wurde mit einem standardisierten Messprotokoll auf seine
Genauigkeit und Robustheit geprüft. Die Auswertungsergebnisse belegen, dass
der FG trotz des relativ großen Trackingvolumens in störungsfreier Umgebung
EM mit Submillimeter-Genauigkeit ermöglicht.

Im Gegensatz zum Mobile-Setup reichen im Standard-Setup die Messpositio-
nen bis an den Rand des Trackingvolumens. Da im Standard-Setu sowohl der
Jitter als auch der Positionsfehler höher ausfallen als im Mobile-Setup, ist davon
auszugehen, dass die Messgenauigkeit des FG zum Rand des Trackingvolumens
hin abnimmt. Dieses Verhalten konnten wir besonders rechts unten an der Eck-
position des (5 × 6)-Gitters feststellen (Abb. 3). Hier detektierten wir auf der
oberen Ebene einen einzelnen Ausreißer mit einem Positionsfehler von 7,16mm.

Aus früheren Studien [7, 8, 9] ist bekannt, dass EM Trackingsysteme anfäl-
lig gegenüber externen Störquellen sind. Auch beim Planar 10-11 FG wird der
Messfehler durch metallische Störquellen erhöht. Ein quadratischer Zusammen-
hang zwischen der Entfernung des Metalls zum FG und dem Positionsfehler kann
angenommen werden (Abb. 4c).

Mit dem Mikrosensor erhielten wir ungenauere Messergebnisse im Vergleich
zum Cable Tool-Sensor. Das betraf besonders die Rotationsmessungen, bei denen
einzelne Orientierungsfehler von bis zu 8◦ registriert werden konnten. Die Mess-
genauigkeit hängt daher nicht allein vom FG und externen Störquellen ab. Sie

1 https://osf.io/aphzv/

Abb. 4. Ergebnisse zum 6DOF Cable Tool-Sensor: a) Mittlere Jitter im Mobile- und
Standard-Setup. b) Positionsfehler dargestellt als Box-Plots. Die Rauten zeigen den
Mittelwert, die Whisker den min. bzw. max. Fehlerwert. Der Positionsfehler ist de-
finiert als Mittelwert der n Differenzen zwischen den gemessenen Distanzen und der
bekannten 5 cm Referenzdistanz mit n = 17 (Mobile-Setup) bzw. n = 49 (Standard-
Setup). c) Positionsfehler durch metallische Zylinder zwischen FG und EM Sensor.
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wird auch vom verwendeten EM beeinflusst. Obwohl immer kleinere Mikrosen-
soren im Submillimeterbereich (0,3mm) hergestellt werden können [9], sollte es
daher bei der Planung navigierter medizinischer Interventionen stets zu einer
Abwägung kommen zwischen den vielfältigeren Einsatzmöglichkeiten der Mi-
krosensoren und der für den Eingriff erforderlichen Trackinggenauigkeit.

Vergleichbare Messungen von Maier-Hein et al. [7] mit dem Planar FG, im
Folgenden als Standard FG bezeichnet, und dem Compact FG von NDI ergaben
tendenziell schlechtere Genauigkeitsergebnisse. Unter Laborbedingungen beträgt
der mittlere Jitter des Compact FG 0,05mm. Er ist damit etwa doppelt so groß
wie der Vergleichswert des Planar 10-11 FG. Der mittlere Jitter des Standard FG
fällt mit 0,2mm etwas kleiner aus als der Jitter des Planar 10-11 FG. Sowohl
der Positionsfehler als auch der Orientierungsfehler des Planar 10-11 FG sind
verglichen mit den beiden anderen FG deutlich kleiner (z.B. Positionsfehler im
Mobile-Setup: Faktor 3,13 kleiner).

Das in Abb. 1 vorgestellte einfache Setup erleichtert die praktische Anwend-
barkeit von EM Trackingsystemen im Klinikalltag. In Kombination mit seiner
guten Trackinggenauigkeit könnte der Planar 10-11 FG daher aus unserer Sicht
dazu beitragen, den Einsatz von IOT in der Klinik zu steigern.

Danksagung. Das Projekt wurde vom Deutschen Zentrum für Luft- und Raum-
fahrt (DLR) finanziert (Projekt OP 4.1). Herzlichen Dank an die NDI Europe
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Spreading Depolarization (SD) is a phenomenon in the brain related to the
abrupt depolarization of neurons in gray matter which results from a break-down
of ion gradients across the neuron membrane and propagates like a wave of is-
chemia. While modulating the hemodynamic response of the SDs is a therapeutic
target, the lack of imaging methods that allow for monitoring SDs with high spa-
tiotemporal resolution hinder progress in the field. In this work, we address this
bottleneck with a new method for brain imaging based on multispectral imaging
(MSI). Our approach to visualizing SDs uses a machine learning-based algorithm
for estimation of tissue oxygenation using MSI data acquired from the brain. Due
to the lack of a gold standard method for measuring oxygen saturation in tissue,
training a machine learning-based algorithm is not straightforward in this sce-
nario. The proposed method tackles this problem with in silico training data,
with the generated spectral reflectances covering a wide range of spectra that
can be observed in vivo [1]. To validate our methodology in an initial feasibility
study, we used a swine model of SD. A craniotomy exposed the parietal cortex,
and SDs were induced using 2-5 μL KCl drops placed in regions selected by vi-
sual inspection in the parietal cortex. SDs were continuously monitored with two
ECoG recording strips that were placed on the lateral margins of the craniotomy.
Our new approach to oxygenation estimation based on MSI was successfully ap-
plied to visualize the SDs in the gyrencephalic brain. As it has the potential
to monitor SDs with high spatio-temporal resolution without a complex hard-
ware setup, this tool could be used in studies of new treatment strategies and
development of drugs that can target the hemodynamic response of the SDs.
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Abstract. This study aims at the combination of 3D breast ultrasound
and 2D mammography images to improve the accuracy of diagnosis of
breast cancer. It was shown that ultrasound breast imaging has advan-
tages for differentiating cysts and solid masses which are not visible in an
X-ray image. Moreover, the specificity in X-ray imaging decreases with
an increasing breast thickness, so that ultrasound is usually used as an
adjunct to X-ray breast imaging. A fully automatic system to obtain both
2D mammography and 3D ultrasound images is used. The alignment of
a 2D mammography image in the cone-beam coordinate system and 3D
ultrasound image in a Cartesian coordinate system is the essential task
in this study. We have shown that deviations up to 23 mm caused by
the cone-beam system can be calculated and corrected utilizing the ge-
ometry information of the hardware. The multimodal image reading tool
is presented in a GUI for clinical diagnosis. The presented setup might
lead to a distinct improvement in efficiency and add diagnostic value to
the acquisition.

1 Introduction

Breast cancer is the most common cancer of women and accounts for 25% of all
cancers worldwide. In 2012, about 1.7 million women were diagnosed with breast
cancer and about half a million women died because of it [1]. X-ray imaging,
including mammography, plays an essential role for breast lesion detection and
is currently the only medical modality for screening purposes [2]. If a woman has
a very dense breast it is difficult to detect malignant masses even in high-quality
mammograms. However, it has already been shown that breast ultrasound can
detect most solid masses which are non-palpable and invisible in mammography
[3]. In this work, we present an image reading tool for a hardware prototype,
introduced in [4] and [5], which aims at improving the accuracy and efficiency
of breast screening diagnosis and the detection of lesions.
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2 Methods and materials

2.1 Hardware prototype

As can be seen in the schematic drawing in Fig. 1 an ultrasound transducer is
mounted on top of the compression paddle. The mammography unit is a MAM-
MOMAT Inspiration (SIEMENS Healthcare GmbH). To allow the penetration
of the ultrasound lotion, a special kind of gauze is used instead of the origi-
nal compression plate. The X-ray acquisition is performed first, followed by an
automatically executed ultrasound scan. This workflow has the advantage that
patients do not have to be transferred to a different location in order to receive
an additional ultrasound acquisition. Furthermore, as the patient does not move
between the two subsequent scans, the multimodal images (X-ray and US) are
acquired in the same real-world coordinate system. This information will also be
used for the geometric mapping between the different coordinate systems which
is analyzed in section 2.3.

2.2 Software prototype

Fig. 2 illustrates the dedicated graphical user interface (GUI) which was designed
to display the acquired images in an aggregated manner. In the top left corner,
a 2D mammogram of a phantom is shown. On the right side, the xy-plane (top)
and the xz-plane (bottom) of the 3D ultrasound volume of the same phantom
is displayed. The 3D ultrasound image has the size of 722 * 691 * 443 in x, y,
z-axis with the pixel spacing as 0.52/ 0.21/ 0.10 respectively. The red crosshairs
indicate the currently selected location. After selecting a location in one of the
images, the cursor automatically moves to the corresponding position in the
other two images, taking also the cone-beam projection geometry of the X-ray
image into account.

Fig. 1. Image of the hardware prototype [5] .
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However, as the X-ray projection image contains only two-dimensional infor-
mation the depth information is non-existent. This yields that the position in
the xy-plane is correct, whereas the depth has to be obtained manually. This is
usually done by scrolling through the US volume to find the correct slice which
contains the lesion. To address this problem, a 2D resliced ultrasound image is
created in order to connect the 2D X-ray image to the 3D ultrasound volume.
Therefore, the beam path for the ray which corresponds to a clicked pixel using
the underlying geometry information is computed. Then, a 2D plane coplanar
withthe beam path is created and the US volume is rescliced accordingly. Note
that due to the reslicing process, the 2D ultrasound slice has a different pixel
spacing than the original 3D ultrasound image. For the interpolation between
adjacent voxels, a linear interpolation scheme is applied. In Fig. 3 an exemplary
case is shown. The selected lesion is marked by a red cross and the corresponding
resliced 2D plane is shown below. As can be seen in the lower image, the red line
indicating the path of the X-ray beam intersects with the marked lesion which is
highlighted by the yellow rectangle. Thus, this view enables to select the correct
slice with just one additional click.

2.3 Geometric mapping

In a first step, the ultrasound image is aligned to mammogram geometrically,
using the center lines of both images. This is sufficient since the ultrasound
transducer is attached to the compression paddle, and thus the center line of both
images (3D US and 2D mammogram) are at the same position, regardless of the
projection geometry. In the subsequent step, we calculate the deviation between

Fig. 2. Dedicated GUI, top left: 2D mammography image of a phantom, top right: 3D
US image (xy-plane), bottom left: 2D resliced US intersection, and bottom right: 3D
US image (xz-plane).
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Fig. 3. 2D mammogram (top) and
2D resliced ultrasound image (bot-
tom). The red cross indicates the
selected lesion and the red line in
the lower image the path of the
X-ray beam. The yellow rectangle
highlights the location of the lesion.

the parallel-beam projection of the US transducer and the cone-beam projection
of the X-ray system. In Fig. 4 a schematic drawing representing the geometry of
the presented prototype in the xz-plane is shown. For the sake of simplicity, we
omit the y-coordinate for the derivation of the formulas in this paper. The focal
point of the X-ray source is located on the z-axis and is indicated as a red dot.
The distance between source and detector is denoted as SID. The cone-angle α
can be computed as

tanα =
x′

z′
(1)

Assuming that the detector lies within the plane z = 0, a ray intersecting a point
p(x′, z′) inside the breast is projected onto the detector at

p̂Xray =

(
tanα · SID

0

)
(2)

In contrast to the cone-beam projection geometry of the X-ray system, the ul-
trasound device has a parallel-beam projection geometry, thus the projection of
the same point p onto the detector can be formulated as

p̂US =

(
x′

0

)
(3)

It follows immediately, that there is a deviation Δx between the two projected
points which can be evaluated with respect to the cone-angle α and point p

Δx = | tanα · SID− x′| (4)
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Please note that we do not consider the impact of magnification as the distance
between the object and detector is neglectable small compared to the SID.

3 Results

The value of the deviation caused by the cone-beam is affected by the distance
between the point p and the vertical beam from the X-ray source (SID) as well as
the height from point p to the X-ray detector. Tab. 1 shows the values of deviation
for different cases. The SID of the prototype is 650mm. In total, three different
distance to center x′ and two different local heights of the breast in equidistant
spacing have been chosen to test according to the width of the test images and
the height of the compressed breast phantom. Based on Fig. 4 it becomes clear
that the deviation increases with bigger angles, higher local heights and longer
distances to the center.

4 Conclusion

In this paper, we present a customized reading solution for a hardware prototype
combining ultrasound and X-ray imaging which might be capable of accelerating
the workflow speed and improving the diagnostic accuracy. A 2D X-ray image

Fig. 4. Graphical representation of the cone-beam geometry. The compressed breast is
indicated by the orange rectangle. The ultrasound transducer is shown as a small gray
rectangle. Δx depicts the geometric deviation between a point p at the location that
is projected onto the detector using a cone-beam projection geometry (mammogram)
and a parallel-beam projection geometry (US).
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Table 1. Overview about the deviation for various distances, angles and heights for a
fixed SID = 650mm and breast height = 100mm. If not specified differently, the units
in this table are given in mm.

Distance to center x′ Cone-angle α [◦] Local height SID−z′ Deviation Δx

50 4.4 50 3.8

100 8.7 50 7.7

150 13 50 11.5

50 5.1 100 7.7

100 10.2 100 15.4

150 15.1 100 23.1

acquired in cone-beam geometry should be linked to a Cartesian 3D-ultrasound
volume. Therefore, the center lines of 3D US images and 2D X-ray images are
aligned using prior knowledge about the hardware geometry. In the next step,
the cone-beam deviation was calculated with given geometry information such
that a pixel in the 3D ultrasound image can be matched correctly to the 2D
cone-beam X-ray image.

In order to avoid scrolling through many slices an additional view is intro-
duced. Deviations up to 23mm and a slice thickness of 0.5mm of the ultrasound
images result in about 46 possible slices for the location of the lesion which is
already big enough to lead to misdiagnosis. The multimodal image alignment
is hereby a good solution to overcome this problem by simply adding one click
in the additional view. Thereby, the efficiency of the diagnosis is improved dis-
tinctly by this GUI, as clinicians can observe both X-ray and ultrasound image
at the same time, matching the lesion for both imaging methods. Overall, ultra-
sound imaging is not harmful and the 3D ultrasound breast imaging provides
additional information to the 2D X-ray image. The image reading tool might be
able to help clinicians to diagnose breast cancer in a more accurate and efficient
way.
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Abstract. X-ray microscopy is a powerful imaging technique that per-
mits the investigation of specimen on nanoscale with resolution of up to
700 nm in 3-D. In the context of bio-medical research this is a promising
technology that allows to study the microstructure of biological tissues.
However, X-ray microscopy (XRM) systems are not designed for in-vivo
applications and are mainly used in the field of material sciences in which
dose is irrelevant. High resolution scans may take up to 10 hours. Our
long-term goal is to utilize this modality to study the effects of disease
dynamics and treatment in-vivo on mice bones. Therefore, a first step
towards this ambitious goal is to evaluate the current state-of-the-art
to determine the required system parameters. In this work, we inves-
tigate the impact of different XRM settings on the image quality. By
changing various acquisition parameters such as exposure time, voltage,
current and number of projections, we simulate the outcome of XRM
scans, while reducing the X-ray energy. We base our simulations on a
high resolution ex-vivo scan of a mouse tibia. The resulting reconstruc-
tions are evaluated qualitatively as well as quantitatively by calculating
the contrast-to-noise ratio (CNR). We demonstrate that we can reach
comparable image quality while reducing the total X-ray energy which
forms a foundation towards the upcoming experiments.

1 Introduction

X-ray microscopy (XRM) is as a modality that is currently used mostly in the
field of material sciences to study materials and and their composition such as al-
loys, batteries or integrated circuits [1]. The submicron resolution of up to 700 nm
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makes this technology also attractive for medical applications as the investiga-
tion of biological tissues such as bones. Yet, XRM systems are, in comparison
to conventional computed tomography (CT) systems, not designed for in-vivo
imaging. The small source-to-object distance, which produces a high energetic
throughput, in combination with long acquisition times exceeds the bearable
amount of dose for living animals as mice [2]. Stochastic effects would already
emerge at a total body dose of 10Gy [3]. Still, the high potential of these meth-
ods to monitor medication implied changes of tiny bone microstructures, makes
in-vivo application of XRM systems worth investigating. Hence, methods that
allow the reduction of the X-ray dose are essential.

Therefore, we first of all have to evaluate the suitability of such a system to
perform long-term in-vivo studies and the hardware updates that are required to
guarantee the survival of the animal. As Mill et al. [4] demonstrated using an in-
vivo motion pattern, hardware modifications are needed in order to compensate
for breathing motion and muscle relaxation. In this work, we investigate, how
the XRM system parameters influence the reconstructed image quality, while
reducing the emitted X-ray energy. Therefore, we conduct multiple simulations
with various exposure times, voltages, currents, and number of projections, while
the source-to-object distance remains constant. Subsequently, we evaluate the
reconstruction results qualitatively as well as quantitatively using the CNR.

2 Materials and methods

2.1 X-ray physics and photon energy considerations

To simulate the image quality for different XRM parameter settings, we have to
consider the underlying X-ray physics of such a system in order to determine the
total energy and thus, the total number of photons that hit the detector. The
total energy Etotal that reaches the detector is [5, 6, 7]

Etotal = ξ ·
Jsource︷ ︸︸ ︷

k · UA · Z︸ ︷︷ ︸
η

· IA · UA︸ ︷︷ ︸
J0

·t · n · e−x·μ (1)

where ξ describes the energy loss caused by the system including geometric prop-
erties and quantum efficiency of the scintillator and detector, η is the efficiency
of the X-ray source with the constant k = 1 · 10−9 V −1, Z the atomic number
of the anode material, J0 the electrical power at the X-ray source consisting of
the current IA and voltage UA, t the exposure time for a single projection, n the
number of projections and e−x·μ the attenuation that is caused by the trans-
mission X-ray source with target thickness x and linear attenuation μ. Thus,
knowing the average kinetic energy Ekin of all X-ray photons, we can compute
the number of photons N that enter the surface area of the detector

N =
Etotal

Ekin
(2)
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2.2 Compressive sensing

Iterative regularized reconstruction is a common technique in medical imaging
and allows for reduction of acquisition time, dose, and projections. The main
idea, is to augment the reconstruction process by additional prior knowledge
that is introduced using regularization techniques. A typical reconstruction is
obtained by minimizing an energy function that is composed of a raw data error
||Ax − p||2 and a regularization term R(x)

1

2
||Ax − p||22 + λR(x) (3)

where x is the reconstruction volume, A the projection operator, and p the
projection data. In our experiments, we used a bilateral filter in every third
iteration to approximate the effect of total variation regularization following the
approach in [8].

2.3 Experimental setup

The base volume for the noise simulation is a high resolution reconstruction
of a mouse tibia. The scan was performed ex-vivo using a Zeiss Xradia Versa
520 XRM with 2000 projections, a exposure time of 4 s per projection, and an
angular increment of 0.18◦. The isotropic voxel size of the volume is 1.35 μm.

As Eq. 1 is just a coarse approximation of the system behavior, we adjusted
the detection efficiency of the acquisition system such that the noise level of
the simulated scan was matched to the noise level of the ex-vivo scan. The field
of view (FOV) of all scans was 1mm3, the isotropic resolution of a voxel in the
reconstructed volume was 1 μm. The source-to-object distance was kept constant
with 11mm. We used the open source reconstruction framework CONRAD [9]
for all simulations. Noise simulation was performed assuming monochromatic
X-rays as described in [10].

3 Results

Fig. 1 shows the simulation results for different settings of the XRM system with
the ground truth (GT) (Fig. 1a) showing a detailed reconstruction of a mouse
tibia. The associated simulation parameters are listed in Tab. 1. Changing the
system parameters towards a faster acquisition time introduces noise and arti-
facts, which go along with a considerable decrease of the image quality (Fig. 1b).
As a result, the microstructure of the bone disappears completely. However, in
comparison to Fig. 1b, a considerable improvement of the image quality can be
achieved while still reducing the total X-ray energy (Fig. 1c). This is a result of
a decrease of the voltage UA while subsequently increasing the current IA. As a
consequence, the total X-ray power remains nearly constant, while the faster ac-
quisition time reduces the total X-ray energy. Furthermore, Compressive Sensing
as reconstruction algorithm can lead to a even better image quality as shown in
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(Fig. 1d) while using the same acquisition parameters as for the scan in Fig. 1c.
Besides the qualitative evaluation, the images are compared using the CNR for
a region of interest (ROI). It is calculated as follows

CNR =
μ

σ
(4)

where μ is the mean value of the ROI and σ the standard deviation. Tab. 1
shows the acquisition parameters and the calculated CNR for each image. We
obtain a CNR of 6.71 for the GT reference image compared to a CNR of 2.33 for
Fig. 1b. As a result of the system parameter optimization, we achieve a CNR of
3.83 for Fig. 1c. Using Compressive Sensing as reconstruction algorithm results
in a CNR value of 6.96 for Fig. 1d, which is comparable to the GT image quality.

4 Discussion

In this work, we evaluate the impact of different XRM system settings on the
reconstructed image quality. Depending the chosen parameters, we compute the

Fig. 1. Simulation results for different XRM parameter settings. The GT (a) image
shows a detailed reconstruction of a mouse bone. A change of the system parameters
towards a faster acquisition time introduces noise and artifacts that goes along with a
decrease of the image quality (b). An optimized XRM setting leads to a considerable
improvement of the image quality, while still remaining a lower X-ray energy (c). The
reconstruction (d) shows a further reduction of noise using compressive sensing.
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Table 1. Acquisition parameters and the CNR values for the associated reconstructions
that are shown in Fig. 1.

Image t [s] IA [μ A] UA [kV] Ekin [keV] n Etotal [mJ] CNR

Fig. 1a 4 87 80 40 2000 429.48 6.71

Fig. 1b 0.4 87 80 40 1000 21.474 2.33

Fig. 1c 0.05 172 40 20 1000 2.523 3.83

Fig. 1d 0.05 172 40 20 1000 2.523 6.96

number of photons that reach the detector and by using the CONRAD software
framework, we simulate the outcome of XRM scans while reducing the total X-
ray energy. The simulations are performed such that the exposure time, voltage,
current and number of projections are kept variable while parameters such as
the source-to-object distance or the voxel size remain constant. The result of
the simulation shows that a reduction of the acquisition time alone, introduces
artifacts combined with a strong noise pattern which both result in a low image
quality and a loss of the information about the bone’s microstructure. Yet, an
improved image quality can be achieved by optimizing the system parameters
towards a higher CNR while still reducing the acquisition time and therefore
the X-ray energy. This can be attained by decreasing the operating voltage UA

while subsequently increasing the current IA. Although the total X-ray power
Jsource of the source remain nearly constant, a decrease of UA also goes along
with a decrease of the average kinetic energy Ekin of the photons. Since the linear
attenuation coefficient μ of the object highly depends on the photon energy [7],
a lower Ekin increases the attenuation of the object. As a consequence, on the
one hand, more photons are absorbed by the object itself. Yet on the other hand,
the proportion between absorbed and detected photons increases. Subsequently,
this leads to a higher CNR while the further reduction of the exposure time
goes along with a significant reduction of the total X-ray energy from 429.48
mJ for the GT scan to 2.523 mJ for the scan in Fig 1c. Additionally, by using
Compressive Sensing as reconstruction algorithm, a resulting image quality with
a CNR value of 6.96 can be achieved which is comparable to the image quality
of the GT with a CNR value of 6.71.

In the context of in-vivo imaging using an XRM, where acquisition time
and dose are crucial factors, the results presented in this work indicate that a
sufficient image quality can be achieved by using optimized scanning parameters
while reducing dose and time. However, the simulation in this work uses a coarse
approximation of the system behavior by introducing a factor ξ in Eq. 1, which
describes the energy loss caused by the system itself including the properties of
the scintillator and detector. This factor was estimated by comparing the noise
levels of the simulated reconstruction to the noise level of the ex-vivo scan. In
addition, to determine optimal parameters that allow for in-vivo imaging, dose
and its effects on the tissue has to be considered. Thus, dose computation and
Monte-Carlo-Simulations will be subjects of our future work.
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Converting reflected sonic signals to an ultrasound image, beaforming, has
been traditionally formulated mathematically via the simple process of delay and
sum (DAS). Recent research has aimed to improve ultrasound beamforming via
advanced mathematical models for increased contrast, resolution and speckle
filtering. These formulations, such as minimum variance, add minor improve-
ment over the current real-time, state-of-the-art DAS, while requiring drastically
increased computational time and therefore excluding them from wide-spread
adoption. Simultaneously, there is a parallel drive to increase ultrasound frame
acquisition rates, for applications such as cardiac imaging, where high frame
rates are required to accurately capture the complete subject motion.

In order to improve contrast, resolution and accuracy of reconstructed ul-
trasound images while increasing acquisition speed, a new paradigm, Deep-
Forming [1], has been developed to leverage the strengths of deep learning
for accelerated sub-sampled ultrasound reconstruction. In this novel work, a
fully-convolutional neural network [2] trained with a composite loss of L1 and
LMS-SSIM [3], is utilized to map sub-sampled raw channel data from an ultra-
sound transducer to a fully sampled beamformed signal. Experiments were con-
ducted on an in-vivo dataset of 19 participants including scans of a variety of
anatomies. Results showed that all anatomies were successfully reconstructed by
DeepFormer while using both sub- or fully-sampled raw data with a high relative
structural similarity, suggesting that the lateral resolution of the reconstructed
images can be maintained even with sparsely sampled channel data. The overall
similarity between the reconstructed images and the ground truth for fully- and
sub-sampled raw data remained similar with an SSIM of 0.5554 and 0.5550 re-
spectively, highlighting the potential of DeepFormer to serve as a step towards
arbitrary reconstruction based on sub-sampled raw ultrasound signals.
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Abstract. Fiber optical sensors such as Fiber Bragg Grating (FBG)
are more and more used for shape sensing of medical instruments. Es-
timating the shape via measured wavelengths is difficult and underlies
a long pipeline of calculations with many different sources of errors. In
this work we introduce a novel approach for more realistic interpolation
of curvature used in subsequently applied reconstruction algorithms. We
demonstrate and compare our method to others based on simulation of
different types of shapes. Furthermore, we evaluated our approach in a
real world experiment with measured FBGs data.

1 Introduction

In recent years, many Fiber Bragg Grating (FBG) based systems for estimating
the shape of medical instruments, such as flexible needles, have been introduced
[1, 2, 3]. FBGs are reflectors which are constructed as short segments of an
optical fiber and are able to reflect a specific range of the incoming light. This
property enables to measure mechanical strain and temperature changes [4].
Placing multiple FBGs at the same location allows to estimate curvature and
direction angle. Most common systems use three fibers in a triplet configuration
[1, 5, 6].

Shape reconstruction of flexible structures is challenging and various ap-
proaches have been proposed. The most common method is based on solving
Frenet-Serret formulas [5, 7]. In [6] the reconstruction is build on piece-wise con-
necting circle segments, and in [8] an algorithm based on parallel transport is
introduced. In general, reconstruction becomes difficult for bend shapes with
high curvature and the accuracy of the reconstructed shape is poor.

All these approaches have the same assumption, that the sensor values are
point-wise measurements. Thus, the spatial extent of FBGs is neglected and the
curvature and direction angles are modeled as values of the FBG array center.
Then the missing values are typically estimated by a linear or cubic interpolation.

For more accurate reconstruction, we present a novel approach that takes the
spatial extent of the FBG into account and models the sensor values as averages
of the sensor region. In the following, we describe the model of our interpolation
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approach, present results on simulated and real-world recorded data and compare
our method with state-of-the-art cubic interpolation [2, 6].

2 Materials and methods

We consider a fiber system with n arrays of FBGs placed along the instrument.
Each of these arrays contains three FBGs in a triplet configuration and a fourth
FBG in the center. All FBGs have fixed length � and the FBG arrays are uni-
formly distributed with center-to-center distance d. An illustration of a flexible
instrument with a FBG system is shown in Fig. 1.

2.1 Shape reconstruction

Shape reconstruction is typically performed via the following steps:

1. For each FBG sensor the strain is determined by estimating the wavelength
shift of the measured wavelength.

2. Using the strains of all FBGs, the curvature and direction angles can be
computed for all arrays.

3. The missing curvatures and direction angles are determined by interpolation.
4. The shape is reconstructed with the obtained curvature and direction angles.

In this paper we focus on the third step. We introduce a novel approach that
takes the FBG geometry into account for curvature interpolation. In the shape
reconstruction step we follow the method introduced by Roesthuis et al. [5].

2.2 Averaging cubic interpolation

For curvature estimation and the interpolation step, respectively, we take the
physical properties of a FBG into account: We assume n sensors with length �

(a) FBG-System

(b) Arc

(c) S-curve

Fig. 1. Image (a) shows a FBG system of medical instrument with center-to-center
distance d and sensor length l. Images (b) and (c) show sketches of the simulated
shapes dependent on the height h.
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that are equidistantly distributed along the fiber of length L with centers ti :=
t0 + d · i ∈ [ �2 , L− �

2 ] i = 0, . . . , n− 1 and center-to-center distance d = |ti+1 − ti|
Thus, we model the observed value Ci from ith sensor as an average, i.e

Ci =
1

�

∫ ti+
�
2

ti− �
2

c(t) dt (1)

where c : [0, L] → R
+ denotes the curvature of the fiber parameterized in arc

length. Furthermore, we make the modeling assumption that the curvature c can
be represented as a b-spline defined on the FBG centers, i.e c(t) =

∑n−1
j=0 wjSj(t)

with cubic b-splines Sj(t) := S
(
t−t0
d − j + 2

)
, cubic b-spline basis

S(t) :=
1

6

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t3 if t ∈ [0, 1[

−3t3 + 12t2 − 12t+ 4 if t ∈ [1, 2[

3t3 − 24t2 + 60t− 44 if t ∈ [2, 3[

(4− t)3 if t ∈ [3, 4[

0 else

(2)

and wj are the corresponding weights. With (1) we get

Ci =

n−1∑
j=0

wjIij , with Iij =
1

�

∫ ti+
�
2

ti− �
2

Sj(t) dt (3)

and the weights can be determined by solving the linear system⎛⎜⎝I00 I01 · · ·
I20 · · · In−2n−1

· · · In−1n−2 In−1n−1

⎞⎟⎠
⎛⎜⎝ w0

· · ·
wn−1

⎞⎟⎠ =

⎛⎜⎝ C0

· · ·
Cn−1

⎞⎟⎠ (4)

Thus, we have established a continuous estimate for the fiber’s curvature which
subsequently is used for shape reconstruction. As mentioned above, here we
follow the method from Roesthuis et al. [5] for the final reconstruction based on

the curvature c(t) =
∑n−1

j=0 wj Sj(t) with weights obtained from (4).

2.3 Experimental setup

In order to evaluate the effects of our approach, we made a simulation study
and tested it with a real FBG system. For both studies the FBG sensors have
length � = 5mm center-to-center distance d = 10mm and offset t0 = 5mm We
only considered in-plane shapes to avoid errors caused by direction angles of
the curvature. Moreover, we focused on two different types of shapes: a simple
arc 1(b) and a s-curve 1(c). For our simulations we generated the shape and
then simulated a FBG system with 10 FBG arrays: we calculated the measured
values of each FBG array by averaging the curvature over the length of the array
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and finally adding Gaussian noise. For both shapes we made measurements for
different heights h as shown in Fig. 1. In the real experiment we used a fiber
system with 3 fibers in a triplet configuration and one fiber at the center. It has
8 FBG arrays equally distributed over 80mm so every 10mm segment has one
array in the center. We deformed the fiber to an arc and a s-curve, captured and
annotated the shape with a camera, and compared the obtained ground truth
to the reconstructed shape.

In both settings we compared our method with shape reconstruction us-
ing nearest neighbor interpolation, i.e. constant curvature over the 10mm seg-
ments, and with a regular cubic interpolation of the measured curvatures in the

Fig. 2. Results of the simulation study: The figures in the first row show the average
(solid) and the tip (dashed) distance of the shape reconstruction to the ground truth
using nearest neighbor ( ), cubic ( ) and averaged cubic ( ) interpolation for the
arc (left) and the s-curve (right). The figures in the second row show the curvature
difference (left) and the shape differences (right) between our approach and nearest
neighbor ( ) / cubic ( ) interpolation for arc (solid) and the s-curve (dashed) shape.
Every measurement shows the average of 100 simulations.
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Table 1. Results of the real test study: Mean and standard deviation of the measured
distance (in mm) are listed for both shape types.

Shape Distance Nearest neighbor interpolation Cubic interpolation Proposed

Arc davg 1.71 1.53 1.53

dtip 3.37 2.84 2.66

S-curve davg 0.95 0.86 0.47

dtip 2.18 2.04 1.10

sensor positions. To assess the shape reconstruction quality, we compute the
distances between reconstructed points xi and measured ground truth xgt

i lo-
cated every 10mm along the shape for i = 1, . . . , 8 and ending at the tip with
i = 8. We calculated the average distance davg := 1

8

∑8
i=1 ‖xi − xgt

i ‖2 and the

tip distance dtip := ‖x8 − xgt
8 ‖2. Furthermore, in the simulation study we com-

pare computed curvature values and shape positions at interpolated positions
between our method and the two other reconstructions with nearest neighbor
and state-of-the-art cubic curvature interpolation [2, 6]. To this end, we com-
pute n = 1000 curvature values cj and positions xj with 0.1mm spacing for
j = 1, . . . , n with j = n as the tip position and we calculate the average curva-
ture difference dcurv := 1

n

∑n
j=1 |courj − cotherj | and the average shape difference

dshape :=
1
n

∑n
j=1 ‖xour

j − xother
j ‖2

3 Results

The results of the simulation study are summarized in Fig. 2. We highlight
that the differences increase with the height parameter of the shape and that
the differences are generally bigger in case of the s-curve. Furthermore, we see
a significant variation among the results of the different methods. The results
of our real-world experiment are summarized in Tab. 1 and Fig. 3 shows the

(a) Arc (b) S-curve

Fig. 3. Image of the fiber (red line) with reconstructed shapes of different interpola-
tion models: Nearest neighbor interpolation (blue dots), cubic spline (red dots), our
proposed method (green dots).



Realistic Curvature Interpolation 263

reconstructed positions of the FBGs. Here the proposed method leads to lower
errors than using nearest neighbor and cubic interpolation.

4 Discussion

We proposed a novel more realistic model for curvature interpolation, which is
one error source for shape reconstruction. In our simulation study we analyzed
the effects of our method for curvature estimation in comparison to nearest neigh-
bor and common state-of-art cubic interpolation. Here, we showed that the pro-
posed method has an influence on computed curvature values and reconstructed
shapes, respectively. Furthermore, our new interpolation model systematically
yields smaller reconstruction errors than the compared state-of-the art reference
methods supporting the underlying motivation of the proposed model.

In future work we aim to carry over our averaging model to the computation
of direction angles. Moreover, since the interpolation of the measured values is
only one error source, future work will be the analysis of further errors, that can
occur in the shape reconstruction pipeline.
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Education and Research (BMBF, project Nav EVAR, funding code: 13GW0228C).
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Abstract. The X-ray dark-field can be measured with a grating in-
terferometer. For oriented structures like fibers, the signal magnitude
depends on the relative orientation between fiber and gratings. This al-
lows to analytically reconstruct the fiber orientations at a micrometer
scale. However, there currently exists no implementation of a clinically
feasible trajectory for recovering the full 3D orientation of a fiber. In
principle, a helical trajectory can be suitable for this task. However, as
a first step towards dark-field imaging in a helix, a careful analysis of
the signal formation is required. Towards this goal, we study in this pa-
per the impact of the grating orientation. We use a recently proposed
3D-projection model and show that the projected dark-field scattering
at a single volume point depends on the grating sensitivity direction
and the helix geometry. More specifically, the dark-field signal on a 3D
trajectory always consists of a linear combination of a constant and an
angular-dependent component.

1 Introduction

X-ray phase-contrast is an interferometric imaging technique that is compatible
with clinical requirements. It can be implemented with a Talbot-Lau interferom-
eter via a set of gratings between a medical X-ray source and detector (Fig. 1).
This interferometer creates an attenuation image, a differential phase image and
a dark-field image. The dark-field image measures small-angle scattering of fi-
brous structures. The strength of the anisotropic dark-field signal depends on
the relative orientation of a fiber to the gratings [1, 2].

In recent years, several medical applications of the dark-field signal were
investigated, for example for tumor detection, e.g., in the lung [3, 4], or the
anisotropic reconstruction of the brain fiber connectivity [5].

Several algorithms were proposed for anisotropic dark-field reconstruction in
2D and 3D [6, 7, 8, 9, 10, 11]. 2D methods [2, 6] reconstruct the projection of the
fiber-orientation in one plane. 3D reconstructions are based on various models.
One approach is to compute the 3D tensor indirectly from two 2D vectors [7],
others are X-ray tensor tomography [8], to fit a scattering ellipsoid [9], or to esti-
mate spherical harmonics [10]. All these methods rely on iterative reconstruction.
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Recently, Schaff et al. proposed a non-iterative approach [11]. They aligned the
grating bars perpendicular to the rotation axis, such that the sensitivity direction
is parallel to the rotation axis. This way, the projection of the fiber onto the sen-
sitivity direction is constant for the scan, and a standard filtered back-projection
(FBP) can be used for a 2D reconstruction. 3D fiber orientations are then es-
timated by combining reconstructions from multiple trajectories. However, all
these models rely on specialized, quite complex trajectories, which prohibits
their use for medical applications.

In this paper, we make first steps towards a novel approach for 3D dark-
field imaging. The idea is to use a 3D helix trajectory. While, in principle, a
helix allows recovery of 3D information, it is necessary to closely examine the
associated dark-field signal model, which is subject of this work. The dark-field
model and projection models in 2D and 3D are presented in Sec. 2. We investigate
the helical trajectory in more detail. In Sec. 3, we evaluate the dark-field signal
for different helical trajectories, followed by a discussion in Sec. 4.

2 Materials and methods

The dark-field model is described below. Its characteristics in a 2D and 3D
scanning trajectory are presented in Sec. 2.1 and Sec. 2.2, respectively.

Our examinations are based on the 3D dark-field model proposed in [12].
However, in this work we will limit ourself to only one fiber. Moreover, we will
not consider the full model, but consider only the projections of the associated
Gaussian scatter function. The dark-field signal then consists of an isotropic part
that is constant in all directions, and an anisotropic part that depends on the
viewing and grating sensitivity direction.

The observed dark-field signal d from a single Gaussian scattering function
is defined as

d = diso + daniso(s
	 v)2 (1)

where daniso describes anisotropic the scattering strength of the object, and diso
the isotropic part. The anisotropic signal is modeled as the inner product of a
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Fig. 1. Sketch of setup and coordinate systems. The global coordinate system is denoted
as {x,y, z} ∈ R

3 and the detector coordinate system is given as {p, q} ∈ R
2.
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scattering fiber vector v and sensitivity direction s. In this work, we assume that
s and v are normalized to 1. Both vectors are shown in Fig. 1.

2.1 Dark-field with 2D trajectories

Existing dark-field projections were only described for 2D trajectories [6, 11].
There, the grating alignment is either parallel to the rotation axis [6] (Fig. 2),
left) or perpendicular to it [11] (Fig. 2, middle). For the following specific de-
scriptions we use the coordinate system(s) defined in Fig. 1.

If the gratings are aligned parallel to the rotation axis, the sensitivity di-
rection is parallel to the trajectory and given as s = (1, 0)	. The measured
dark-field signal is then the projection of v in the x-y-plane. This results in
a sinusoidal function that depends on the rotation angle. Since the sensitivity
direction is given by the vector p (Fig. 1) we denote this special case as sp.

If the gratings are aligned parallel to the trajectory, the sensitivity direction is
parallel to the rotation axis s = (0, 1)	. In this case, the projection of the fiber
on the z-axis is measured, which leads to a dark-field signal that is constant
during tomography. This case is denoted as sq.

In principle, the gratings could also be oriented diagonally (Fig. 2, right). In
this case, the observed dark-field signal is a linear combination of sp and sq. The
sensitivity direction s is then given by

s = A · sp +B · sq (2)

2.2 Dark-field with a 3D helical trajectory

Unlike 2D trajectories, the reconstruction plane of a 3D trajectory is not neces-
sarily perpendicular to the rotation axis. Then, the observed dark-field signal is
a non-trivial linear combination of sp and sq. We now apply this reasoning to
the medically relevant special case of a helix trajectory. Here, the X-ray system
is rotating around the object, with an offset along the rotation axis. The amount
of the translation along the rotation axis for one full circle (360◦) is called pitch
h. A schematic sketch of a helix and the corresponding pitch is shown in Fig. 2.

�� �� �

�

�

��

Fig. 2. Grating directions are described with respect to the trajectory (left) and Helix
(right).
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The helix describes a continuous path, and hence for the case that the sensitivity
direction is aligned with the trajectory, the sensitivity is given by

s = A · (1, 0)	 +B · (0, 1)	 = (A, B)	 (3)

Here, the helix-specific parameters A and B, are

A = −α ·
√

1−B2B = β · 2
π

(4)

where α is the signed rotation angle between two consecutive projections and
β is the signed rising angle of the helix. Thus, the behavior of the dark-field
projection in a helix is defined by the sensitivity direction and the helix pitch.

3 Experiments and results

We show the behavior of the 3D dark-field on helix pitch and grating orientation
for simulated data. The fiber in our experiments is defined by the parameters
diso = 1, daniso = 1.73 =

√
3 and v = (1, 1, 1) and it is centered at the rotation

axis. We will consider six different trajectory settings, which differ in the trajec-
tory or the sensitivity direction. We simulate a cone-beam geometry and define
the sensitivity vector s to always be perpendicular on the ray direction r. This
corresponds to a curved detector, which slightly simplifies the interpretation of
the results. The setup geometry always has a source-isocenter distance of 600mm
and source-detector distance of 1200mm. The 2D circle trajectories (Fig. 3(a,b))
consist of 360◦ with angular increment of 1.5◦. The helical trajectories (Fig. 3(c-
f)) also with angular increment of 1.5◦, with pitch h1 or h2.

3.1 Experiment 1

We investigate two cases of a circular trajectory. First, the gratings are perpen-
dicular to the trajectory (Fig. 3(a)), i.e., with sensitivity direction sp. Second, the
gratings are parallel to the trajectory (Fig. 3(b)), i.e., with sensitivity direction
sq. The resulting dark-field signal is shown in Fig. 4 for sensitivity direction sp in
red and sensitivity direction sq in blue. While the dark-field signal with direction
sp varies across the tomographic angles, the dark-field signal with direction sq
is constant.

3.2 Experiment 2

In this experiment, the dark-field signal for helical trajectories with different
pitches are compared. We set the pitches h1 to the detector height h2 = 0.5 · h1

and h3 = 2 · h1. For gratings parallel to the trajectory, this variation of detector
pitch visualized in Fig. 3(c) and Fig. 3(d). The resulting intensity variations are
shown in (Fig. 5, left). Here, black, red, and blue show the intensity profiles
for pitches h1, h2, h3, respectively. The variations in the curves show that the
amplitude, and hence the anisotropic part of the signal, increases with the pitch.
However, this dependency scales not linearly. Note also that the fiber is observed
over a smaller angular range with increasing pitch.
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Fig. 3. Experiments. (a,b) circle trajectory (c–f) helical trajectory. For each scanning
mode the grating orientation and rotation axis is shown.

(a) (b)

��

(c)
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(d)
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(e)

��
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3.3 Experiment 3

For pitch h1, we evaluate the sensitivity directions shown in Fig. 3(c), 3(e)
and 3(f). The resulting intensity profiles are shown in (Fig. 5, right), where
the black, red, and blue curves correspond to the directions in Fig. 3(c), 3(e)
and 3(f), respectively. Unlike the case of gratings parallel to the trajectory in
Exp. 1, none of these grating orientations leads to a constant signal: the 3D helix
trajectory always leads to a (non-trivial) linear combination of sp and sq.

4 Discussion

We showed that the dark-field signal behaves differently for 2D and 3D trajec-
tories. On 3D trajectories, we necessarily observe a linear combination of the
two 2D base cases. This leads to a mixture of a constant and a varying signal
component. For the particular case of a helical trajectory, we validated these
findings with simulation experiments. We believe that understanding the dark-
field signal in a helix opens the perspective to implement orientation-sensitive
tomographic systems that are much more practical for scanning patients. As a
next step the complete 3D projection model described in [12] shall be evaluated
with a helical trajectory. For future work we will investigate an algorithm that
incorporates trajectory-dependent information to simultaneously reconstruct the
scatter directions and isotropic signal components.

Acknowledgement. The authors acknowledge funding from the German Re-
search Foundation (DFG).
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Fig. 5. Line plot of dark-field for different helical trajectories. The corresponding grat-
ing orientations are shown in Fig. 3(c-f).
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(a) Helical trajectory with different pitch.
h2 = 0.5 · h1 and h3 = 2 · h1.
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tivity directions.
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Abstract. With increasing patient and staff X-ray radiation awareness,
many efforts have been made to develop accurate patient dose estima-
tion methods. To date, Monte Carlo (MC) simulations are considered
golden standard to simulate the interaction of X-ray radiation with mat-
ter. However, sensitivity of MC simulation results to variations in the
experimental or clinical setup of image guided interventional procedures
are only limited studied. In particular, the impact of patient material
compositions is poorly investigated. This is mainly due to the fact, that
these methods are commonly validated in phantom studies utilizing a sin-
gle anthropomorphic phantom. In this study, we therefore investigate the
impact of patient material parameters mapping on the outcome of MC
X-ray dose simulations. A computation phantom geometry is constructed
and three different commonly used material composition mappings are
applied. We used the MC toolkit Geant4 to simulate X-ray radiation in
an interventional setup and compared the differences in dose deposition,
scatter distributions and resulting X-ray images. The evaluation shows a
discrepancy between different material composition mapping up to 20%
concerning directly irradiated organs. These results highlight the need for
standardization of material composition mapping for MC simulations in
a clinical setup.

1 Introduction

Over the last years, the amount of X-ray guided diagnostic and interventional
procedures has increased steadily, raising the awareness of dose-induced deter-
ministic and stochastic risks for the patient as well as the treating medical staff.
Therefore, efforts are made to determine and visualize the distribution of ab-
sorbed dose and scattered radiation in the context of the interventional suite
and hybrid operating room using Monte Carlo (MC) methods [1]. Recently, MC
simulation of photon transport gained additional boost with deep convolutional
neural networks being established to be state of the art in most X-ray imaging
classification and regression tasks, such as landmark detection or segmentation.
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With novel architectures emerging on a daily basis, the demand for diverse train-
ing and testing data intensifies. Since medical data is treated sensitively, there
is a constant lack of sufficient data. Although efforts are made to build open
source databases, there exist prominent problems, such as scatter reduction [2],
hindering the collection of accurate ground truth data without imitating exist-
ing solutions, such as anti-scatter grids. Therefore, realistic simulation of these
problems has become a fundamental step to build learning solutions to real-world
problems. However, to push deep learning from research to clinical application,
the training data must be valid to a certain measure. There is, however, a mul-
titude of parameters affecting the outcome of MC simulations in an unintuitive
way, such as modeling the energy spectrum or biasing the particle source. To
obtain valid and realistic results, it is mandatory to be aware of all sources of
uncertainty concerning modeling the clinical setup. In this study, the impact of
variations in the tissue material properties on resulting X-ray image, scattered
radiation and patient dose are determined using Monte Carlo simulation.

2 Materials and methods

2.1 Phantom model geometry and material parameters

To study the effect on material composition mapping, we use the geometry of
the voxel phantom Golem provided by the Institute for Radiation Protection 1.
The Golem phantom consists of 220 slices with 256×256 voxels each, ranging
from the vertex down to the toes of a normally shaped, 176 cm adult male. It is
segmented into 122 organ and tissue labels. Three different, voxel-wise material
composition mappings are used to assign material properties to the associated
labels for MC simulation. A material is defined by its volumetric mass density
and the fraction of mass of elementary components. Two material composition
mappings reference the commonly used anthropomorphic dosimetry phantoms
RANDO (Alderson 2) and CIRS (ATOM 3), respectively. The Alderson mapping
(AM1) includes real bone (cortical) and an approximation of the lungs besides a
mixture to represent soft tissue as the main component of the human body. The
Atom mapping (AM2) includes bone, soft and lung (inhale) equivalent tissues.
The third material mapping serves as reference mapping (RM) and is modeled
to resemble a living adult male, following the material specifications proposed
by the International Commission on Radiological Protection (ICRP) 4 standard.
It comprises adipose, soft, skin, brain, bone (cortical), muscle and lung (inhale)
tissue.

1 www.helmholtz-muenchen.de/iss/index.html
2 www.rsdphantoms.com/rt art.htm
3 www.cirsinc.com/products/all/33/atom-dosimetry-verification-phantoms/
4 www.icrp.org
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2.2 Detector model

The simulated 320×237.5mm2 flat panel detector has a resolution of 256×190
pixels. To reduce variance, it consists of Cesium-Iodide with a 20mm thickness to
absorb all incoming photons. We consider the detector as an ideal detector with
a linear detector response curve, no electron noise or defect pixels. No processing
is applied to the resulting image from the detector.

2.3 Simulation of experimental setup

The simulation is implemented in the general purpose MC toolkit Geant4 [3],
which offers a high degree of customizability and flexibility allowing for arbitrary
experiment configuration and quantity scoring. Furthermore, Geant4 provides
an interface to materials as defined by the ICRP, alongside arbitrary material
compositions.

The phantom is centered in the origin of the world coordinate system, the
particle source is placed in 800mm distance ante-posterior to the phantom, such
that the prostate lies approximately in the center of the emitted X-ray beam. The
particle source is circularly shaped with a radius of 0.3mm and collimated result-
ing in 7.6 ◦ for both aperture angles. Emitted photon vertices are sampled using
cosine-weighting to obtain homogeneous fluence with respect to a sphere surface.
The underlying energy spectrum of the photon shower is modeled considering a
tungsten anode, 70 kV peak voltage and 2.7mm Aluminum self-filtration using
Boone’s algorithm [4]. The flat panel detector is placed in 1300mm distance to
the photon source perpendicular to the central X-ray direction. Particle interac-
tions that may occur at the given energy spectrum are considered, including the
photo electric effect, Rayleigh scattering and Compton scattering for photons
and ionization and Bremsstrahlung for electrons. All processes are modeled ad-
hering to the Livermore model for low energy physics [5]. Primary photons and
secondary particles are tracked until their associated kinetic energy in consumed
completely to satisfy energy preservation and assure accurate results.

To obtain stable dose and scatter distributions 9×108 primary photons are
emitted, for X-ray image generation 51×108, respectively. Dose distributions are
scored with respect to the dose D absorbed by each voxel measured in Gy. To
quantify scatter distributions and X-ray images, the incident radiant energy R
in J is tracked. The simulation is carried out in batches of 108 primaries in or-
der to bring variance to the initial random seed and to split the computation
to several nodes of the high performance computing (HPC) cluster. Each batch
computation lasts on average 3.5 h, however multiple batches are processed in
parallel. The resulting dose distributions have the same resolution as the as-
sociated phantom volumes. To score the scatter distributions, a 8m3 volume
comprising 100×100×100 isotropic voxels is placed surrounding the phantom
and material parameters of air defined by ICRP are applied. No interventional
table is considered. We performed simulations using aforementioned configura-
tions for each mapping. The simulation result employing RM are considered as
base line, results of AM1 and AM2 are compared to this reference.
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3 Results

3.1 Scatter and dose distributions

Fig. 1a-c show the distributions of scattered radiation in the patient environment
(log10; coronal slices) using the three material mappings. The deviation maps
of the percentage difference to RM for AM1 and AM2 are depicted in Fig. 1e.
Distribution of scattered radiation in both AM simulations shows high overall
agreement with the RM results; however, concerning specific regions deviations
of 20% to 50% were determined. Fig. 2 shows an axial slice of the phantom dose
distribution simulation results for RM (a), AM1 (b) and AM2 (c). Deviation
maps of the dose distribution for AM1 and AM2 are depicted in Fig. 2e and
show similar deviations from the reference as the scattered radiation. For a set
of directly irradiated organs (bladder, colon, prostate, skin, testes) the total dose
was determined. Fig. 3 shows the dose ratio between AMs and RM for these dose
sensitive organs. Correlating the AMs to the RM, introduces a deviation of up
to 20% for the prostate at a reference dose of 72% of the peak dose measured.
For organs within 19% to 30% of the peak dose, a deviation of 3% to 29% can
be observed.

3.2 X-ray images

Fig. 4 shows the detector image results of the simulation and associated deviation
maps. Although the images are similar in general, the deviation maps disclose

Fig. 1. Coronal view of the scatter distributions associated with each material com-
position mapping. (e) Corresponding percentage deviation maps with respect to RM.
(d) Spatial relationship between scatter maps and phantom. Scatter distributions are
shown in logarithmic domain. The identifier R refers to the radiant energy entering a
voxel in J.
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Fig. 2. (a)-(c) Axial view of the deposited X-ray dose distribution associated with each
set of material properties. (e) Corresponding percentage deviation maps with respect
to RM. (d) Spatial relation between dose maps and phantom. The dose distributions
are shown in the logarithmic domain. The identifier D refers to the dose absorbed by
a voxel in Gy.

major differences concerning all tissue types. Future studies may evaluate if these
differences are in a diagnostic relevant range.

4 Summary

This study highlights variances in MC simulation results when using different
material composition mapping for the same phantom geometry. We showed, that
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Fig. 3. Ratios of total organ dose between different material composition mappings
(AM1, AM2) and the reference (RM) for five directly irradiated organs. The absolute
organ doses in Gy for the RM are given by the black plot.
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Fig. 4. Primary photon contribution to X-ray images generated with respect to 51×108

primary particles. No processing is applied, the raw radiant energy incident at the
detector is tracked.

the material composition mapping affects X-ray dose, scatter as well as created
image to a certain extent. Therefore, for quantitative analysis and comparison
between experimental and simulation studies these variances have to be consid-
ered. A more detailed standardization of material parameters might be needed.
This need for standardization is further emphasized as MC simulations are po-
tentially used to generate training data for deep learning methods.
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Abstract. An accurate position of the isocenter of a cone-beam CT
trajectory is mandatory for accurate image reconstruction. For analyti-
cal backprojection algorithms, it is assumed that the X-ray source moves
on a perfectly circular trajectory, which is not true for most practical
clinical trajectories due to mechanical instabilities. Besides, the flexibil-
ity of novel robotic C-arm systems enables new trajectories where the
computation of the isocenter might not be straight forward. An inac-
curate isocenter position directly affects the computation of the redun-
dancy weights and consequently affects the reconstructions immediately.
In this work, we compare different methods for computing the isocenter
of a non-ideal circular scan trajectory and evaluate their robustness in
the presence of noise. The best results were achieved using a method
based on a least-square-based fit. Furthermore, we show that an inac-
curate isocenter computation can lead to artifacts in the reconstruction
result. Therefore, this work highlights the importance of an accurate
isocenter computation with the background of novel upcoming clinical
trajectories.

1 Introduction

C-arm cone-beam computed tomography is an established modality in medical
imaging for various applications in diagnostic and interventional imaging. Novel
robotic systems offer a great flexibility of trajectories for image acquisition, al-
lowing to scan objects in horizontal or vertical configuration [1]. In these, the
X-ray source and the detector rotate around the object and 2D projection images
from different directions are acquired, allowing for 3D object reconstruction. In
theory, these trajectories correspond to a perfect circle, in reality, mechanical
instabilities introduce non-idealities, also referred to as a system “wobble”. In
order to perform image reconstruction, these trajectories are calibrated using
an offline calibration scan with a calibration phantom [2] that yields a set of
projection matrices.

A common reconstruction algorithm is the filtered backprojection-based FDK-
algorithm [3]. For a short scan, Parker redundancy weights [4] have to be applied
on the projection images. These weights account for redundant rays that are mea-
sured twice. They are defined dependent on the angle of the current projection
matrix that is part of a perfect circular trajectory. To this end, in a first step,
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the isocenter, e.g. the rotation center of the C-arm, is calculated, which acts as
reference for the computation of the angles. If the isocenter is corrupted, this
results in wrong angles and consequently in errors in the computation of the
redundancy weights. This potentially introduces artifacts in the reconstruction,
which decrease the value of these images for diagnosis or further processing [5].
One solution to find the isocenter is to fit a circle to the trajectory [6]. In this ap-
proach, the axes of rotations between consecutive frames are determined. From
this set of axes, a mean axis of rotation is computed. Afterwards, a cylinder is
fitted parallel to the mean axis of rotation to all X-ray source positions. Addi-
tionally, a plane is fitted orthogonal to the axis of rotation to all X-ray source
positions. The intersection of the plane with the cylinder is defined as the effec-
tive isocenter. However, this approach showed to be error-prone in the presence
of non-idealities in the trajectory. The aim of this paper is to investigate the
robustness of different isocenter computations. We further show also how this
might affect the image quality.

2 Materials and methods

2.1 Background: the projection matrix

An X-ray system can be modeled as a basic pinhole camera [7]: a world point
is mapped onto a 2D image, which can be represented by a 3× 4 homogeneous
projection matrix P. A homogeneous 3D point q̃ ∈ P

4 can be mapped from world
space to a homogeneous 2D point p̃ ∈ P

3 in camera space by p̃ = P · q̃. P can
be decomposed into intrinsic and extrinsic parameters. The extrinsic parameters
define the orientation of the camera (X-ray source) and are given by the rotation
R ∈ R

3×3 and the translation t ∈ R
3. The intrinsic parameters depend only

on internal parameters of the system. These parameters can be expressed as a
3 × 3 matrix K, where fx and fy are the focal lengths and pu and pv are the
coordinates of the principal point. α is the skew parameter. P is then represented
as

P =

⎛⎜⎝fx α ±pu

0 fy ±pv

0 0 ±1

⎞⎟⎠
︸ ︷︷ ︸

K

·
(
R | t

)
(1)

The projection matrix has some important properties: The camera center C,
or source position, is the 3D position of the X-ray sources. C can be directly
computed from R and t: C = −R	 · t The principal axis is the line passing
through the camera center and perpendicular to the image plane [7]. The princi-

pal point
(
pu,pv

)	
is the intersection of the principal ray with the image plane.

It can be read out from the last column of K.
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2.2 Isocenter computation methods

Method 1 The first method is based on a heuristic: It uses the fact that the
isocenter should be the intersection of all principal rays. Therefore, we randomly
select two projection matrices, calculate their principle rays, and compute their
intersection point. This step is repeated 150 times and the final isocenter is the
average over all calculated intersection points.

Method 2 In this method, a sphere is fitted through all X-ray source positions
using the following objective function

X = argmin
X

⎛⎝ N∑
j=1

(Cj −X)	(Cj −X)− d2

⎞⎠2

(2)

Where X is the isocenter, N is the number of projection matrices, d is the
source to isocenter distance, which is a system configuration. X is initialized
with the result from Method 1. The optimization is then solved with a gradient
descent algorithm.

Method 3 This method computes the isocenter by solving a least-square prob-
lem. The isocenter is the smallest squared distance to all principle rays [8]

⎛⎜⎝uj

vj

1

⎞⎟⎠ · ξj = Pj ·

⎛⎜⎜⎜⎝
x̃

ỹ

z̃

1

⎞⎟⎟⎟⎠ =

⎡⎢⎣p̃
	
j,1 pj,14

p̃	j,2 pj,24

p̃	j,3 pj,34

⎤⎥⎦
⎛⎜⎜⎜⎝
x̃

ỹ

z̃

1

⎞⎟⎟⎟⎠ (3)

where ξj is a homogeneous term, p̃	
j,m = (pj,m1,pj,m2,pj,m3) is the j-th projec-

tion and m is a matrix row number. Eliminating ξj produces

[
uj · p̃	j,3 − p̃	j,1
vj · p̃	j,3 − p̃	j,2

]
·

⎛⎜⎝x̃

ỹ

z̃

⎞⎟⎠ =

(
−uj · pj,34 + pj,14

−vj · pj,34 + pj,24

)
(4)

The remaining unknowns are (x̃, ỹ, z̃), and with j = N projections we therefore
have sufficient information to solve the equation using SVD

⎛⎜⎝x̃

ỹ

z̃

⎞⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 · p̃	1,3 − p̃	1,1
v1 · p̃	1,3 − p̃	1,2
u2 · p̃	2,3 − p̃	2,1
v2 · p̃	2,3 − p̃	2,2

...

uN · p̃	N,3 − p̃	N,1

vN · p̃	N,3 − p̃	N,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u1 · p1,34 + p1,14

−v1 · p1,34 + p1,24

−u2 · p2,34 + p2,14

−v2 · p2,34 + p2,24

...

−uN · pN,34 + pN,14

−vN · pN,34 + pN,24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)
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Method 4 This method uses SVD to find the isocenter. We define an equation
that holds for all points X on the principal ray [9]

(I− v · v	) ·X =! (I− v · v	) ·C (6)

I is the identity matrix and v is the view direction. The left side is the
projection of a point X onto the plane with the normal vector v and the right
side is the projection of the X-ray source position C onto the same plane. The
equation is only satisfied if X lies on the principal ray. There are an infinite
number of points on this ray. However, if we set this equation for all projection
matrices and solve it with the SVD, we will end up with a unique solution that
corresponds to the isocenter ⎛⎜⎜⎜⎝

A1

A2

...

AN

⎞⎟⎟⎟⎠ ·X =

⎛⎜⎜⎜⎝
b1

b2

...

bN

⎞⎟⎟⎟⎠ (7)

Where Aj is a 3× 3 matrix and bj is a 3× 1 vector Aj = I− vj · v	
j

bj = (I− vj · v	
j ) ·Cj

2.3 Experiments

We aim to evaluate the effect of noise on the isocenter computation. Therefore,
we added a different amount of Gaussian noise onto a perfect circular trajectory
and computed their deviation to the true center position. This is done using
the following three steps: (1) Add the noise to C to get a new noisy camera
center Cnew. (2) Compute a new translation vector t: tnew = −R ·Cnew. (3)
compute the new projection matrix Pnew = K[R|tnew]. As accuracy measure,
we calculated the distance of the computed isocenter to the reference isocenter
position (0, 0, 0). Fig. 1 shows a perfect circular trajectory, a trajectories with
noise, and a real clinical calibrated trajectory.

3 Results

The results of the noise experiment are summarized in Tab. 1. If no noise is added
(first row), all methods perform equally well with a distance to the true isocenter

(a) (b) (c)

Fig. 1. Ideal trajectory without (a) and with ±5mm (b) noise addition vs. real cali-
brated clinical trajectory (c).
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Table 1. Distance of computed to reference isocenter in mm using ideal projections.

Noise [mm] Method 1 Method 2 Method 3 Method 4

0 1.410−10 4.810−13 2.310−15 3.810−14

0.5 0.051 0.051 0.029 0.030

1 0.109 0.104 0.057 0.060

3 0.343 0.330 0.162 0.167

5 0.538 0.490 0.275 0.294

which lies in the range of rounding errors. Augmenting the noise intervals from
0.5mm to ±5mm, the distance to a reference isocenter increases for all tested
methods. For the highest amount of noise, the best method deviates only by
0.257mm, which corresponds to Method 3. Method 1 and Method 2 perform
worse with an error of 0.538mm and 0.490mm, respectively.

In a second step, we show how these different methods impact the image
reconstruction of a real clinical supine acquisition of a knee. As an example,
we show the reconstruction results using the worst (sphere fitting) and the best
isocenter computation method (least-square approach) in Fig. 2(a) and 2(b),
respectively. Closely focusing on the bone edge at the patella, indicated with the
red arrow in both images, shows the effect on the reconstructions: While using
the more accurate isocenter computation leads to a clearly visible bone outline,
the edge vanished and gets blurred in the other case. This subtle difference
can also be seen in their difference image shown in Fig. 2(c). Note, that the
artifact origins mostly from one distinct direction (horizontally). This direction
corresponds to the last acquired projection images, that are, in consequence of
an inaccurate isocenter computation, weighted with suboptimal Parker weights.
This leads to a loss of information in that direction.

4 Discussion and conclusion

Isocenter computation can have an effect on the image quality of reconstruc-
tions of C-arm cone-beam CT scans. An inaccurate isocenter leads to non ideal

(a) (b) (c)

Fig. 2. Reconstruction using two different Isocenter computation methods: (a) with
and (b) without artifact; (c) difference.
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Parker-weights, that consequently might result in a loss of information. This is
because the measured projection images are weighted with suboptimal weights,
or in the extreme case even with zero. Thus, a robust isocenter computation is in-
dispensable. Therefore, we investigated the robustness of four different methods
in the presence of noise. We found that methods based on a least-square fit out-
perform methods based on fitting of lines and spheres. The results indicate that
these methods are able to cope with the C-arm“wobble”. Further, these methods
might also be a candidate to compute the isocenter for other planar trajectories,
such as ellipses. We showed that an isocenter determination is critical on the
reconstruction result. Subtle differences in the reconstruction might already sig-
nificantly reduce the diagnostic values of such. Further, possible postprocessing
steps, e.g. segmentation of bones in order to compute cartilage thickness [5], are
prone to such directional errors in the images. Therefore, our comparison can
help to improve the reconstruction quality, also for other trajectories and novel
trajectories in the future.
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Current ‘dry lab’ surgical phantom simulators are a valuable tool for surgeons
which allows them to improve their dexterity and skill with surgical instruments.
These phantoms mimic the haptic and shape of organs of interest, but lack a
realistic visual appearance. In this work, we present an innovative application in
which representations learned from real intraoperative endoscopic sequences are
transferred to a surgical phantom scenario. The term hyperrealism is introduced
in this field, which we regard as a novel subform of surgical augmented reality
for approaches that involve real-time object transfigurations. For related tasks in
the computer vision community, unpaired cycle-consistent Generative Adversar-
ial Networks (GANs) have shown excellent results on still RGB images. Though,
application of this approach to continuous video frames can result in flicker-
ing, which turned out to be especially prominent for this application. Therefore,
we propose an extension of cycle-consistent GANs, named tempCycleGAN, to
improve temporal consistency. The novel method is evaluated on captures of a
silicone phantom for training endoscopic reconstructive mitral valve procedures.
Synthesized videos show highly realistic results with regard to 1) replacement of
the silicone appearance of the phantom valve by intraoperative tissue texture,
while 2) explicitly keeping crucial features in the scene, such as instruments,
sutures and prostheses. Compared to the original CycleGAN approach, temp-
CycleGAN efficiently removes flickering between frames. The overall approach
is expected to change the future design of surgical training simulators since the
generated sequences clearly demonstrate the feasibility to enable a considerably
more realistic training experience for minimally-invasive procedures. The work
was presented at MICCAI 2018 [1]. A supplemental video is available here1.
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Abstract. This paper compares three different visualization techniques
to improve spatial perception in virtual reality applications. In most vir-
tual reality applications, spatial relations cannot be sufficiently estimated
to make precise statements about the locations and positions of objects.
Especially in the field of medical applications, it is crucial to correctly
perceive the depth and structure of a given object. Thus, visualization
techniques need to be developed to support the spatial perception. To
address this, we carried out a user study to evaluate different visualiza-
tion techniques and deal with the question of how glyphs influence spatial
perception in a virtual reality application. Therefore, our evaluation com-
pares arrow glyphs, heatmaps with isolines and pseudo-chromadepth in
terms of improving the spatial perception within virtual reality. Based
on the study results it can be concluded that spatial perception can be
improved with the help of glyphs, which should motivate further research
in this area.

1 Introduction

Virtual reality (VR) describes the idea to transfer a user into an almost real
world. This VR experience covers everything from playing virtual games through
educational purposes up to military applications and beyond. As technology ad-
vances, more and more applications are being developed to improve medical
education and surgical planning in VR [1, 2]. These new applications also bring
new challenges with them. Although stereoscopic VR improves spatial percep-
tion compared to conventional computer monitors, the spatial perception is still
not as accurate as in the real world and therefore leads the user to inaccurate
spatial estimations. These inaccuracies are unfavorable for medical training or
preparation purposes. Especially for medical applications it is important that
the spatial relations are recognized as accurately as possible to minimize errors
during the interaction in the virtual environment. In order to train new sur-
geons or to support operation planning the spatial perception needs to improve.
Most existing techniques to improve spatial perception are designed for common
computer monitors and are therefore not suitable or not yet evaluated for VR
applications. To support VR environments, which are based on surgery planning
and training, this paper evaluates different approaches to improve the spatial
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perception within a virtual reality training application for liver ablation. There-
fore a new glyph design will be compared to a spatial encoding by heatmaps
and depth encoding by pseudo-chromadepth (PCD) [3]. Note that depth is a
strong contributor to spatial perception. In summary, this work contributes to
an improvement of spatial perception in VR and evaluates existing, monoscopic
methods within a virtual reality application for liver ablation.

2 Materials and methods

This paper attempts to illustrate ways to improve spatial perception in VR.
Through this improvement we want to reduce the error that occurs when nav-
igating precisely in critical areas, i.e., areas close to a tumor or close to the
vasculature. To achieve these goals we use the HTC Vive and an application
that can simulate a simplified liver ablation in virtual reality. The liver mesh
used in this application is obtained from medical volume data. For better vis-
ibility and ease of use, we scaled the vessel model by a factor of ten w.r.t. its
real-world size, resulting in a mesh size of approximately 1.5m in virtual space.
We always refer to this scaled scene if not stated otherwise. Our method is di-
vided into three different types of visualization, as shown in Fig. 1. First arrow
gylphs, second heatmap with isolines and third PCD.

2.1 Glyph design

According to Ward [4], the most important geometrical properties of glyphs are
shape, size, orientation and position where the most important appearance at-
tributes are color, texture and transparency. With this in mind we aim to achieve
an optimal distance encoding based on these attributes. Therefore we combine
the concept of color glyphs [5] and arrow glyphs [6] and adjust them to our
needs. To ensure a clear orientation, all arrowheads point from a certain point,
e.g., a tumor or needlepoint towards the vascular structure. As shown in Fig. 2,
the shape of the glyph can be divided into two levels, it changes according to the
current glyph length and its quantity. For more distant regions, the shape was
designed in such a way that absolute distances of 2 cm are displayed using small
orbs. In addition, the glyph has a fixed width of 1 cm. The length corresponds
to the current distance value. If the quantity of glyphs increases or the distance
to the vessel decreases, a different arrow glyph without additional absolute dis-
tance encoding is used. Otherwise, due to the limited resolution of the HMD,

Fig. 1. Vessel with arrow glyphs, heatmap with isolines and PCD (left to right).
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these areas may no longer be optimally represented by the glyphs. This resulting
shape is stored in a texture and is then projected onto a view aligned quad. The
color of the glyphs is an encoding of distance, e.g, the distance between the tip
of a needle or a tumor position and the surface of the vessel. Here, the color is
initialized with RGB values (0.2, 0, 1) as blue for the maximum distance and with
(1,0,0.2) as red for a minimum distance [3]. The color values C are calculated as
follows

C(d) =

⎧⎪⎨⎪⎩
red if d < dmin

( d
dmax

· red) + (1− d
dmax

· blue) if dmin < d < dmax

blue if d > dmax

(1)

where d is the current length of the arrow glyph, dmin the shortest and dmax

the longest possible glyph length. To prevent glyphs from simply appearing or
disappearing, a gentle fading of the glyphs is achieved through transparency.
Thus two different considerations were taken into account. First, the length of
the glyph and second, the angle between the surface of the vessel and the glyph
itself. Based on these two attributes a transparency value can be calculated.
Thereby the sharper the angle or the greater the distance to the vessel surface,
the more transparent the glyph is displayed. Depending on the mesh quality, the
spatial vertex density is far too high to consider each vertex as a possible glyph
location. While using the vertices of the mesh as anchor points for the arrow
glyphs, the number of vertices has to be considerably reduced and at the same
time a homogeneous distribution of the vertices must be ensured, as otherwise
glyphs of different densities may occur in some areas, resulting in an inconsistent
appearance of the glyphs. To obtain a consistent distribution of sample points
across the mesh an implementation of the algorithm by Lichtenberg et al. [7]
is used. Due to the periodic nature of the result, it is possible to extract near-
uniformly distributed sample points.

2.2 Heatmap design

The arrow glyphs are designed to fill the empty space between the vessel and
a point in three dimensional space. To evaluate a different approach of distance
encoding, we have chosen heatmaps as an additional visualization technique.
Heatmaps do not use the empty space between two points to encode its distance,

Fig. 2. Arrow glyphs with different shape,
size and transparency.

Fig. 3. All eight distinct positions used for
the evaluation.
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but rather encode the distance directly on the mesh surface. Therefore the color
of the mesh is changed according to the distance between a certain point and the
vessel surface. To avoid visual overload, the heatmap is only displayed in critical
areas. Therefore, a maximum distance was empirically set to a/10, where a is
the mesh bounding sphere diameter. Anything beyond this distance is displayed
in the original color and is not affected by the heatmap. The color value for
the minimum distance has been set to a value of (1, 0, 0.2), equal to the arrow
glyphs. The maximum distance value is based on the primary mesh color. This
ensures a smooth blend between the heatmap and the basic mesh color. The
color interpolation between these values is similar to Equation 1. For consistency
reasons these values are also modified with a Phong shading. Since it is difficult
to encode quantitative values as distance with color alone, we add five isolines
in the same region to get a better spatial impression of the critical areas.

2.3 Pseudo-chromadepth design

The heatmap and arrow glyphs are able to determine the relative distances
between the vessel structure and a specific point in 3D space. In addition to
these relative distance encodings, we aim to improve spatial perception through
depth perception and encode the mesh depth directly with the PCD presented
by Ropinski et al. [3]. The PCD encodes the depth information by means of color
within a hue spectrum from red through magenta to purple and blue. The color
of the mesh does not change according to the distance from a specific point to the
surface, but rather encodes the depth of the mesh itself. In our work, the color of
the vessel surface, tumor and needle tip changes depending on the position in the
bounding box of the vessel and the view direction. The depth of different objects
can therefore be aligned by matching colors. The color of the mesh is determined
as described in Equation 1. In this case, the outermost point of the volume, which
is nearest to the viewer, is red, while the point furthest away receives the color
blue. For the purpose of this study we combine the depth-enhancing method of
PCD with stereoscopic rendering.

2.4 Experiment

To confirm the hypothesis that spatial perception can be further improved in
virtual reality, we conducted a quantitative comparative study with 17 volun-
teers with an age average of 24 years. The majority of participants were male
computer science students without special medical skills. For this evaluation ar-
row glyphs, a heatmap with additional isolines and the PCD from Ropinski et
al. [3] have been implemented and compared with a default Phong shading. As
test environment, we used a virtual reality application with a liver vessel and
added eight distinct positions represented by a red sphere. These spheres are
scattered around the vessel tree, as shown in Fig. 3. The experiment was divided
into two phases. During the first phase, called the preparation phase, the subject
was displayed one of these spheres using a randomly selected method of visu-
alization. After a detailed examination and once the subject was certain about
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Table 1. Average results of all measurements for each visualization technique with
standard deviation.

Phong Heatmap Glyph PCD ∅

Deviation (cm) 1.81 ± 0.13 1.97 ± 0.12 1.52 ± 0.10 1.75 ± 0.12 1.76 ± 0.12

Preparation (s) 4.24 ± 3.89 5.00 ± 4.74 5.06 ± 4.75 5.22 ± 4.50 4.85 ± 4.65

Execution (s) 3.89 ± 1.94 5.54 ± 3.48 5.56 ± 5.13 4.01 ± 2.71 4.75 ± 3.40

the proper position of the sphere, the sphere was removed. During the second
stage, the execution phase, the subject was asked to place a new sphere at the
previously examined position. In the process the time needed to orientate and
estimate the position of the sphere, the time necessary to place the new sphere
and the deviation from the original sphere position were determined.

3 Results

Each participant evaluated a total of 32 different combinations of sphere and
visualization technique. The average results of all measured values for each visu-
alization can be seen in Tab. 1. From all 544 measurements, the arrow glyph has
the lowest deviation (1.52 cm) to be followed by the PCD (1.76 cm), Phong shad-
ing (1.81 cm) and heatmap combined with isolines (1.97 cm). The time required
for preparation reveals that the participants were given a spatial impression of
the sphere most quickly without visual stimuli (4.24 s). The same applies to the
execution time, where Phong shading performed best with 3.89 s. We further
performed an ANOVA test to determine a significant difference between the
visualization techniques. The null hypothesis states that the arithmetic mean
of the levels of the independent variable (i.e., the visualization techniques) are
equal. Considering all measurements individually, we obtain F (3, 540) = 3.055
and p = 0.0281. Therefore we can reject the null hypothesis and state that the
difference between the visualization techniques is statistically significant. In an
additional two-way ANOVA, we investigated the impact of individual subject
performance by considering the subjects as an additional independent variable.
The interaction of both variables yield F (48, 476) = 1.89 and p < 0.0001. The
significance of the visualization techniques was obtained as F (3, 476) = 4, 17
and p = 0, 006 and for the subjects as F (16, 476) = 10.63 and p < 0.0001. While
we look at difference within groups, only glyph ↔ Phong (p < 0.033), glyph ↔
heatmap (p < 0.00028) and glyph ↔ PCD (p < 0.049) are significantly different
by the Holm-Bonferroni post hoc analysis.

4 Discussion

In conclusion, considering Tab. 1, we can state that arrow glyphs can improve
spatial perception in VR. The slightly increased orientation and execution time
may be explained by an additional need to visually decode the distance infor-
mation of the arrow glyphs in combination with the Phong shading. As the
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scenario is not designed to achieve results as quickly as possible but as accu-
rately as possible, it is more important to minimize the error than to optimize
the time required. The ANOVA test can be interpreted as a hint that subjects
performed quite differently, but were nonetheless distinctly influenced by the
visualization technique. A follow-up study should therefore investigate further
factors that influence the subjects’ precision.

Comparing the arrow glyphs with the default Phong shading, it can be ob-
served that glyphs minimize the error by an average of 16%. With the use of
PCD, the error was also lowered by 3.3%. It is surprising that a lot of time was
needed for the initial orientation, whereas the placement of the sphere was very
quick. This can be justified by the unique style of this visualization. As soon
as the visualization is fully grasped, the placement is carried out in an intuitive
way. The heatmap has achieved the lowest results in this study. Both the time
required and the occurring error were higher than in other visualizations. Dur-
ing the experiment, we found that the subjects mainly used the contour of the
isolines to navigate within the liver vessel, while no attention was paid to which
exact isoline was used. The participants often matched wrong isolines. This may
explain the increased error values of the heatmap with isolines. Depending on
the surgical requirements, the visualizations can be useful for specific tasks. Ar-
row glyphs could improve navigation through a vascular structure as they have
direct connections to the surface, while heatmaps or PCD could improve inter-
action with external structures such as tumors, since no additional geometry is
generated. Since we have concluded that an improvement of spatial perception
in VR can be achieved, we intend to conduct additional studies to determine
which task can be best improved by which visualization technique.
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dation (DFG) project LA 3855/1-1.
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Kurzfassung. Radio-Frequenz-Ablationen spielen eine wichtige Rolle
in der Therapie von malignen Leberherden. Die Navigation einer Na-
del zur Läsion stellt eine Herausforderung für den auszubildenden und
auch für den intervenierenden Arzt dar. Daher ist es wünschenswert,
Trainings- und Planungssysteme basierend auf medizinischen Bilddaten
und Methoden der visuo-haptischen Virtual-Reality-Simulation anzubie-
ten. In diesem Papier wird eine Methode zur Simulation von Ablationen
an der Nadelspitze für einen bestehenden VR-Simulator nach erfolgrei-
cher Nadelnavigation zum Läsionsherd vorgestellt. Ein verbessertes Mo-
dell wurde echtzeitfähig (CUDA) umgesetzt, evaluiert und erreicht hoch-
performant robustere und sicherere Planungsergebnisse als die Literatur.

1 Einleitung

Die Leber ist die größte Drüse des Menschen und erledigt die Schadstoffreini-
gung des Blutes. Sie ist sehr stark durchblutet (20% des Herzzeitvolumens). Dies
führt zu einem erhöhten Streurisiko von Lebermetastasen neben den primären
Tumoren, welche als hepatozelluläre Karzinome bekannt sind und aus bösar-
tigen Mutationen der Leberzellen entstehen. Daneben treten in der Leber die
selteneren Colangiokarzinome an den Gallengängen auf.

Bei der maximal-invasiven Leberteilresektion wird der tumorös betroffene
Teil der Leber großzügig entfernt. Dies gelingt in der Nähe der Leberarterien
nur erschwert. Bei solchen Tumoren ist die risikoärmere Radiofrequenzablation
(RFA) möglich. Hierbei wird die Leberläsion punktiert und das Gewebe an der
Nadelspitze erhitzt. Ab einer Temperatur von 42.5◦C kommt es zur Denatu-
rierung der Proteine innerhalb einer Zelle, was zum Absterben der erwärmten
Zellregion führt.

Minimal-invasive Eingriffe wie die Leberpunktion können durch die jüng-
ste Leistungssteigerung von Computern und Grafikkarten mit Methoden der
Virtual-Reality (VR) simuliert werden. Dies verbessert potenziell die ärztliche
Ausbildung sowie die Vorbereitung und Planung chirurgischer Eingriffe. Im Rah-
men dieser Arbeit soll für einen existierenden visuo-haptischen VR-Simulator
[1, 2, 3, 4, 5, 6] die RFA mit einem effizient parallel berechenbaren und im Ver-
gleich zur Literatur [7] wie hier gezeigt besseren Temperaturmodell auf Grund-
lage der Pennes-Bioheat-Gleichung simuliert werden. Neu ist die effiziente Cuda-
und Finite-Differenzen-basierte Berechnung, eine Verbesserung des Modells bez.
eines Goldstandards [7] und ein konservativeres, sichereres Planungsergebnis.
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2 Material und Methoden

Die virtuellen Körpermodelle wurden als Segmentierungsbilder mit existierenden
Methoden modelliert [8, 9, 10]. Den Segmentierungsregionen wird ein struktur-
spezifischer Temperaturwert zugewiesen, welcher bspw. für die temperaturab-
führenden Blutgefäße eine Temperatur von zeitkonstant 37 ◦C aufweist. Dieses
Temperaturregionenbild bildet die Zeititerationsgrundlage für die Simulation der
RFA nach Positionierung der Nadelspitze in einer Läsion.

Das Modell für die Temperaturausbreitung ist die Pennes-Bioheat-Gleichung
[7], diese lautet in dieser Arbeit

ρcp
∂T

∂t
= �(K�T ) + wbcb(Ta − T ) +Qm (1)

Im Unterschied zu [7] wird der Wärmewiderstand und der Gewebezustands-
koeffizient nicht, dafür jedoch die metabolische Wärmequelle berüchsichtigt.
Hierbei stehen ρ für die spezifische Dichte der Leber (1079 kg

m3 ), cp für die Wär-

mekapazität der Leber (3540 J
kg◦C ), t für die Zeit in Sekunden (s), K für die

thermische Leitfähigkeit der Leber (0.52 W
m◦C ), T für die Temperatur (◦C), wb

für die Durchblutungsrate der Leber (16.687 ml
min kg ), cb für die Wärmekapazität

des Blutes (3617 J
kg◦C ), Ta für die Temperatur des Blutes (37◦C) und Qm für die

metabolische Wärmegenerierung des Gewebes (10714 W
m3 ) [11].

Für den 3D-Bildbereich lässt sich die partielle Differentialgleichung schreiben
als

ρcp
∂T

∂t
= K ·

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
+ wbcb(Ta − T ) +Qm (2)

Das in dieser Arbeit vorgestellte Modell rechnet auf diskreten 3D-Bilddaten.
Daher wird die Gl. 2 mit der Finite-Differenzen-Methode (FDM) näherungsweise
diskretisiert

∂2(Ti)

∂x2
=

T (xi+1)− 2T (xi) + T (xi−1)

(� x)2
(3)

� x steht für den Voxelabstand mit dem Index i an den benachbarten x-Stützstel-
len i − 1, i und i + 1 in Millimetern. Mit den xyz-Richtungsindizes i, j und k
lässt sich Gl. 2 in den 3D-Raum überführen

ρcp
Tn+1
i,j,k − Tn

i,j,k

� t
= K · (

Tn
i−1,j,k − 2Tn

i,j,k + Tn
i+1,j,k

(� x)2
+

Tn
i,j−1,k − 2Tn

i,j,k + Ti,j+1,k

(� y)2

+
Tn
i,j,k−1 − 2Tn

i,j,k + Tn
i,j,k+1

(� z)2
) +
(
wbi,j,kcbi,j,k(T

n
a − Tn

i,j,k) +Qmi,j,k

)
(4)

Hierbei gibt Tn
i,j,k (Temperaturbild) die Temperatur des Voxels an der Stelle

i, j, k im Bildkoordinatensystem zum Zeititerationsindex n an. Dieser kann mit
equidistanten Zeitabständen in Sekunden umgerechnet werden.
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Der Zeitschritttemperaturunterschied aus Gl. 4 wurde in CUDA umgesetzt,
um die Berechnungen in Echtzeit auf der GPU durchführen zu können und wird
iterativ auf das ursprüngliche Temperaturbild (n = 0) addiert.

2.1 Randbedingungen

Die Randbedingungen für die Voxel-Positionen an den Leberrändern werden im
Rahmen dieser Arbeit idealisiert als komplett isolierend angenommen. Es fin-
det keine Wärmediffusion an den Rändern der Leber statt. Für die Leberblut-
gefäße wird vereinfachend angenommen, dass sich diese nicht erwärmen (konst.
37◦C), da die Wärme stets vom Blutfluss abtransportiert wird. Dies wird in Form
von entsprechenden, richtungsabhängigen Neumann-Randbedingungen (Tempe-
raturkonstanzforderung über der Zeit) an den Lebergrenzen eingebracht.

2.2 Berücksichtigung der Atembewegung

Bei der Simulation einer Leberpunktion wird auch die Bewegung des Thoraxes
während des Atmens berücksichtigt [1, 2]. Die verwendeten Temperaturbilder
werden im Referenzraum X mit einem diffeomorphen Bewegungsvektorfeld û in
den Atmungswölbungsraum x deformiert (Abb. 1) I (xt) = Iref

(
xt + û−1(xt, t)

)

Wölbungsraum zur Zeit t Referenzraum

����������
	 X

xt 

+û(X,t)

 
���
���
�����

�����

Abb. 1. Mit zeitvarianten dif-
feomorphen Bewegungsfeldern û
besteht eine bijektive Beziehung
zwischen Referenz- und Wöl-
bungsraum. Die Simulation der
Punktion [3] und der Ablations-
zonenausbreitung kann somit ef-
fizient im invarianten Referenz-
raum erfolgen und Atembewe-
gung durch Projektion in den
Wölbungsraum dargestellt wer-
den [1, 2].

2.3 Evaluationsmethode

Zur Modelloptimierung und zur Überprüfung der Ergebnisse wurde die hier vor-
geschlagene Temperaturausbreitungssimulation mit der Simulation und in vitro
Messungen an echtem Gewebe von Linte et al. [7] verglichen. Zum Vergleich
der Modelle wurde das Modell dieser Arbeit auf einem Temperaturbild mit der
Leberregion in 380 × 420 × 271 Voxeln und 0.5mm3 Voxelgröße berechnet. Die
2.5mm Geometrie der Nadelspitze wurde analog zu [7] als Voxel-Halbkugel mo-
delliert durch fünf Voxel in xy-Richtung und drei Voxel in z-Richtung. Die Lei-
stung der Methode wird mit der Anzahl der Bilder pro Sekunde, Frames per
Second (FPS) vermessen. Die Grafikkarte für die Zeitmessungen war eine Nvi-
dia GTX 1080 GPU. Verschiedene x× y × z-Thread pro Block-Konfigurationen
wurden bewertet.



292 Kath, Handels & Mastmeyer

Tabelle 1. Vergleich vorherge-
sagter Temperaturen mit dem
Goldstandard in 5 mm Abstand
von der Nadelspitze mit 90◦C
(Δ-Fehler absolut; m-Mittelwert;
σ-Standardabweichung).

Zeit Modell In vitro Δ

hier [7] [7] hier [7]

0s 37, 00◦C 37, 0◦C 37, 0◦C N/A N/A

11,2s 37,28◦C 37,3◦C 37,1◦C 0,18◦C 0,2◦C

19,6s 38,06◦C 37,4◦C 38,8◦C 0,74◦C 1,4◦C

30,8s 39,08◦C 38,8◦C 39,7◦C 0,62◦C 0,9◦C

39,2s 39,71◦C 40,3◦C 40,4◦C 0,69◦C 0,1◦C

50,4s 40,39◦C 41,6◦C 40,8◦C 0,41◦C 0,8◦C

58,8s 40,81◦C 44,2◦C 41,4◦C 0,59◦C 2,8◦C

m 39,22◦C 39,9◦C 39,7◦C 0,54◦C 1,0◦C

σ 1,36◦C 2,67◦C 1,56◦C 0,21◦C 1,0◦C

3 Ergebnisse

3.1 Simulation der Temperaturausbreitung

Linte [7] hat in einem klinisch relevanteren in vitro Experiment die Temperatur-
verteilung bei einer Ablation mit 90◦C im Abstand von 5mm von der Nadelspitze
in Präparaten gemessen. Diese wurden dann mit seinem eigenen Simulationsmo-
dell vorhergesagt. Der Versuch mit dem Radius von 5mm ist ein Schlüsselexperi-
ment, da hier bei den in vitro gemessenen Temperaturen (Goldstandard) gerade
nicht die Denaturierungsschwelle von 42.5◦C überschritten wurde (Abb. 2).

Damit liegen die Temperaturmodellwerte dieser Arbeit im Mittel 0.54◦C
von den in vitro [7] bestimmten Temperaturen entfernt, sind konservativer und
schwanken weniger um den Goldstandard (Abb. 2). Das Modell von Linte [7]
liegt im Mittel bei größerer Schwankungsbreite 1◦C entfernt. Das Modell aus
dieser Arbeit modelliert die Temperaturgrenze für sterbende Zellen genauer und
robuster als das Vergleichsmodell [7]. Bei kleineren Fehlern liegt das vorgestellte
Modell als auch die in vitro bestimmten Temperaturen unterhalb der Schwelle
von 42.5◦C und weist einen systematisch ähnlicheren Temperaturkurvenverlauf
zum Goldstandard auf. Die Ablation an einer temperaturabführenden Leberar-
terie wird in Abb. 3 gezeigt. Es wird rechts im Bild die Asymmetrie der gelben
Hitzezone an der Leberarterie durch den Wärmeabtransport deutlich.

Abb. 2. Zeitlicher Verlauf der Tempe-

raturen: Tendenzielle Überschätzung der
Zelltodzone in Linte et al. [7].
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Konf. t6000 [s] t1 [s] FPS [Hz]

64× 3× 3 10,8 0,00180 556

256× 3× 1 12,3 0,00205 488

1024× 1× 1 12,23 0,00205 490

Tabelle 2. Kernel-Konfigurationen
(Konf.) als x×y×z-Threads pro Block;
Laufzeiten t6000 für 6000 Bilder, die
daraus resultierende Zeit pro Bild t1
sowie die Frames per Second (FPS).

3.2 Rendering-Performance

Die Performance der Simulation wurde durch mehrfachen Aufruf und Messung
des Zeitverhaltens des CUDA-Kerns geprüft. Dabei wurden drei verschiedene
Kernel-Aufrufkonfigurationen (x × y × z-Threads pro Block) getestet. Für den
Vergleich der Laufzeiten wurden 6000 Iterationsbilder der Temperaturausbrei-
tung berechnet.

Alle Kernel-Konfigurationen erreichen weit über 24 Bilder pro Sekunde (FPS)
für eine flüssige Darstellung bewegter Bilder. Damit können alle Konfigurationen
für die Echtzeitsimulation der Temperaturausbreitung verwendet werden. Die
etwa 12% schnellere Laufzeit der Konfiguration mit 64×3×3 Threads pro Block
ist in der Ausnutzung des geteilten Speichers von CUDA für die Berechnung der
finiten Differenzen begründet.

4 Diskussion

Das vorgestellte Modell simulierte Einzelbilder mit einer weit übererfüllenden
Frequenz (FPS>24 Hz, ×23) für den VR-Simulator [12]. Den Goldstandard im
Auge behaltend wurde im Unterschied zu [7] als Ergebnis der qualitativen Model-
loptimierungen der Gewebezustandskoeffizient und der Wärmewiderstand nicht,
jedoch die metabolische Wärmegenerierung der Leber berücksichtigt. Die Wär-
mezone lag näher an der Realität, d.h. der Radius der Wärmezone >42,5◦C
stimmt bei kleineren Fehlern mit den in vitro [7] bestimmten Vergleichswerten
besser und im Zeitverlauf gleichförmiger überein. Die systematische Unterschät-
zung in Abb. 2 bedeutet eine konservativere Planung und ist rezidivsicherer als
eine Überschätzung. Im Rahmen dieser Arbeit wurde eine hocheffiziente, präzise

(a) Ablation distal (b) Ablation proximal (c) Abl. prox. ohne Gefäß

Abb. 3. Hitzezone (42.5◦C, gelb) ohne Einfluss der temperaturabführenden Leberarte-
rie. Hierbei entsteht eine kugelförmige Denaturierungszone (a). Ausbreitung der Tem-
peratur direkt an der Leberarterie, wodurch sich die Form der Zone an die Leberarterie
anpasst (b). Die Ausbreitungszone mit ausgeblendeter Leberarterie (c).
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Methode zur Simulation der Bioheat-Gleichung vorgeschlagen. Diese modifiziert
unter Plausibilitätsaspekten einige Terme innerhalb der Gleichung. Zur einer ge-
fäßnahen Lage der Ablation (proximal) lagen uns leider keine in vitro Daten in
[7] o. ä. vor. Trotz der Plausibilitätsannahmen wurde im Vergleich zum in vitro
Experiment eine höhere Realitätsnähe und Robustheit erreicht. Interessant wäre
zukünfig auch die Simulation der Brachytherapieintervention [13].

Danksagung. Drittmittel: DFG: HA 2355/11-2; Nvidia GPU Grant 2018 (A.
Mastmeyer)
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2Department of Cardiac Surgery, University Hospital Schleswig-Holstein, Lübeck
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While the aortic valve geometry is highly patient-specific and studies indicate
its high influence on the circulation, state-of-the-art valve prostheses are not
aiming at reproducing this individual geometry. One challenge in manufacturing
personalized prostheses is the imaging of the thin leaflets in their curved 3D
shape as well as the mapping from this shape to the planar 2D leaflet shape that
is cut out of the fabrication material. Even in the gold standard imaging modality
(transesophageal ultrasound), the leaflets are barely visible. Hence, we present
a machine learning approach to estimate the individual leaflet shape from the
image information on the shape of the surrounding tissue, i.e. the aortic root.

Thus, a database was set up to derive and evaluate valve leaflet shape mod-
els [1] . First, 3D ultrasound images of ex-vivo porcine valves were acquired
under physiologically realistic pressure. In these images, geometric key features
were identified manually to describe the individual geometry of the root. In a
second step, the valves’ leaflets were cut out, spread on an illuminated plate and
photographed in this state. From these images, the leaflet shape was extracted
using edge detection.

This database allows the derivation of a data-driven leaflet model utilizing
non-linear support vector regression (SVR), aiming on a mapping from the geo-
metric key features to the leaflet shape. Additionally, an existing, hand-crafted
geometric leaflet shape model was evaluated on the dataset to evaluate its per-
formance regarding personalization. The data-driven approach provided an ac-
ceptable leaflet shape estimation (0.61 mm ASCD) and clearly outperformed
the existing model (2.21 mm ASCD). Hence, machine learning is capable of es-
timating the individual leaflet shape from sparse image data. This presents an
important step towards personalized aortic valve prostheses.
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Abstract. Malfunctioning mitral valves can be restored through com-
plex surgical interventions, which greatly benefit from intensive planning
and pre-operative analysis from echocardiography. Visualization tech-
niques provide a possibility to enhance such preparation processes and
can also facilitate post-operative evaluation. In this work we extend cur-
rent research in this field, building upon patient-specific mitral valve
segmentations that are represented as triangulated 3D surface models.
We propose a 2D-map construction of these models, which can provide
physicians with a view of the whole surface at once. This allows as-
sessment of the valve’s area and shape without the need for different
viewing angles and scene interaction. Clinically highly relevant pathol-
ogy indicators, such as coaptation zone areas or prolapsed regions are
color coded on these maps, making it easier to fully comprehend the
underlying pathology. Quality and effectiveness of the proposed methods
were evaluated through a user survey conducted with domain experts. We
assessed pathology detection accuracy using 3D valve models in compar-
ison to the developed method. Classification accuracy increased by 2.8%
across all tested valves and by 10.4% for prolapsed valves.

1 Introduction

Treatment of mitral valve (MV) defects often requires complex therapies, includ-
ing catheter-based interventions or repair surgeries on the valve. For diagnostic
purposes and treatment decisions, transesophageal echocardiography (TEE) is
the standard clinical modality and especially 3D probes are a valuable tool to
recapitulate the surgeon’s view on the valve. However, the volume visualiza-
tions that are part of most standard clinical care workstations are not capable
of showing important clinical pathology indicators at a glance. Thus, more en-
hanced visualization techniques should be added to the cardiologist’s and cardiac
surgeon’s toolbox for improved clinical assessment and surgical planning.

The mitral valve, consisting of four different parts, has a rather complicated
three-dimensional configuration that is difficult to fully comprehend on volume
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rendered TEE images. At the same time, flat representations of anatomical struc-
tures are becoming increasingly popular in the domain of medical visualizations.
Such 2D representations allow the assessment of a whole object in a single view.
Practically all flattening techniques are projection-based and rely on mesh pa-
rameterization, i.e., the creation of bijective mappings between a parameter do-
main in R

2 and a triangulated surface embedded in R
3. A general overview of

mesh parameterization techniques can be found in [1].
A recent state of the art report [2] reviews a variety of medical visualiza-

tion techniques focused on planar representations. Flat depictions have been
proposed for the circulatory system, the colon, the brain and the bones. A 2D
representation of aortic valve prostheses has been introduced as well [3]. Proper-
ties like stent compression were assessed after implantation in order to analyze
complication co-occurrences. In contrast, our approach targets facilitation of pre-
operative MV analysis. Beyond that, we propose a planar view of patient specific
MVs through global parameterization that preserves original structure in terms
of tissue area and shape. Therefore, we use a boundary-free approach while fixing
certain landmarks in the parameter space, enhancing overall comparability.

2 Materials and methods

As we target patient-specific maps, we rely on an already existing semi-automatic
method to extract MV surface models from 4D ultrasound scans [4], consisting
of annulus and leaflets. This segmentation algorithm provides separate trian-
gulations for both MV leaflets and the annulus across the time-steps captured
during a full cardiac cycle. Anatomical markers (Fig. 1) are already embedded in
the representation and can be utilized during the flattening. Chordae tendineae
and papillary muscles are not part of these models.

The quality of a flattening technique can be determined through metrics de-
scribing the amount of (inevitable) distortions. Usually, parameterization meth-
ods either focus on preserving angles (conformal) or area (equiareal) of an in-
put mesh [5]. Fulfillment of both characteristics would result in an isometric or
length-preserving parameterization. It is desirable that a 2D-view of the MV is
close to isometric or at least equiareal. Retaining the proportions of the MV is

Fig. 1.MV similar to depictions in anatomy books with closed (left) and flattened valve
(right), cut along the lateral commissure. Important anatomical features are marked.
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a primary goal of our method, which should enable the possibility of area and
length quantification on the flattened surface. Further, a physician using the
2D-view should develop an intuition for its orientation and scale. Hence, apart
from minimizing distortions, the 2D-view should also target comparability across
different data sets through a uniform appearance. Lastly, spatial context should
be preserved, i.e., the relation between the 3D- and 2D-domain should be clear.

The general idea of the proposed flattening algorithm is to cut the MV along
its lateral commissure and to unroll it along its diameter. This results in a per-
spective similar to the valve’s depiction in textbooks [6] (Fig. 1, right side). In
our algorithm we split the flattening process into three steps: annulus param-
eterization, leaflet initialization and relaxation. The shape of the annulus can
give important hints during pathology analysis, therefore we first parameterize
it as a curve, independent from the MV leaflets. Its configuration will remain
unchanged during all further steps, preserving the annulus shape and arc length
and increasing comparability across different data sets.

The annulus’ height is plotted along the v- and its length along the u-axis
of the 2D-view (Fig. 2). The correspondence of the u-axis in 3D is a reference
plane through the annulus curve. An intuitive approach to compute it would be
the least-squares method, resulting in a plane with minimal distances to points
on the annulus. However, due to unfavorable distribution of annulus points in
the model, this approach does not always lead to good results, i.e., the annulus’
height is over- or underestimated (cf. dotted line in Fig. 2). Therefore, we employ
a landmark-based approach, defining the annulus plane through three points: the
two commissure points on the annulus, which form a natural axis through the
MV and the barycenter of the posterior annulus, which usually approximates a
planar layout. The resulting 2D view now allows to compare the annulus curve
in relation to the u-axis, i.e. the location and height of the anterior saddle horn
can be assessed in relation to the rest of the curve (Fig. 2, white line).

The leaflet geometry is placed below the annulus, ajar to the appearance
of Fig. 1. First, a valid configuration is initialized, i.e., a leaflet layout without
self-intersections or triangle-flips. We furthermore exploit the spline-like parallel
lines which proceed vertically across the 3D surface representation. They are
interpreted as iso-u curve approximations and points of each line are mapped
to a shared u-coordinate while the distance between points is preserved in v-
direction. The iso-u line corresponding to the saddle horn is marked in Fig. 2 on
the 3D surface and in its initial 2D configuration.

Fig. 2. 3D MV model and annulus plane constructed by a landmark-method (left). Pa-
rameterization of annulus (right) using a landmark- (white) and least-squares-method
(yellow). Lateral commissure (c) and saddle horn (s) including its iso-u line are marked.
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After all vertices are initialized they are iteratively optimized towards a more
isometric parameterization. We target to minimize an energy term describing the
distortion amount of the mesh’s edge lengths. If the 3D mesh consists of vertices
pi, corresponding to uv-coordinates qi and the set Ni contains the indices of all
neighbors of pi, a per-vertex length energy can be described as

El =
1

|Ni|
∑
j∈Ni

||qi − qj ||
||pi − pj ||

+
||pi − pj ||
||qi − qj ||

(1)

We use an iterative Euler method to minimize this energy, modelling the mesh
edges in 2D as a network of springs. The vertices are displaced each iteration
in the direction of a summed spring force calculated based on the model’s edge
lengths. A similar method was proposed to simulate mitral valve closure [7].
After the parameter space has been established, a variety of parameters can
be color-mapped onto the 2D and 3D surface. We implemented two mappings:
The first one shows an approximated coaptation zone, where we used a 2mm
distance threshold between anterior and posterior leaflet to determine the parts
of the surface that collide. The other one is similar to a height-map. It marks
areas of the MV which are above and below the annulus-plane. All mappings are
applied to both, the 3D- and 2D-view, which are always rendered side-by-side.

3 Evaluation

To evaluate the employed optimization step, we performed measurements con-
cerning area, angle and edge-length deformation using 50 MV models and com-
pared the results before and after the spring relaxation method. Furthermore,
we assessed the capabilities of the proposed visualization in a user study con-
ducted with one visualization expert, two cardiac surgeons and one anesthetist.
After an introductory video subjects were given a point-localization task, where
they were asked to mark corresponding points in the 3D- and 2D-view. The
main task was designed to simulate clinical decision making. Within an interac-
tive prototype of our implementation participants were subsequently shown 40
MV models in two alternating formats: half of the models were only displayed
in 3D (without color-coding) and half in a combined 3D/2D-view (with color-
coding). In the latter, participants could access the coaptation and the height
map (Fig. 3). Participants were asked to assign each valve to a category: normal,
prolapsed or functional mitral regurgitation. The participants were not told that
actually there were only 20 distinct MV models. Each model was shown twice
in a randomized order, once in each view format, making direct comparison
possible. Participants were further instructed to mark their confidence in their
classification on a Likert-scale from one (not confident) to five (very confident).

4 Results

Evaluation of the relaxation step showed that we could optimize the average
edge-length energy El from 0.78 before the relaxation to 0.07 afterwards (de-
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Table 1. Averaged results of the pathology identification task per participant P re-
garding accuracy Ai, confidence Ci and time Ti comparing the 3D-only-view (i = 0)
and the proposed 3D/2D combination (i = 1).

P A0 A1 C0 C1 T0 T1

1 78.9% 84.2% 3.89 4.16 11.5 s 15.4 s

2 68.4% 73.7% 4.37 4.53 14.0 s 15.7 s

3 78.9% 89.5% 4.58 4.84 15.9 s 12.6 s

4 84.2% 73.7% 3.00 3.00 13.9 s 13.2 s

Total 77.6% 80.3% 3.96 4.13 13.8 s 14.2 s

viation from its possible minimum). Similar improvements were found for area
distortion, however, measured angle energy remained relatively constant.

Two examples of the resulting visualization can be seen in Fig. 3. The upper
row shows a healthy MV with a closed coaptation zone and no prolapsing parts.
The lower row shows a pathological MV, and visual analysis of the 2D maps
provide a much more detailed understanding of the pathology: in the 3D-view
it is not clearly visible whether the valve fully closes or not. In contrast to that,
the 2D-coaptation view indicates a part where the leaflets do not touch. Beyond
that, the height map illustrates the extent of prolapsing areas very well, i.e.
tissue which surpasses the annulus plane in systole is marked in red.

Within the first task of the user survey, all points were correctly assigned to
each other in both views. Furthermore, the user survey showed an increase in
the pathology detection rate of 3 out of 4 participants when they had access to
the flattened MV, including the coaptation and prolapse color maps (Tab. 1).
A total average of 2.6% increased accuracy was measured. Most noticeably,
global detection accuracy for prolapsed valves rose from 83.3 to 93.8%. The
time required for one classification averaged at about 14 s, regardless of the
view mode. Participants were slightly more confident in their decisions when
using the combined view. Average confidence (discrete scale from 1 to 5) rose
from 3.96 to 4.13. When making incorrect classifications, participants reported
an average confidence of 3.53 in both view-modes. For correct classifications,
average confidence increased from 4.08 (3D-only) to 4.28 (3D/2D).

Fig. 3. Combined 3D/2D view with color-mapping. Healthy valve (top), prolapsed
valve (bottom). Left to right: 3D coaptation, 2D coaptation, 2D height mapping.
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5 Discussion

We presented an approach for flattening patient-specific MV models, resulting
in a consistent depiction across data sets. The visualization targets facilitation
of clinical MV analysis, a process that appears to benefit from the proposed 2D-
view with color-maps. This is underlined by the increased pathology detection
rate measured in our survey, which holds especially true for prolapsed valves. The
coaptation zone can be assessed at a glance, as well as the prolapsed valve area.
A landmark-based parameterization of the annulus makes comparison of height
deviations possible. Low area and edge-length distortions of the leaflet geometry
allow size quantification of the flattened MV. The evaluation shows that spatial
context is preserved as the domain experts had no difficulties understanding
3D/2D-correspondence. Participants claimed pathologies were easier to identify
and MV analysis was facilitated when the 2D-view was provided. A possible
drawback of our method is low generalizability. The approach is specific towards
the MV and our implementation relies on a specific model representation [4].

In the future we plan to extend the planar MV view by inclusion of functional
information. Samples over the whole cardiac cycle could be visualized in 2D at
once, simplifying assessment of annulus shape variation.
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Abstract. We present a highly parallel method for accurate and effi-
cient variational deformable 3D image registration on a consumer-grade
graphics processing unit (GPU). We build on recent matrix-free varia-
tional approaches and specialize the concepts to the massively-parallel
manycore architecture provided by the GPU. Compared to a parallel
and optimized CPU implementation, this allows us to achieve an aver-
age speedup of 32.53 on 986 real-world CT thorax-abdomen follow-up
scans. At a resolution of approximately 2563 voxels, the average runtime
is 1.99 seconds for the full registration. On the publicly available DIR-lab
benchmark, our method ranks third with respect to average landmark
error at an average runtime of 0.32 seconds.

1 Introduction

Image registration – i.e., finding a dense correspondence map between images or
volumes taken at different points in time or under different conditions – is still
a crucial component of many clinical and research pipelines: compensating for
patient movement and breathing in radiological follow-up and radiation therapy,
monitoring progression of degenerative diseases, 3D reconstruction from slices
in histopathology, and many others. It is made particularly challenging by the
typically large, three-dimensional nature of the data, highly non-convex energies,
and runtime requirements of clinical practice.

Towards reducing runtime, the authors of [1, 2] propose a highly accurate
non-rigid registration model with applications in follow-up imaging in radiology
and liver ultrasound tracking, and introduce a parallel algorithm for the CPU.
They also include a preliminary GPU implementation for the 2D case provided
by [3]. To achieve sub-second runtimes, we extend these ideas to a fast, matrix-
free, parallel algorithm that solves the variational, regularized problem for full
3D image registration on the GPU.

2 Materials and methods

2.1 Model

Regarding the model, we follow [2]: We seek a three-dimensional deformation
vector field y ∈ R

3my

, my := my
xm

y
ym

y
z , discretized on a deformation grid with
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dimensions my
x×my

y×my
z , which deforms a template image T ∈ R

m to be similar

to a reference image R ∈ R
m, m := mxmymz, both discretized on an image grid

with dimensions mx×my×mz.
To find y, we numerically minimize an objective function J (y) : R

3my → R,
consisting of distance measure D and smoothing term S, weighted by α > 0

y∗ := arg min
y∈R3my

J (y) J (y) := D(R, T (P (y))) + αS(y) (1)

Here P : R3my → R
3m denotes the grid conversion Py =: ŷ, which converts the

deformation y from the deformation grid to the image grid, before it is used to
interpolate the deformed template image T (P (y)) on the image grid.

For the distance measure, we use the well-known normalized gradient field
(NGF), which is particularly suitable for multi-modal images [4]. It focuses on
intensity changes and compares the angles of the image gradients. To encour-
age smooth deformations, we employ the curvature-based regularization term
S(y) introduced by [5], which penalizes the Laplacian of the deformation field
components yi via (Δyi)

2.
For solving (1) numerically and robustly without accurate initialization, we

use the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno algorithm described
in [6], embedded in a multi-level (coarse-to-fine) approach.

2.2 Parallelization

We chose to implement our method on the GPU using the CUDA toolkit, which
allows working close to the hardware and fine-tuning.

Performance on the GPU is tightly coupled to a high occupancy, defined as
the number of running threads divided by the number of potentially running
threads that the device can handle. Using a large number of registers per thread
decreases occupancy [7], therefore, we keep the number of variables per thread
low and split large functions (kernels) into smaller ones.

We generally used single-precision (32 bit) floating variables due to the faster
computations and only half the number of required registers compared to double
precision (64 bit) [7].

For the multi-level approach, reference and template images need to be down-
sampled to various resolutions. The CUDA framework provides CUDA streams,
which enable concurrency between GPU computations and memory transfers
between host and GPU [7]. This allows to run the pyramid generation and data
transfer for reference and template image in parallel.

Evaluating the distance term
D(y) : R

3my → R and its gradient requires two grid conversions and a gradient
computation

1. convert the deformation y to the image grid, denoted by P : ŷ := P (y)
2. compute the distance measure D and its gradient ∇D(ŷ), and
3. convert ŷ and ∇D(ŷ) to the deformation grid by applying P	
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In the following sections, we discuss the details of each step and its implications
for the implementation with CUDA.

We denote by ∇Ri and ∇Ti(P (y)) the gradients of the reference and de-
formed template image at the i-th image grid point and discretize the NGF
distance measure as a sum over grid points

DNGF(y) =
h

2

m∑
i=1

(
1−
(
〈∇Ti(P (y))∇Ri〉+ τ�

||∇Ti(P (y))||τ ||∇Ri||�

)2
)

(2)

with voxel volume h = hxhyhz as product of the image grid spacings, the

smoothed norm function || · ||ε =
√
〈·, ·〉+ ε2, and the modality-dependent pa-

rameters τ, � > 0 to filter the gradient image for noise. Following [1], we can
parallelize the computation of the distance measure function value directly over
the terms in the sum.

Applying derivative-based numerical optimization methods such as L-BFGS
requires frequent evaluation of the gradient∇D. The chain rule yields∇DNGF(y) =
∂ψ
∂T

∂T
∂P

∂P
∂y with the reduction function ψ : Rm → R.

Evaluating the gradient using the chain rule by computing the gradient parts
and multiplying step-by-step is expensive in terms of (intermediate) memory
required. We avoid this by relying on the matrix-free methods introduced by [2].

Following the approach proposed by [1], we separate the deformation grid
resolution my and the image resolution m. This allows to save memory and
speed up the registration by discretizing the deformation on a coarser grid while
preserving all information in the input images.

For optimal performance, a (surprisingly) crucial step in computing the dis-
tance measure and its gradient is conversion between the two grids, i.e., comput-
ing matrix-vector products with P and P	. Applying P is directly parallelizable
when using trilinear interpolation [1]. However, applying P	 with a coarser de-
formation grid produces possible write conflicts introduced when summing up
values from multiple points on the higher-resolution image grid in order to obtain
a value for a single point on the lower-resolution deformation grid.

To account for this issue, the authors of [1] introduced a red-black scheme,
where all odd slices are computed in parallel, followed by all even slices. However,
the author of [3] observed a poor utilization of GPU cores with this method.
Therefore they computed every slice, row, and column in parallel, and used
atomic operations to avoid write conflicts.

We introduce a different method, which is not based on the red-black-scheme
and free of write conflicts: Each thread computes a deformation grid point inde-
pendently by summing the corresponding image domain points

y =
∑
i∈Ω1

∑
j∈Ω2

∑
k∈Ω3

ω · ŷi,j,k (3)

Here, ω is the local weight and Ωi are the corresponding indices of ŷ for each
dimension, which are determined beforehand, separately for each dimension.
While there is a certain overhead in computing the weights ω this way, in our case
it was found that the overall runtime is still faster due to the higher parallelism.
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Table 1. Mean runtimes and standard deviations, averaged over 986 thorax-abdomen
registrations. Finest image resolutions were approximately 2563, 1283, 643 and 323.
Compared to the CPU-based OMP implementation, we achieve an average speedup of
32.53 with average runtimes of less than 2 seconds, which opens up new application
scenarios for clinical use and interactive registration.

2563 1283 643 323

Ours (s) 1.99± 0.87 0.56± 0.14 0.39± 0.08 0.36± 0.08

OMP (s) 66.94± 39.36 8.11± 3.21 2.24± 0.69 1.62± 0.43

Speedup 32.53± 10.04 14.06± 2.56 5.64± 0.68 4.51± 0.40

3 Results

We investigated the accuracy and speed of our method in comparison to state-of-
the-art alternatives from the DIR-Lab 4DCT benchmark [8, 9]. We also compared
to an Open Multi-Processing–(OMP–)based implementation of the same model
on the CPU proposed in [2], which is already one to two orders of magnitude
faster than a matrix-based implementation using the MATLAB FAIR toolbox [4].

All experiments were performed using an NVIDIA GeForce GTX 1080Ti
GPU and an Intel Core i7-6700K CPU.

3.1 Radboud follow-up CT dataset

In order to investigate the performance of our method on high-resolution 3D
data, we measured the average runtime over 986 registrations on a dataset of
follow-up thorax abdomen CT scans provided by the Radboud University Med-
ical Center, Nijmegen, Netherlands. The images have resolutions in the range of
5122 × {72, . . . , 1577}. As full image resolution was slightly out of reach due to
memory restrictions of the GPU, we evaluated our approach on half, quarter,
eighth and sixteenth resolution per dimension.

For the highest resolution, average runtime was 1.99 seconds, with an average
speedup of 32.53 compared to the CPU-based parallel OMP implementation
(Tab. 1). On the lower resolutions, our method achieves sub-second runtimes at
a speedup of about one order of magnitude. A majority of the runtime on the
lower resolutions is spent on the multi-level creation, due to the large memory
transfer and downsampling.

It is prudent to ask whether moving from double precision to single precision
on the GPU introduces differences due to rounding. In fact, we observed that
this can have an effect (Fig. 1, Tab. 2). However, it typically only occurs when
there are no clear correspondences, such as in regions of the colon with different
content, or when the examination table is visible in one of the two scans. In these
areas, there is no strong objective function gradient in either direction during
optimization, so that numerical differences have a larger impact. However, we
argue that if such areas were to be registered accurately, a more elaborate model
that accounts for the possible removal of structures would have to be employed
in any case.
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3.2 DIR-Lab 4DCT benchmark

For a comparison to the state of the art, we evaluated our method on the
DIR-Lab 4DCT dataset [8, 9], consisting of ten CT scan pairs of the lung in
fully-inhaled and fully-exhaled state. Resolutions are in the range of 2562 ×
{94, . . . , 112} for the first five images and 5122 × {120, . . . , 136} for the last five
images. We set the deformation grid to one quarter of the image resolution.

Accuracy of the final registration was measured by the average landmark
error (LME) over 300 expert-annotated landmarks for each dataset (Fig. 2). Our
OMP implementation scores only slightly behind the best-performing pTVreg
method at an average LME of 0.92 mm vs. 0.93 mm and places second-best
overall in terms of accuracy.

Our GPU implementation follows closely due to the single precision com-
putations and achieves third place overall in terms of accuracy at an LME of
0.94 mm. Moreover, it is about one order of magnitude faster than all other
methods in the benchmark for which runtimes could be obtained. Compared to
the only method with better accuracy (pTVreg), it is approximately 400 times
faster, at an average of 0.32 seconds per full 3D registration.

4 Discussion

We introduced a new method for non-linear registration using the GPU, which
is highly efficient while maintaining state-of-the-art accuracy. We compared it
to an optimized CPU implementation and achieved speedups up to a factor of
32.53 ± 10.04 at runtimes under 2 seconds, while placing third with respect to
accuracy in the DIR-Lab 4DCT benchmark. We believe that such low overall
runtimes will open up new application scenarios for clinical use, such as interac-
tive registration and real-time organ tracking, and will further clinical adoption
of fully-deformable, non-rigid registration methods.

(a) (b) (c) (d) (e) (f)

Fig. 1. (a,b) Sagittal slices of reference and template image; (c) overlay image be-
fore registration; (d) after deformable registration, the overlay image clearly highlights
morphological differences; (e) the difference image between GPU- and OMP-based
registration results shows slight variations in regions with few unambiguous correspon-
dences, such as the colon; (f) final registration result with differences highlighted in
color. Image courtesy of Radboud University Medical Center, Nijmegen, Netherlands.
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Fig. 2. Comparison of average land-
mark error (LME) in mm and runtime
based on the DIR-Lab dataset. Shown
are the algorithms with smallest aver-
age LME.

∅ LME [mm] ∅ Runtime

Ours (GPU) 0.94±1.10 0.32 s

NGF(b) 1.00±1.07 6.56 s

Ours (OMP) 0.93±1.07 8.24 s

NGF(a) 0.94±1.07 20.90 s

cEPE 0.99±1.13 46 s

SGFM3D 0.95±1.07 98 s

NLR 0.95±1.07 104.19 s

cTVL1 0.99±1.09 110 s

pTVreg 0.92±1.06 130 s

pTV 1.01±1.12 180 s

LMP 0.95±1.07 N/A

isoPTV 0.95±1.15 N/A

Table 2. Comparison of average landmark
error (LME) in mm and runtime based
on the DIR-Lab dataset. While achiev-
ing state-of-the-art accuracy, our method
is faster by orders of magnitude and pro-
vides fully deformable 3D registrations in
0.32 seconds on average.
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To achieve convergence, nonlinear deformable image registration tasks of
partial-view 3D ultrasound and MRI, as often seen in US guided interventions
or retrospective studies thereof, need to be initialized. In clinical practice cor-
responding 3D landmarks are selected in both images. Performing this depends
on the geometrical understanding of the targeted anatomy and the modality-
specific appearance and is thus prone to error. Therefore, in [1] we propose a
novel landmark-free initialization procedure that is robust in terms of target
area overlap (pixels where target area and US volume are superimposed before
initialization) as well as image overlap (pixels where MRI and US are super-
imposed). The method only requires N low-resolution coarse segmentations as
input, which in most cases can be obtained automatically or with minimal user
interaction, such as few pre-labeled pixels. A euclidean distance transform is ap-
plied to these N label maps, creating a multi-class distance map for both images.
This leads to a minimization problem, where these maps are registered by opti-
mizing our proposed similarity measure via a modified gradient descent scheme,
which prevents unstable behaviour. The proposed method was evaluated, show-
ing a success rate of 100% for registration tasks with initial target area overlap
over 10%. It also converges for all cases with image overlap of 30% or more.

Fig. 1. Graphical overview of the method.
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Abstract. While deep learning has achieved significant advances in ac-
curacy for medical image segmentation, its benefits for deformable image
registration have so far remained limited to reduced computation times.
Previous work has either focused on replacing the iterative optimization
of distance and smoothness terms with CNN-layers or using supervised
approaches driven by labels. Our method is the first to combine the com-
plementary strengths of global semantic information (represented by seg-
mentation labels) and local distance metrics that help align surrounding
structures. We demonstrate significant higher Dice scores (of 86.5%) for
deformable cardiac image registration compared to classic registration
(79.0%) as well as label-driven deep learning frameworks (83.4%).

1 Introduction

Image registration aims to align two or more images to achieve point-wise spa-
tial correspondence. This is a fundamental step for many medical image analysis
tasks and has been a very active field of research for decades. In deformable
image registration approaches, non-rigid, non-linear deformation fields are es-
tablished between a pair of images, such as cardiac cine-MR images. Typically,
image registration is phrased as an unsupervised optimization problem w.r.t. a
spatial mapping that minimizes a suitable cost function by applying iterative
optimization schemes. Due to substantially increased computational power and
availability of image data over the last years, learning-based image registration
methods have emerged as an alternative to energy-optimization approaches.

1.1 Prior work on CNN-Based deformable registration

Compared to other fields relatively little research has yet been undertaken in
deep-learning-based image registration. Only recently have the first deep-learning
based image registration methods been proposed [1, 2, 3], which mostly aim to
learn a function in form of a CNN that predicts a spatial deformation warping a
moving image to a fixed image. We categorize these approaches into supervised
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[1], unsupervised [2, 4] and weakly-supervised [3] techniques based on how they
train the network.

The supervised methods use ground-truth deformation fields for training.
These deformation fields can either be randomly generated or produced by clas-
sic image registration methods. The main limitation of these approaches is that
their performance is limited by the performance of existing algorithms or simu-
lations. In contrast, the unsupervised method do not require any ground-truth
data. The learning process is driven by image similarity measures or more general
by evaluating the cost function of classic variational image registration methods.
An important milestone for the development of these methods was the introduc-
tion of the spatial transformer networks [5] to differentiably warp the moving
image during training. Weakly-supervised methods also do not rely on ground-
truth deformation fields but training is still supervised with prior information.
The labels of the moving image are transformed by the deformation field and
compared within the loss function with the fixed labels. All anatomical labels
are only required during training.

1.2 Contributions

We propose a new deep-learning-based image registration method that learns
a registration function in form of a CNN to predict a spatial deformation that
warps a moving image to a fixed image. In contrast to previous work, we propose
the first weakly-supervised approach, which successfully combines the strengths
of prior information (segmentation labels) with an energy-based distance metric
within a comprehensive multi-level deep-learning based registration approach.

2 Materials and methods

Let F ,M : R2 → R denote the fixed image and moving image, respectively, and
let Ω ⊂ R

2 be a domain modeling the field of view of F . We aim to compute a
deformation y : Ω → R

2 that aligns the fixed image F and the moving image
M on the field of view Ω such that F(x) and M(y(x)) are similar for x ∈ Ω.

Fig. 1. Illustration of
the training process.
For convenience, there
is only one output de-
formation field shown
instead of three. While
application after the
training only flows rep-
resented by red-dotted
lines and red parts are
required.
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Inspired by recent unsupervised image registration methods (e.g. [2, 1]), we do
not employ iterative optimization like in classic registration, but rather use a
CNN that takes images F and M as input and yields the deformation y as
output (Fig. 1). Thus, in the context of CNNs, we can consider y as a function
of input images F ,M and trainable CNN model parameters θ to be learned, i.e.
y(x) ≡ y(θ;F ,M, x). During the training, the CNN parameters θ are learned so
that the deformation field y minimizes the loss function

L(F ,M, bF , bM, y) = δ · D(F ,M(y)) + α · R(y) + β · B(bF , bM(y)) (1)

with so-called distance measure D that quantifies the similarity of fixed image F
and deformed moving image M(y), regularizer R that forces smoothness of the
deformation and a second distance measure B that quantifies the similarity of
fixed segmentation bF and warped moving segmentation bM(y). The parameters
δ, α, β ≥ 0 are weighting factors. For convenience, we set δ = 1. Note that
the segmentations are only used to evaluate the loss function and not used as
network input and are therefore only required during training. We use the edge-
based normalized gradient fields distance measure [6]

D(F ,M(y)) =
1

2

∫
Ω

1− 〈∇M(y(x)),∇F(x)〉2ε
‖∇M(y(x))‖2ε‖∇F(x)‖2ε

dx

with 〈f, g〉ε :=
∑2

j=1 fjgj + ε2 ‖f‖ε :=
√
〈f, f〉ε so-called edge parameter ε > 0

and curvature regularizer R(y) = 1
2

∫
Ω

∑2
j=1 ‖Δyj‖2 dx [6]. The similarity of the

segmentation masks is measured using a sum of squared differences of the one-
hot-representation of the segmentations B(y) = 1

2

∫
Ω
‖bM(y(x))− bF (x))‖2dx

2.1 Architecture and training

Our architecture is illustrated in Fig. 2. Our network architecture basically fol-
lows the structure of a UNet [7], taking a pair of fixed and moving images as

Fig. 2. Proposed UNet based architecture of our CNN. Each blue box represents a
multi-channel feature map whose width corresponds corresponds to the number chan-
nels which is denoted above or below the box.
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input. However, we start with two separate, yet shared processing streams for
the moving and fixed image. The CNN generates a grid of control points for a
B-spline transformer, which output is a full displacement field to warp a mov-
ing image to a fixed image. During training, the outputs of the network are
three deformation fields of different resolutions. We compute the overall loss as a
weighted sum of the network outputs on this different resolution levels. This de-
sign decision is inspired by the multi-level strategy of classic image registration.
During inference, only the deformation field on the highest resolution is used.

2.2 Experiments

We perform our experiments on the ACDC dataset [8]. It contains cardiac multi-
slice 2D cine-MR images of 100 patients captured at end-diastole (ED) and
end-systole (ES) time point, amounting to 951 2D images per cardiac phase.
The dataset includes annotations for left and right ventricle cavity and my-
ocardium of a clinical expert. We only use slices that contain all labels, i.e. 680
2D images pairs. All images are cropped to the region of interest with a size of
112 × 112 pixels. Image intensities are normalized to a range of [0, 1] For data
augmentation we slightly deform the images and segmentations to increase the
number of image pairs by a factor of 8.

Training is performed as a k-fold cross-validation with k = 10, which divides
our dataset patient-wise. The network is trained for 40 epochs on a GTX 1080
in Pytorch in ≈ 0.5 hours using an ADAM optimizer with a learning rate of
10−3 and a batch size of 30. We empirically choose the regularization parameter
α = 103, the boundary-loss weight β = 5 · 104 and edge parameter ε = 0.1 in
the loss function. To evaluate our registration we use the computed deformation
field to propagate the segmentation of the moving image and measure the volume
overlap using the Dice coefficient. We compare our method with a classic multi-
level image registration model similar to [6] which iteratively minimizes the loss
function without the use of segmentation data.
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Fig. 3. Comparison of Dice overlaps for all test images and each anatomical label
(brown: average of all labels, yellow: left ventricle cavity (vc), red: right vc, and green:
myocardium). For each one the distributions of Dice coefficients before, after classic
and after our proposed registration are shown.
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Table 1. The quantitative effect of variations of the weighting within the loss function
L = δ ·D + α ·R + β · B is shown when varying one parameter and fixing the others
to their empirically determined optimal values. Besides the resulting Dice coefficient
the percentage of pixels in which foldings (det(∇y) ≤ 0) occur is depicted.

3 Results

As shown in Fig. 3, our proposed method outperforms the classic multi-level im-
age registration approach compared by the average Dice coefficient. Our method
achieves an average improvement from 79.0% (classic) and 83.4% (label-driven
[3]) to 86.5% across all three labels in terms of Dice accuracy while reducing
the computation time drastically from 3.583 s (classic) to 0.006 s per image pair.
Not only the average Dice score of our approach is higher for every anatomical
label, but also the variation is reduced (Fig. 3). Fig 4 shows two example image
pairs and the registration results, demonstrating the ability of our method to
compensate large local deformations.
In comparison to the method of Krebs [4] which uses the same dataset and

Moving M Fixed F M−F M(yclassic)−F M(yprop)−F

Fig. 4. Example input images M and F , difference image of the input images (third
column), of fixed image and the warped image after classic registration (fourth column)
and of fixed image and warped image after our proposed registration (fifth column).
White and black indicate a great difference, while grey means similar images.
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present comparable Dice coefficients of unregistered images, our method yields an
improvement from 78.3% to 81.9% (when considering unsupervised approaches
β = 0). As illustrated in Tab. 1, our choice of weighting parameters within the
loss function (1) leads to a compromise between maximizing the Dice score and
keeping the percentage of foldings low.

4 Discussion

We have presented a new weakly-supervised deep-learning-based method for im-
age registration that replaces iterative optimization steps with deep CNN-layers.
Our approach advances the state-of-the-art in CNN-based deformable registra-
tion by combining the complementary strengths of global semantic information
(supervised learning with segmentation labels) and local distance metrics bor-
rowed from classical medical image registration that supports the alignment of
surrounding structures. We have evaluated our technique on dozens of cardiac
multi-slice 2D cine-MR images and demonstrate substantial improvements com-
pared to classic image registration methods both in terms of Dice coefficient and
execution time. We also demonstrated the importance of integrating both unsu-
pervised (distance measure D) supervised (boundary term B) learning objectives
into a unified framework and achieve state-of-the-art Dice scores of 86.5%.

Acknowledgement. M.P.H. acknowledges partial funding of this work through
DFG grant HE 7364/1-2
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Abstract. Driving a respiratory motion model in X-ray guided radio-
therapy can be challenging in treatments with continuous rotation such
as VMAT, as data-driven respiratory signal extraction suffers from angu-
lar effects overlapping with respiratory changes in the projection images.
Compared to a linear model trained on static acquisition angles, the bi-
linear model gains flexibility in terms of handling multiple viewpoints at
the cost of accuracy. In this paper, we evaluate both models in the con-
text of serving as the surrogate input to a motion model. Evaluation is
performed on the 20 patient 4D CTs in a leave-one-phase-out approach
yielding a median accuracy drop of only 0.14mm in the 3D error of
estimated vector fields of the bilinear model compared to the linear one.

1 Introduction

In intensity modulated radiotherapy (IMRT) the radiation beams are shaped to
closely envelope the tumor region. With the linear accelerator (LINAC) rotating
around the patient, a therapeutic dose is accumulated within the malignent
cells while healthy tissue is spared. Treatment is either performed from pre-
defined angles (Step&Shoot) or in a continuous rotation (VMAT). Requiring a
complex dose optimization planned on pre-treatment (4D) CT, intra-fractional
respiratory motion can hinder accurate dose delivery. To compensate, a gimbaled
beam following the tumor motion [1] coupled with respiratory motion models [2]
have found success in image-guided radiotherapy (IGRT).

A motion model comprises a motion representation trained from 4D CT,
e.g. via principal component analysis (PCA). Correspondence is established
to a highly-correlated surrogate available in the treatment room, from which
the internal motion is inferred. Among surrogate sources, many LINACs come
equipped with an on-board imager to provide kV fluoroscopy. In this context, X-
ray guided RT shares similarities with cone-beam CT reconstruction where res-
piratory signal extraction from X-ray projections is prominent. Most data-driven
approaches [3] provide only a 1D signal insufficient for a low reconstruction er-
ror of the PCA-based motion representation [2]. While unsupervised learning on
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X-ray fluoroscopy [4] yields multiple respiratory features, they are restricted to
static acquisition and only applicable to Step&Shoot but not to continuously
rotating VMAT. Recently, Geimer et al. [5] presented a bilinear decoupling of
angular and respiratory variation in rotational X-ray scans. Based on digitally
reconstructed radiographs (DRRs), a rotational and respiratory feature repre-
sentation is learned. While it was shown that the decoupled respiratory features
can drive a respiratory motion model, no quantitative evaluation was performed
against comparable PCA-based models. With the bilinear model being an exten-
sion to the static case, this paper aims to provide insight into how much accuracy
is potentially sacrificed to gain independence from the trajectory angle.

2 Material and methods

2.1 Respiratory motion models

McClelland et al. [2] identify four components, (1) the representation of the mo-
tion to be described, (2) the choice of surrogate signal and processing thereof,
(3) a correlation model linking surrogate to motion, and (4) a fitting method to
determine model parameters from training data. In the following, we will give a
possible choice of these components for X-ray guided RT and demonstrate how
the bilinear fluoroscopic model can slot in as the surrogate component.

Motion representation Given F binned volumes vj ∈ R
N3

, j ∈ {1, . . . , F}
in a 4D CT, B-spline based deformable image registration (DIR) over the entire
lung w.r.t. the end-exhale phase (0In) yields displacement vector fields (VF)

dj ∈ R
3N3

(1), where N is the arbitrary dimension of the volume. In order to
suppress noise and prevent overfitting, PCA is often applied resulting in a low-

dimensional representation {Θ̃, d̄}, where Θ̃ =
(
θ̃1, . . . , θ̃f

)
∈ R

3N3×f , f � F ,

are the first f eigenvectors and d̄ is the mean VF. As a result, every dj can be
expressed as a linear combination by the respiratory PC scores ãj ∈ R

f up to a

residual error ε ∈ R
N3

dj = Θ̃ ãj + d̄+ ε (1)

Static X-ray surrogate An X-ray projection pi,j ∈ R
N2

of volume vj under

the acquisition angle φi is given by the X-ray transform Ri ∈ R
N2×N3

, such that
pi,j = Ri vj , where N again denotes arbitrary dimension of projection images
and/or volume. An analogous decomposition to (1) for the volume vj yields

pi,j = Ri (Θaj + v̄) = ΘR
i aj + p̄i (2)

Here, ΘR
i ∈ R

N2×f describes respiration-induced variation observable in the 2D
projections under the specific angle φi. Consequently, such a PCA decomposition
can be trained on the 4D CT forward projected under said acquisition angle.
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Correlation model A popular model in literature for the correlation between
internal and surrogate scores Ã,A ∈ R

F×f is multi-linear regression (MLR) [6]

W = argmin
Ŵ

(
1

2
||ŴA− Ã||22 + α

1

2
||Ŵ ||22

)
(3)

with the Moore-Penrose pseudoinverse as the closed-form solution.

2.2 Bilinear model for rotational X-ray

A static angle model as described in (2.1) is unable to explain variation caused
by rotation. As an extension to the linear case, a bilinear model can decouple
angular and respiratory variation into distinct feature spaces [5], such that a
projection pi,j at angle φi and respiratory phase tj can be written as

pi,j = M×1 aj ×2 bi (4)

where aj ∈ R
f , bi ∈ R

g are respiratory and rotational feature weights, and M ∈
R

N2×f×g is a model tensor trained from DRRs of a prior 4D CT. ×k denotes
the kth mode product [7]. Bilinear training and application will be outlined in
the following. For a detailed derivation we refer the reader to [5].

Model training Simulating a circular scan that mimics the VMAT arc the F
volumes vj are projected at G angles φi, i ∈ {1, . . . , G}. Higher-order SVD [7] is

applied to the data tensor P ∈ R
N2×F×G such that P = M×1 A×2 B, where

A ∈ R
F×f and B ∈ R

G×g contain the model weights of the training set.

Fig. 1. Illustration of the bilinear decoupling idea. Respiratory changes are inherently
3-dimensional, but can only be observed in 2D when projected according to the X-ray
transform, where they overlap with angular changes due to rotation.
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Weight estimation Both rotational and respiratory bilinear weights need to
be determined for a new projection image p(t, φ) at unknown respiratory state
t. While the acquisition angle is known, the corresponding rotational weights
b(φ) are not. However, given similarity between neighboring views, we adopt
the B-spline interpolation of [5] interpolate b(φ) from the training weights B.
Mode-multiplying b (φ) into M removes the angular variation and yields

MR
φ = M×2 b (φ) ∈ R

N2×f×1 → MR
φ ∈ R

N2×f (5)

an angle-dependent model matrix such that p(φ, t) = MR
φ at as in (2).

2.3 Performance comparison

Data We evaluate the performance of the linear and bilinear surrogate model
on the 4D CTs of 20 patients being treated for lung carcinoma or metastasis
at the University Hospital Erlangen. Each 4D CT consists of F = 8 volumes
reconstructed at respiratory states 0%, 15%, 50%, 85%, 100% inhale, and
85%, 50%, 15% exhale. DIR of these volumes provided the VF for training
the patient-specific PCA-based internal motion representation as described in
(2.1). For training the bilinear surrogate model, each phase was forward pro-
jected along a circular trajectory according to the Vero SBRT (Brainlab AG,
Munich, Germany) geometry at G = 60 angles in steps of 6◦ from 0◦ to 354◦.
For testing, additional DRRs were created at ten angles φk every 38.7◦ start-
ing at 3◦. The interval was chosen to ensure varying distances to neighboring
training angles. (2) illustrates the choice of training and testing angles, including
◦-distances.

Experiments A leave-one-phase-out evaluation was performed for each patient.
For the motion representation (feature dimensionality f = 4) each respiratory

(a) Vero LINAC
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(b) Experimental Setup

Fig. 2. (a) Vero with kV imager mounted on the same ring gantry, offset by 45◦ to
the MV treatment beam. (b) Bilinear training at every 6◦ (blue) with test angles (red)
every 38.7◦ starting at 3◦, resulting in varying distances to neighboring training angles.
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phase was subsequently removed prior to PCA. The linear surrogate model with
f = 4 was trained from the DRRs of each test angle directly minus the left-out
phase. In contrast, the bilinear model was trained on the G = 60 training an-
gles without the left-out phase and g = 40 as rotational dimensionality ensuring
flexibility towards rotation. Here, f = 5 as the 1st bilinear component is near
constant and represents the shift towards the mean due to missing mean nor-
malization [5]. Finally, the regression matrices were computed between internal
scores and the two different surrogate features of the training set.

The projection pk,j for left-out phase tj and test angle φk is then fed to
both surrogate models, with the bilinear model also requiring the angle φk. The
extracted weights are regressed to an internal representation aj and the VF is
reconstructed according to (1). Estimation accuracy is reported based on the
voxelwise euclidean error to the ground truth VF from DIR.

3 Results

Average accuracy over all 20 patients, 10 angles, and 8 phases was 1.13±0.58mm
(median: 0.78mm) for the static model and 1.27 ± 0.67mm (median: 0.89mm)
for the bilinear surrogate. Given 1600 observation per model, a Levene test was
performed on the mean errors indicating significance at a p-value of 1.2e−6. (3)
shows the average error over all patients displayed for individual angles and
phases. Neither surrogate model is sensitive to the viewing angle. Estimation
error outliers increased with the inhale state, which seems reasonable given that
the 100In state corresponds to largest VF magnitude. As seen in (4) displaying
the mean error for individual patients average over all phases and angles, the
estimation error mostly relies on the actual patient and the quality of the prior
4D CT. Overall, the bilinear surrogate model was only 0.14mm worse on average
than the linear model specifically trained for that particular test angle.

4 Discussion

The bilinear surrogate model performed only slightly worse than the one trained
on static acquisition angles. This is unsurprising, as the static model has seen

(a) Individual angles. (b) Individual phases.

Fig. 3. Estimation error of the linear and bilinear model averaged for angles and phases.
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Fig. 4. Average estimation error of the linear and bilinear model for individual patients.

the test angle except for the test phase while the bilinear one is flexible over the
entire trajectory. As such, the major gain in flexibility comes at the cost of only
a small drop in accuracy. Similar to [5], the leave-one-out evaluation suffers from
two shortcomings in assuming a perfect baseline registration between diagnostic
4D CT and the in-room patient, and no inter-fractional changes. However, the
linear model also benefits from this simplification and, thus, the comparison is
still valid. Relying on two distinct 4D CT per patient for training and testing
can help model these conditions.

In conclusion, we showed in a retrospective patient study that a bilinear
model operating on a circular X-ray sequence can be used to drive a respiratory
motion model during continuously rotating VMAT treatments.
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Abstract. Histopathological prognostication of neoplasia including most
tumor grading systems are based upon a number of criteria. Probably
the most important is the number of mitotic figures which are most
commonly determined as the mitotic count (MC), i.e. number of mitotic
figures within 10 consecutive high power fields. Often the area with the
highest mitotic activity is to be selected for the MC. However, since mi-
totic activity is not known in advance, an arbitrary choice of this region
is considered one important cause for high variability in the prognostica-
tion and grading. In this work, we present an algorithmic approach that
first calculates a mitotic cell map based upon a deep convolutional net-
work. This map is in a second step used to construct a mitotic activity
estimate. Lastly, we select the image segment representing the size of ten
high power fields with the overall highest mitotic activity as a region pro-
posal for an expert MC determination. We evaluate the approach using
a dataset of 32 completely annotated whole slide images, where 22 were
used for training of the network and 10 for test. We find a correlation of
r=0.936 in mitotic count estimate.

1 Introduction

One important aspect of tumor prognostication in human and veterinary pathol-
ogy is the proliferative rate of the tumor cells, which is assumed to be correlated
with the density of cells undergoing divison (mitotic figures) in a histology slide
and is applied as a criterion in almost all current tumor grading systems [1].
However, mitotic activity is known to have large inter-observer variances [2],
which consequentially strongly affects the histological grade assigned. One rea-
son might be that the classification between mitotic and non-mitocic cells is not
clearly defined and varies across labs, schools and even individuals [1, 3]. An-
other important reason for this is, that the distribution of mitotic cells in the
slide is usually sparse with local changes in density across the specimen. In clin-
ical practice, this sampling problem is dealt with by counting mitotic figures in
ten fields of view at a magnification of 400× (high power fields, HPF), resulting
in the mitotic count (MC). However, as shown previously [4], especially for low to
borderline mitotic counts, semi-random selection of those ten high power fields
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is not sufficient for a reproducible MC determination. While examining larger
areas would improve on this, it is not the method of choice given limited time
budgets in pathology labs. As of this writing, completely algorithmic approaches
for mitotic activity estimation lack the sensitivity and specificity that would be
required to achieve clinical applicability. Further, purely algorithmic outcomes
may be subject to hesitation from the pathology side, since automatic solutions
that are not easily comprehensible for the medical expert, such as deep learning
networks, may not be robust.

In this paper, we present an algorithmic approach that proposes a region
of the area of 10 high power fields that is assumed to have the highest mitotic
count within the slide. This has two positive aspects: While we still rely on the
expertise of a pathologist to assess the actual mitotic activity, we limit the focus
area to a defined field of interest in the image. Further, as this algorithmic answer
will always be equal for the same image, it will allow us to differentiate the true
inter-observer variance in an optimal setting when the area on the slide is already
fixed. This region proposal will serve as an augmentation to the pathology expert.

A significant number of algorithmic approaches for mitosis detection have
emerged very recently, most based on deep convolutional networks [5, 6], mak-
ing use of transfer learning [7] and hard-negative example mining [5]. Typically,
these algorithms use a two-stage approach, where in the first stage multiple re-
gions of interest are detected and in a second stage classification is done according
to being a mitotic figure or not. However, as also stated in the TUPAC challenge,
automated identification of mitoses is only an intermediate step in tumor grad-
ing. F1-scores of up to 0.652 [6] have been achieved on the TUPAC challenge test
data set. Current results are unlikely to reach clinical standards. Additionally,
fully automated grading algorithms could run into acceptance problems, because
robustness in a clinical workflow has yet to be proven.

2 Material

For this work, we annotated 32 histology slides of canine cutaneous mast cell
tumors dyed with standard hematoxylin and eosin stain. The slides were digitized
using a linear scanner (Aperio ScanScope CS2, Leica Biosystems, Germany) at a
magnification of 400× (resolution: 0.25 μm

px ). Contrary to popular other publicly

available mitosis data sets, we did not pre-crop the whole slide images (WSI)
but include all parts of the slide, including borders, which we consider important
for a general applicability of the framework. All slides have been annotated by
two pathologists using the open source annotation software SlideRunner [8]. Out
of all cells annotated as mitotic figure, we only use those where both observers
agreed upon being a mitotic figure. We arbitrarily chose 10 slides to be the test
set, and 22 to be used for the training process. The data set includes slides of low,
medium and high mitotic activity in both training and test set. In total, 45,811
mitotic cells have been annotated on all slides. To the best of our knowledge,
this data set is unprecedented in size for any mitotic cell task and may serve as
basis for many algorithmic improvements to the field.
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3 Methods

We regard mitosis detection as an intermediate step needed to propose a region
of interest that could either be representing the statistics of the complete slide,
or, as typically intended, represents the region of highest mitotic activity. For
this approach, however, it is valid to not consider the object detection task of
mitotic figures, but rather to derive maps where mitotic cells are located.

3.1 Mitosis as segmentation task

For the purpose of field of interest proposal, we consider mitotic figure detection
a segmentation task, with mitotic figures being represented by filled circles. This
enables the use of concepts like the dice coefficient (intersection/union) for both,
evaluation as well as for optimization.

3.2 High power field area proposal

We employ an approach based on prediction of mitotic activity (Fig. 1, upper
path) and an estimation of a valid mask (Fig. 1, lower path), which will select
image areas that are covered to a very large extent by tissue. A single HPF at
field number 22 (i.e. the diameter of the eyepiece lens is 22mm) is assumed to
have an area of A = 0.237 mm2 [1]. In order to find an area with the size of 10
HPF, we thus look for an moving average estimator with the following width w
and height h in pixels (aspect ratio of 4/3 is assumed)

w =

√
10·4
3 A

r
· 1000 μm

mm
(1)

h =

√
10·3
4 A

r
· 1000 μm

mm
(2)

with r being the resolution of the scanner (in μm/px).

whole slide
image

Mitosis Det. CNN

RGB to
grey

MAw,h

closing threshold

constrained
arg max

MAw,hOTSU

 

patch
extraction

concatate
Mitosis map

mitotic activity estimation branch

valid mask generation

V

M
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Fig. 1.Overview of the proposed approach for mitotic count region proposal. The upper
path will derive singular mitotic annotations, followed by a moving average (MA) filter.
The lower path derives an activity map of the image to exclude border regions of the
image. Region proposal (red rectangle) shows result on slide taken from the test set
with ground truth MC depicted as as green overlay.
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Mitotic activity estimation For estimation of mitotic activity, the image is
divided into overlapping (margin: 64 px) patches of size 512×512. The prediction
of the network is being concatenated to yield a map of mitotic figure activity M .

Valid mask stimation In order to exclude regions of the image that are partly
uncovered by specimen, we construct a binary mask of tissue presence from the
WSI: The downsampled image is converted to grey-scale, then a binary threshold
is performed using Otsu’s adaptive method. A closing operator is applied to
reduce thin interruptions of the tissue map, and a moving average filter of size
w × h is being applied. Next, a thresholding with 0.95 is applied to retain only
areas that are covered to at least 95% with tissue, resulting in the valid mask
M . Lastly, both masks are used to find the position of the maximum mitotic
activity, constrained to image areas where the valid mask is nonzero.

3.3 Convolutional neural network (CNN) structure

We follow the popular U-Net architecture of Ronneberger et al. [9], which was
successful in segmentation tasks in microscopy images, and use a network con-
sisting of five stages, each containing two 2D convolutional layers with batch-
normalization followed by a max pooling layer in the downsampling branch. The
network then uses an upsampling branch and feeds information of the layers of
matching resolution to the upsamling convolutions. Finally, a convolution layer
with sigmoid activation function is being used.

The ground truth image map is being generated as filled circles around the
actual annotation coordinates of each mitotic figure in the current image patch.
This approach follows the original works by Cireşan et al. [5], where the CNN-
based detector would receive a positive mitosis indication as ground truth if the
closest annotation distance is less than a given radius.

Following Rahman & Wang [10], we directly use the intersection over union
(IOU) for binary classification as optimization loss for our task. In heavily imbal-
anced problems such as our mitosis segmentation task, IOU will yield a balanced
measure. We skip the constant term in their formula, and formulate the loss as

LIoU = −
∑

v∈V (Xv + Yv)∑
v∈V (Xv + Yv −Xv ∗ Yv)

(3)

with V being the totality of all pixels and Xv and Yv being the ground truth
and predicted labels at pixel position v, respectively. We use the Adam optimizer
with an initial learning rate of 0.0005 in TensorFlow.

To split between training and validation set, we perform a vertical split of
the 22 WSI, where the lowest 20% are used for validation. We use random
rotation as augmentation. For training, we feed tuples of images to the network,
representing three groups of images with different intentions. The first group
consists of arbitrary image patches containing at least one mitotic figure. This
group is responsible to not have a complete underrepresentation of the positive
class in our data set. The second group represents hard negative examples. It
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consists of images that contain at least one mitosis candidate where both experts
disagreed on the cell class or where cells have been classified by both experts
as unable to classify. The third group is completely random picks of images on
the slide. This group ensures also picking images that do not contain tissue with
mitotic figures for images that do not contain a large number of mitoses as well
as border or non-tissue regions on the slide.

4 Results

On the test set, we achieve a correlation coefficient in mitotic count estimate of
r = 0.936, with partial over-estimation on a small part of the data set Fig. 2(a).
The overall F1-score of the intermediate mitotic figure prediction task of the
network is 0.662, the mean IOU is 0.495. Our test dataset shows a significant
spread of the mitotic count within the specimen of the respective test slides,
as indicated by the box-whisker-plot in Fig. 2(b). Some of the slides (1 to 3)
have low mitotic count, reflecting a low low grade tumor, while others show
clearly high-grade tumors (7-10). The slides with intermediate mitotic counts
(4-6) are of special interest, since the ground truth MC ranges closely around
the commonly used cut-off value of MC≥7 and thus we would expect a higher
variability of the assigned tumor grade if the same slide is assessed by multiple
independent experts. The approach presented in this work chose for all relevant
slides a position in the forth quartile of the ground truth MC (Fig. 2(b), red
dashed line, for an example see image on the right of Fig. 1.

5 Discussion

The mitotic figure prediction network scored in the same order as other algo-
rithms on other data sets that also do mitosis detection. However, while the

(a) (b)

Fig. 2. a) Relation between ground truth mitotic count (MC) prediction and estimated
MC prediction on test set (r=0.936) b) MC distribution on test slides (ground truth).
Red dashed line marks ground truth MC for proposed position.
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general problem of automatically identifying mitotic figures in WSI with suffi-
cient accuracy for clinical application remains a challenge, the outcomes of these
approaches might indeed serve as a surrogate for field of interest proposal and
thus as a augmentation to the pathology expert. In future studies, it will have
to be proven that clinical application of such augmentation methods will be able
to reduce variability in MC determination.
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Abstract. Histological evaluation of tissue samples is a typical approach
to identify colorectal cancer metastases in the peritoneum. For immediate
assessment, reliable and real-time in-vivo imaging would be required.
For example, intraoperative confocal laser microscopy has been shown
to be suitable for distinguishing organs and also malignant and benign
tissue. So far, the analysis is done by human experts. We investigate the
feasibility of automatic colon cancer classification from confocal laser
microscopy images using deep learning models. We overcome very small
dataset sizes through transfer learning with state-of-the-art architectures.
We achieve an accuracy of 89.1% for cancer detection in the peritoneum
which indicates viability as an intraoperative decision support system.

1 Introduction

Colorectal cancer is one of the most common types of cancer [1]. Due to metastatic
spread, peritoneal carcinomatosis can occur in later stages which often leads to
substantially shorter survival times [2]. Therefore, reliable detection of metas-
tases is important. Typical imaging modalities such as magnetic resonance imag-
ing and computed tomography currently lack the required resolution and intra-
operative availability. Therefore, an intraoperative device using confocal laser
microscopy (CLM) has been proposed [3] which offers submicrometer resolution.

In the above-mentioned study, colon carcinoma cells were implanted into the
colon and peritoneum of ten rats. After seven days of tumor growth, laparotomy
was carried out for subsequent in-vivo CLM. For each subject, healthy colon
tissue, malignant colon tissue, healthy peritoneum and malignant peritoneum
were scanned. The study showed that different organs, as well as malignant and
non-malignant regions could be distinguished by experts.

To further improve the intraoperative assessment by CLM, image processing
methods can be used for automatic and fast tissue characterization. Recently,
deep learning methods have shown remarkable success for a variety of medical
segmentation and classification tasks [4] where human-level performance was
achieved [5].
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We investigate the feasibility of deep learning-based colon cancer detection
from CLM images. We consider several classification problems with the four
classes “colon normal”, “colon malignant”, “peritoneum normal”and “peritoneum
malignant”. In particular, we investigate both the differentiability of organs and
also of malignant and non-malignant tissue both for the colon and peritoneum.
As we are dealing with a very small dataset we employ transfer learning which has
been shown to improve performance for a variety of medical learning problems
[6, 7]. We use the state-of-the-art models Densenet121 [8] and SE-Resnext50 [9]
which are pretrained on the ImageNet dataset.

2 Methods

2.1 Dataset

The dataset we use was kindly provided to us by the authors of a previous study
on CLM [3]. The dataset was acquired at the University Hospital Schleswig-
Holstein in Lübeck using a custom intraoperative CLM device. The CLM device
(Karl Storz GmbH & Co KG, Tuttlingen, Germany) covers a field of view of
300μm×300μm with a resolution of 384×384 pixels. The images were obtained
from ten rats where colon adenocarcinoma cells had been implanted into the
colon and peritoneum seven days before scanning. For each subject, images of
healthy colon tissue (HC), malignant colon tissue (MC), healthy peritoneum
tissue (HP) and malignant peritoneum tissue (MP) were obtained. In total, there
are 533 images of class HC, 309 images of class MC, 343 images of class HP and
392 images of class MP which results in a total dataset size of 1577 images. Note,
that for one subject there are no images of class HC and for one subject there
are no images of class MP. Example cases for each class are shown in Fig. 1.
The assignment of classes for each image was performed based on subsequent
histological evaluation of resected tissue from the scanning area.

We split the dataset in a leave-one-subject-out cross-validation scheme, i.e.,
we consider ten different dataset splits where images from one subject are left
out for evaluation. If a required class is missing, the subject’s validation split is
omitted. We consider three classification problems in total. First, we address the
binary classification task HC versus HP which provides information on whether

Fig. 1. Examples of the four different classes. From left to right, healthy colon tissue,
malignant colon tissue, healthy peritoneum tissue and malignant peritoneum tissue.
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the organs can be differentiated in principle. Next, we consider the learning
problems HC versus MC and HP versus MP which investigates the feasibility of
detecting malignant tissue from CLM images.

2.2 Models and training

We employ convolutional neural networks (CNNs) for the classification tasks at
hand. The images are directly fed into a CNN which learns to extract relevant
features and also perform classification at its output. We employ the two state-
of-the-art architectures Densenet121 [8] and SE-Resnext50 [9]. Densenet121 fol-
lows the principle of densely connected layers, i.e., features computed within a
convolutional layers are also reused in subsequent layers. In this way, the ar-
chitecture is very efficient in terms of the number of learnable parameters as
features are reused heavily. Considering the small dataset size at hand, this can
be very beneficial. The SE-Resnext50 architecture is based on the Resnext prin-
ciple [10] where feature extraction is performed by multiple, parallel paths. In
addition, squeeze and excitation (SE) modules are incorporated into the model
which perform a feature recalibration step. In standard convolutions the aggre-
gation of features is learned implicitly through a summation. Instead, the SE
modules explicitly model dependencies between learned features which increases
the models’ representational power. The building blocks of the two concepts are
shown in Fig. 2.

To overcome the general lack of data, we use transfer learning, i.e. the models
are pretrained on the ImageNet dataset. During training we fine tune all weights.
For comparison, we also consider training from scratch. The pretrained models’
input layer contains three channels. We put the gray-scale CLM images into one
channel and set the other channels to zero. We cut off the last layer and add
fully-connected layer with two outputs for binary classification.

During training, we use online data augmentation with unscaled random
crops of size 224 × 224 from the original images of size 384 × 384. Also, we use
random flipping along both dimensions and random changes in brightness and
contrast. For stochastic gradient descent we employ Adam with a batch size of
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Fig. 2. The key concepts of the architecture we employ. The shown modules replace
sets of standard convolutional layers in the architecture. Left, a Densenet [8] block is
shown. Right, an SE block is shown for the Resnext architecture [9].
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Table 1. The results of all our deep learning experiments. The mean values for leave-
one-subject-out cross-validation are shown. Dense refers to the Densenet121 model,
SE-RX refers to the SE-Resnext50 model. TL refers to transfer learning and SRC
refers to training from scratch. For each training scenario, the best performing value is
marked bold. All values are given in percent. The sensitivity is given with respect to
the cancer class and for the case of organ differentiation it is given with respect to the
peritoneum class.

Accuracy Sensitivity Specificity F1-Score

H
C

v
s.

H
P Dense TL 90.8 80.2 93.9 91.7

Dense SRC 78.5 74.2 78.1 79.1

SE-RX TL 89.3 78.6 90.3 90.5

SE-RX SRC 70.8 77.9 67.3 72.6

H
C

v
s.

M
C Dense TL 66.7 74.1 64.8 69.0

Dense SRC 60.0 81.0 50.7 63.6

SE-RX TL 58.9 69.8 57.3 62.6

SE-RX SRC 64.5 69.5 67.1 65.6

H
P

v
s.

M
P Dense TL 89.1 80.9 87.2 90.0

Dense SRC 77.0 70.8 70.2 79.3

SE-RX TL 83.2 72.5 86.9 84.9

SE-RX SRC 77.3 85.4 64.7 77.6

40 and learning rate of 0.00001 and we train for 125 epochs. For evaluation, we
use multi-crop evaluation with Nc = 9 crops. The predictions of all crops are
averaged into a final prediction for each image. The models are implemented in
PyTorch.

3 Results

All results are shown in Tab. 1. In terms of metrics, we report accuracy, sensi-
tivity, specificity and the F1-score. For each of the three training scenarios, HC
versus HP, HC versus MC and HP versus MP, we consider the architectures de-
scribed in Section 2.2. Also, for each case we consider training from scratch and
fine-tuning after pretraining on ImageNet. In general, the classification accuracy
is high for the distinction of organs and also the differentiation between benign
and malignant tissue of the peritoneum. However, the performance for cancer
detection in the colon is significantly lower. Comparing the two architectures, the
performance is very similar with Densenet121 generally performing slightly bet-
ter. Using transfer learning with pretrained architectures improves performance
substantially for most cases.

4 Discussion

In this study we investigate the feasibility of detecting colon cancer from confo-
cal laser microscopy (CLM) images using deep learning models. This extends a
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previous study where the feasibility of cancer detection from CLM images by ex-
perts was shown [3]. Here, we use two state-of-the-art deep learning architectures
to automatically detect cancer from CLM images. As a baseline, we consider the
task of differentiating healthy tissue from the colon and the peritoneum. With an
F1-score of 91.7, the best model, Densenet121, shows a high performance which
indicates that different organs can be well distinguished in CLM images by deep
learning models. It is notable that without pretraining performance drops sub-
stantially across all metrics. This highlights the effectiveness of transfer learning
for a particularly small dataset [6]. Regarding the detection of malignant tissue
in the peritoneum, the model performance is also very high with Densenet121
performing best. It is notable that Densenet121 generally performs better than
SE-Resnext50 in our study while the latter clearly outperforms the former on
the ImageNet dataset [9]. This is likely tied to Densenet121 having significantly
fewer parameters which prevents overfitting with the small dataset. Also, the
performance difference between training from scratch and transfer learning is
larger for Densenet121. This indicates, that Densenet121 benefits more from the
pretrained weights. Considering the detection of malignant tissue in the colon,
the performance is significantly lower compared to the other tasks. It should be
noted that the performance difference is most obvious in the specificity. Thus,
most cases of cancer are detected but a lot of false positives occur as well. This
might be tied to the heterogeneous appearance of the colon in different areas
which makes the learning task very challenging due to the small dataset size.
Also, carcinoma cells transform from healthy tissue via adenoma to carcinoma.
Thus, healthy and malignant tissue can have a similar appearance which might
complicate the learning problem.

Overall, we showed that automatic organ differentiation and cancer detection
from CLM images is feasible using pretrained convolutional neural networks. For
future work, more data could be acquired and the detection of malignant tissue
in the colon area could be studied further.
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Abstract. Three-dimensional (3D) polarized light imaging (PLI) is an
unique technique used to reconstruct nerve fiber orientations of post-
mortem brains at ultra-high resolution. To continuously improve the cur-
rent physical model of 3D-PLI, simulations are powerful methods. Since
the creation of simulated data can be time consuming, we developed a
tool which enables fast and efficient creation of synthetic fiber data us-
ing parametric functions and interpolation methods. Performance tests
showed that every component of the program scales linearly with the
amount of fiber points while the reconstructed fiber cup phantom and
optic chiasm-like crossing fiber models reproduce known effects known
from 3D-PLI measurements.

1 Introduction

Three-dimensional (3D) polarized light imaging (PLI) is used to identify and
reconstruct nerve fiber orientations in post-mortem brains with micrometer res-
olution. Unstained brain sections with a thickness of about 60 μm are illuminated
by polarized light which allows the reconstruction of fiber orientations by mea-
suring the birefringence of the myelin sheaths surrounding most of the axons in
the brain [1].

The scattering of polarized light or complex intermingling nerve fiber con-
stellations within individual voxels might cause misinterpretations of the local
fiber orientations with the current physical model. Therefore, simulation meth-
ods were developed to further investigate the different scenarios while validating
and improving the current analysis models [2, 3]. Since the creation of synthetic
fiber data is very time-consuming, particularly for complex and large-scale fiber
models, we developed a software tool that offers a simple and efficient way to
create fiber bundles and at the same time gives the user a visual feedback of the
created data sets.

2 Material and methods

3D-PLI reconstructs nerve fiber orientations based on measured signals emit-
ted by myelin sheats surrounding the nerve fibers of histological brain sections.
For the measurement, a polarimetric setup is used [1]. An unstained histological
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brain section with a thickness of 60μm is sandwiched between a combination
of a linear polarizer and a quarter-wave retarder (below) and a linear polar-
izer (above) and illuminated by an LED light source. Each optical component
is rotated by an angle of ρ ∈ [0◦, 10◦, . . . , 170◦] with a camera recording the
resulting light intensities. One scanned section series yields 18 gray-scale images
where each pixel describes the locally measured light intensity. Analyzing the
signal shows a sinusoidal curve with different amplitudes and phase shifts de-
pending on the local fiber orientation per pixel. The Jones Matrix Calculus [4]
provides a mathematical framework to describe the physical effects of optical
components on traversing polarized light. It allows to derive physical pararme-
ters such as retardation and the in-plane and out-of-plane fiber directions. The
latter paramters are used to reconstruct and visualize the fiber orientation at a
given pixel by assigning each orientation to a specific color (using RGB or HSV
color space). The result is a color coded fiber orientation map (FOM) for each
histological brain section.

In order to better understand the underlying effects of the measurements
and their influence on the reconstruction of the fiber orientations, a simulation
method for 3D-PLI (SimPLI) was developed [2]. Based on user generated fiber
models as a tubular structure, they enable the reconstruction of real tissue which
is then used to create fiber orientation maps. The SimPLI algorithm can be
described in three main steps [2]:

1. The created synthetic fiber model is converted to a vector field which de-
scribes the normalized tangential direction of the fiber at each voxel.

2. By using the Jones Matrix Calculus, the light intensity for every pixel is
calculated. Each optical component is rotated nine times resulting in a gray-
scale image series.

3. Image filters like blurring and noise are applied to simulate interferences
caused by the camera and the measuring environment. The images are also
scaled to match the measured resolution.

While simulations are possible with given synthetic fiber data, creation of this
data is quite expensive without a proper tool. Changing a created data set by
rotation, for example, requires the usage of scripts and does not grant a visual
representation. The creation of a data set requires knowledge in programming
languages itself, since large files cannot be created within an acceptable time
frame. This can lead to errors within the synthetic tissue which are not visible
until the simulation has finished. FiberFox [5], a fiber modeling tool specifically
desgined for Magnetic Resonance (dMRI) simulations, allows to create synthetic
fiber data sets with interpolation methods. However, the results are lacking the
accuracy to adequately describe 3D-PLI data.

To enable fast and effective generation of synthetic fiber data, we developed a
tool that allows the declaration of curves using parametric functions or interpo-
lation methods. The generated fiber bundles are visualized in three-dimensional
space so that the user can interact with them by rotating or moving the viewing
angle. Once created, the data can be rotated, moved, duplicated and removed af-
terwards, providing fast creation of complex models. For editing larger amounts
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of fiber bundles, groups can be created to which the same operations can be
applied to. Both groups and fiber bundles can be hidden from the view to enable
more visibility when dealing with larger data sets. A fiber bundle created with
parametric functions is represented by three functions for each axis as well as
a minimum and maximum evaluation value defining the start and end point of
a fiber bundle. Finally a radius has to be declared which can change over the
defined course. Declaring fiber bundles by waypoints is done by describing four
attributes for each point: the position in three-dimensional space as well as the
current radius of the fiber bundle. methods can be used to smooth out finished
curves and remove sharp edges between fiber points.

The software is implemented in C++ using Qt 5 and OpenGL 3.3 for render-
ing and interaction purposes. Fiber bundles are represented by filled cylinders
with a given radius. Those are approximated by n-sided regular polygons where
n is variable depending on the current frame rate for a fluent representation
even if the performance of the given graphics card is limited or big data sets are
shown. Just like in FOMs, fiber bundles are colored with their orientation vector.
This allows comparisons between the original data and the results given by the
simulation algorithms. For separation of distinct fiber bundles, a second color
option is available where each fiber bundle is represented by a distingushable
color chosen with pseudo-random values. Created models can be exported and
imported in a file format where each data point is stored in combination with its
radius. This format can be used for SimPLI without converting the data. The
program GUI is shown in Fig. 2.

Fig. 1. Screenshot of the “FAConstructor”program. The reconstructed fiber cup phan-
tom [6] is loaded and shown in the center which can be moved or rotated freely. On
the right side created groups and fibers are gathered. More options can be accessed
through context menus at the top bar.
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3 Results

In order to show that data sets created with “FAConstructor” correspond to
the results of previous simulations [2], two fiber models were created: a replica
of both the fiber cup phantom and an optic chiasm. The fiber cup phantom
is inspired by the the fiber configuration of a coronal human brain section [6].
Both crossing and splitting fibers in this data set are relevant for 3D-PLI as they
represent common challenges of the measurement method. To reconstruct the
model, seven fiber bundles were created by using functions as well as the manual
input of waypoints. After filling the model by using equidistant seed points on
a triangular grid, 10.149 fibers are determined. To reconstruct splitting fibers,
multiple bundles within the same area were created. While all collisions which
were caused by the overlapping of the fibers were removed before the simulation
by treating all sections of the fibers as capsules and pressing colliding parts
tangentially apart while maintaining their respective orientation, the number
of fibers leads to an increased density compared to the crossing fiber bundle.
The simulation result is shown in Fig. 3 (a). The previously mentioned area
shows a deep green color with edges colored in many different colors. Other
crossing regions show colors not represented by either of the crossing bundles.
The remaining areas present an orientation matching with the color bubble in
the lower right corner.

As crossing fibers are a common challenge, a synthetic dataset inspired by
an optic chiasm of a hooded seal [2] was created as well. Here, most of the fibers
maintain their original direction in the crossing area while a small part bends
and stays on the same side after leaving the crossing. Therefore, the central area
features many crossing fibers. Four fiber bundles were created for this synthetic
data set, two crossing fiber bundles and two remain on their respective side.
Filling the synthetic fiber bundles yields 1290 fibers. Fig. 3 (b) shows the sim-

(a) Synthetic fiber cup phantom. (b) Synthetic optic chiasm.

Fig. 2. Fiber orientation map of synthetic created fiber bundles after simulation with
SimPLI. Both figures show the effects of extinction or misinterpretation due to the
existence of multiple fibers at the same pixel.
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ulation results. The crossing area shows darker and red spots while other areas
are visualized in a single color.

Furthermore, performance measurements were done using a PC with an In-
tel Core i5-6600 paired with a NVIDIA GTX 1070 graphics card and 16GB
RAM. Time measurements as well as the current frame rate dependent on the
amount of data points being created are shown in Fig. 3. The time measurements
in Fig. 3 (a)–(c) show a nearly linear scaling when increasing the amount of data
points. The dependency of the frame rate in comparison to the amount of data
points rendered by the graphics card can be seen in Fig. 3 (d). When rendering
less than 1.6 million fiber points, the frame rate stays above 30 fps which is the
main target. After that, a reciprocal decrease of the frame rate can be observed.

4 Discussion

By using the “FAConstructor” program, two synthetic fiber models have been
efficiently and accurately created that can be used for simulation to better under-
stand and improve the physical model of 3D PLI. Creating a replica of the fiber
cup phantom took around 10 minutes for unexperienced users which indicates
an user friendly environment which is easy to understand. Both synthetic fiber
data sets show effects observed in data obtained from 3D-PLI measurements.

(a) (b)

(c) (d)

Fig. 3. Performance measurements for four scenarios during the fiber bundle creation
process. The x-axis shows the amount of data points used for this measurement while
the y-axis shows the passed time in ms. (a) Creating a fiber bundle with cubic spline
interpolation, (b) Creating a helix with parametric functions, (c) Preparation of fiber
data before rendering the scene, (d) Frame rate.
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Just like in the real experiment crossing fiber sections show an orientation is
based on the combined orientation of crossing fibers. The higher fiber density
of the bundle in Fig. 3 (a) leads to an extinction of the signal of the crossing
fibers. As a result, the bundle with a higher fiber density dominates the signal
analysis. This also happens in the optic chiasm. In the central area, pixels are
either darker or completely black indicating the extinction of signal caused by
crossing fibers. Other parts are colored as expected and show the orientation
present during the construction of fiber models.

Evaluating the performance of the developed tool shows that most processes
have a nearly linear scaling with the amounts of data points used to describe
the fiber models. The recorded frame rate shows that even big constructions still
grant a stable frame rate. Models with less than 1.6 million data points retain a
frame rate of more than 30 frames per second. Since the data generated here is
only intended to represent partial sections of brain tissue for simulations, more
than 1.6 million data points are rarely required. Therefore, a stable and fluent
workflow is guaranteed. For comparison, the fiber cup phantom contains 426300
data points after filling the bundle while the original file contains 290 data points.
This indicates that even big models are able to be rendered on similar hardware.

In summary, a fast and userfriendly program was implemented that enables
the effective creation of synthetic fiber bundles for simulations with 3D-PLI.
Created fiber bundles can be visualized simultaneously and edited interactively.
With the help of the program, users can quickly find and remove incorrect parts
of the synthetic data set without wasting time with incorrect simulations. This
ensures an efficient simulation workflow.
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Abstract. We present a method for resource-efficient classification of
nanoparticles such as viruses in liquid or gas samples by analyzing Sur-
face Plasmon Resonance (SPR) images using frequency domain features.
The SPR images are obtained with the Plasmon Assisted Microscopy
Of Nano-sized Objects (PAMONO) biosensor, which was developed as a
mobile virus and particle detector. Convolutional neural network (CNN)
solutions are available for the given task, but since the mobility of the
sensor is an important factor, we provide a faster and less resource de-
manding alternative approach for the use in a small virus detection de-
vice.The execution time of our approach, which can be optimized further
using low power hardware such as a digital signal processor (DSP), is at
least 2.6 times faster than the current CNN solution while sacrificing
only 1 to 2.5 percent points in accuracy.

1 Introduction

The evolution and emergence of viruses coupled with global travel and transport
entail the risk of spreading epidemic diseases. Therefore there is a need for ac-
cessible mobile real-time virus detection, preferably in the size of a small mobile
device. The PAMONO sensor is a viable candidate to perform such a task. It cap-
tures a sequence of images which need to be automatically analysed by an image
analysis pipeline. Currently available solutions based on Convolutional neural
networks (CNNs), i.e. proposed by Lenssen et al. [1], provide good classification
and execution time performance on general purpose hardware. However, CNNs
have complex architectures which require a considerable amount of resources,
such as high-performance GPUs, to be evaluated [2, 3]. Research in developing
dedicated hardware for CNN evaluation is ongoing [3, 4] but no general purpose
low power solutions for mobile and embedded systems are currently available.

In this work, we modify the feature extraction and classification stages of
the PAMONO image processing pipeline presented by Siedhoff et al. [5] to use
frequency domain analysis. It allows us to build resource-efficient embedded sys-
tems for nanoparticle classification with high accuracy. The presented methods
are able to utilize specialized low power hardware such as DSPs, which can be
deployed in a small and mobile virus detection device.
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2 Materials and methods

In the following we describe the workings of the PAMONO sensor, the framework
used to deploy the image processing, and the image processing pipeline.

2.1 PAMONO sensor

The PAMONO sensor is an optical biosensor used to detect nanoparticles in
liquid or gas samples [6, 7]. It utilizes Kretschmann’s scheme [8] of plasmon
excitation to visualize the binding of particles to antibodies that are applied to
a gold surface. A camera observes the surface and produces image sequences to
be analyzed. When a binding occurs, intesity steps can be observed. These steps
appear on images as blob-like structures with wavelike excitations around them.

2.2 deepRacin

The framework deepRacin [9] is used in our implementation, which utilizes
OpenCL to offload computations to accelerators. In deepRacin, computation
graphs with tensor operations, such as trained deep neural networks or image
processing pipelines, can be deployed. We implemented the spectral and wavelet
transformations used in our frequency feature extraction in deepRacin and de-
ployed them on a mobile GPU.

2.3 Modified image processing pipeline

Fig. 1 shows the modified image processing pipeline, which can be divided into
four main stages: preprocessing, particle detection, feature extraction and clas-
sification. In this work we focus on the feature extraction and the classification
stages which are highlighted by the dashed rectangle. The size of the raw input
image is 1100× 150 pixels. In the preprocessing stage, the constant background
noise signal is removed from the raw sensor image using the model proposed in
[5]. In the detection stage, the resulting image is segmented into smaller patches
of size 48× 48. Several techniques for the detection stage and their performance
in generating patches are detailed in [1]. After the patch generation, we subsam-
ple 32× 32 pixels images from the center of the generated patches and consider
them as the input for our system. The images may contain particles in addition
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reduction

Preprocessing
Feature

Extraction
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features

Wavelet
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Decision
tree
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Fig. 1. The modified PAMONO image processing pipeline.
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to the existing artefacts and non-constant noise. In the feature extraction stage,
the images are loaded in our computation graph, which extracts features in the
frequency domain. For the classification, we evaluate decision trees and random
forests to decide whether excitations due to a particle binding were observed.

2.4 Spectral and wavelet feature extraction

We want to detect blob-like and periodic patterns in the images from the PA-
MONO sensor. In Fig. 1 we can see positive and negative examples of input
images in the first and second row, respectively. We can see that images with
excitations due to particle binding show blob-like excitations with surrounding
periodic patterns resembling sinusoidal waves. Therefore, we propose to use fre-
quency analysis to classify particle bindings. As examples of frequency analysis
techniques, we use the Fourier and wavelet transform to extract features.

We want to quantify differences between excitations with blob-like structures
and without by computing the Fourier transform of the image to observe high
magnitude bursts in halfcircles and lines in the frequency spectrum. For this
application we implemented the 2D Fourier transform as a radix-2 out of place
GPU accelerated fast Fourier transform (FFT) algorithm, but any other acceler-
ators such as in DSPs can be used as well. Another frequency analysis technique,
the two-dimensional wavelet transformation, derives from the correlation of the
image with the wavelet ψ. Integrating over R2, the continuous two-dimensional
wavelet transformation is defined asWf (t, s, θ) =

∫
f(p)ψ∗

t,s,θ(p)dp where t rep-
resents the translation vector, s the scaling parameter, and θ the rotation angle.
As an example of a wavelet function, we use the simplest form, the Haar wavelet.
To extract the wavelet features, we calculate the energy of the wavelet transform
with Efd = 1

NM

∑N−1
p1=0

∑M−1
p2=0 |Wfd(p)| with N and M as the image dimensions

and Wfd(p) as the discrete Haar wavelet transform in position p = (p1, p2)
T

in the image. Images with blob-like excitations have large energies in both low
and middle frequencies, and the low frequency channels are dominant in smooth
regions. We implemented the 2D Haar wavelet transform as a GPU accelerated
fast Haar wavelet transform (FWT), but other accelerators can be used as well.

Spectral features For computing spectral (Fourier) features from the Fourier
transformed image, we shift the zero-frequency components to the center and
extract two ordered multisets of magnitude values, called Srad and Sang.

Srad contains the sums of magnitudes over halfcircles for different radiuses r
while Sang consists of sums over magnitudes lying on straight lines between the
image center and the outer half circle. We aim to capture dominant frequencies
using values from Srad and dominant periodic patterns using values from Sang.
From both sets Srad and Sang we extract the mean, the maximum, the argmax,
the variance and the difference between minimum and maximum values, leading
to a feature vector containing ten spectral features in total.
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Wavelet features To extract the wavelet features we compute the level 3 Haar
wavelet transform and calculate the wavelet energy. We then sum the energy
values for each of the ten channels and normalize them, resulting in a feature
vector consisting of ten extracted wavelet features.

2.5 Training and classification

We use the dataset provided by Lenssen et al. [1] consisting of 38871 image
patches containing particles of sizes 100 nm and 200 nm. We use the provided
train/test split, leading to 19526 images for training and 19345 for testing. All im-
ages are annotated with binary labels, indicating the existence or non-existence
of a particle in the image patch.

For training the classifier using the spectral and wavelet features, we use the
decision tree (DT) library in sk-learn [10]. After training the classifier model
on features extracted from the training set, we extract the tree structure and
split values of the tree from the trained model, convert them to deployable C
code and append it to the image processing pipeline. The tree is executed after
feature extraction with the spectral, the wavelet, or with both feature sets as
input. The image processing pipeline with the decision tree at the end gives us
a binary decision result for each extracted particle candidate.

3 Results

To evaluate the effectiveness of our classification, we measure the classification
performance and the execution time of our approach, and compare it to the
results of the CNN approach by Lenssen et al. [1]. For evaluating classification
performance, we use precision, recall, and accuracy. The execution times are
measured on Intel Core i7-4600U with integrated Intel HD Graphics 4400. We
measure the time needed for computing all steps in the deepRacin computation
graphs. All trees have a maximum depths no greater than 12. Since the execution
time of the DT with depths less or equal to 12 is smaller than 1μs, it is negligible
for our comparison. Increasing the depth of the decision trees further does not
increase classification performance by a large margin in our case.

true
positive

false
positive

false
negative

true
negative

Fig. 2. TP, FP, FN, and TN for the approach with spectral and wavelet features.
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Table 1. Comparisons between different classifiers using different feature compositions.
DT stands for decision tree, RFn for random forest with n DTs.

Features Measure DT (%) RF10 (%) RF100 (%)

Spectral and wavelet Precision 98.49 99.33 99.33

Recall 97.04 97.19 97.76

Only spectral Precision 97.78 98.50 98.66

Recall 96.33 96.02 96.48

Only wavelet Precision 96.77 97.59 97.66

Recall 96.35 96.63 97.49

3.1 Classification performance

We can see in Tab. 1 that the classification has the best performance when using
both spectral and wavelet features. When using only one set of features, the
spectral features outperform the wavelet features by a small margin. Increasing
the number of trees using a random forest increases the performance only slightly.
In Fig. 2 a few classifications are shown. When excitations are not strong enough,
the classification can miss it (FN). When vibrations or noise cause regular high
frequency patterns, it can be mistaken as a particle binding (FP). Overall, for
our approaches the precision and recall are above 96% in all cases, and the
accuracy is above 97% except wavelet with one tree. The CNN [1] has a higher
accuracy score of 99.5% than both feature approaches in Tab. 2.

3.2 Execution time

In Tab. 2 we see that our spectral analysis approach is 2.63 times faster than
the CNN solution. The wavelet approach is 1.83 times faster than the CNN. The
Fourier transform and summing values take less than 0.2ms in total, but the
synchronization of GPU and CPU due to the kernel calls increase the total exe-
cution time of the computation graph. This overhead can be potentially further
reduced when implementing the proposed approach on hardware like DSPs.

4 Discussion

The classification accuracy of our feature based approaches is sufficiently high for
the task of virus detection, which indicates the usefulness of frequency analysis
for this application. While the CNN approach performs better by approximately

Method Time [ms] Accuracy [%]

Spectral features 1.28 97.07

Wavelet features 1.50 96.57

Spectral and wavelet 2.78 97.78

CNN [1] 3.37 99.50

Table 2. Average execution
time (Intel Core i7 4600U with
integrated Intel HD Graph-
ics 4400), and accuracy (with
one DT for the feature based
approaches).
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2.5 percent points in accuracy, our approaches outperform it in execution time
by a large factor. Using our proposed methods to build an embedded system for
nanoparticle classification needs less resources than the CNN. Low power DSPs
have specialized hardware for the FFT and are readily available for a low price,
while applying CNNs in low power embedded systems is still in development [3].

With our contributions, we enrich the design space of nanoparticle classifi-
cation systems with frequency analysis methods, which can be faster and more
resource-efficient alternative to CNNs, and identified another way to utilize the
trade-off between classification quality and execution time. In the future we plan
to improve our feature extraction, include the classification of smaller particles,
and build a small, fast, low power and low cost embedded system for nanoparticle
classification using specialized hardware such as energy optimized DSPs.
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Abstract. Segmentation of cell nuclei is essential for analyzing high-
content histological screens. Often, parameters of automatic approaches
need to be optimized, which is tedious and difficult to perform manu-
ally. We propose a novel hyperparameter optimization framework, which
formulates optimization as a combination of candidate sampling and an
optimization strategy. We present a clustering based and a deep neural
network based pipeline for nuclei segmentation, for which the parameters
are optimized using state of the art optimizers as well as a novel opti-
mizer. The pipelines were applied to challenging prostate cancer tissue
images. We performed a quantitative evaluation using 28,388 parameter
settings. It turned out that the deep neural network outperforms the
clustering based pipeline, while the results for different optimizers vary
slightly.

1 Introduction

The segmentation of cell nuclei in histological prostate tissue images is a crucial
task to stratify prostate cancer. In particular, the properties of the microscopy
data with regard to contrast, noise, cell clustering, edge information, shape varia-
tion, and intensity variation determine the complexity of the required segmenta-
tion pipeline. Generally, a complex pipeline is necessary for robustly segmenting
heterogeneous data (Fig. 1), while the segmentation result highly depends on the
used parameters. Since manual parameter optimization of complex algorithms
is very time-consuming and difficult, automated parameter optimization is re-
quired. However, for complex pipelines the objective function is usually not fully
differentiable, which prevents using first or higher order optimization methods.
Instead, zero order optimization (black-box optimization) [1] can be performed
without using further information of the objective function. Black-box optimiza-
tion uses a limited number of evaluations of the objective function, and the
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non-convex optimization tries to determine the (local) optimum by finding the
best parameters. For machine learning systems, black-box optimization can be
used for automatically tuning hyperparameters as done for denoising algorithms
[2], for simulated objective functions [3] or for cell segmentation in tissue images
[4]. However, to our knowledge, a systematic evaluation on the applicability of
automated black-box optimization has not been conducted for hyperparameter
optimization of cell nuclei segmentation pipelines. Existing optimization frame-
works like Spearmint [5], Hyperopt [6], Scikit-Optimize [7], or Google Vizier [8]
do not satisfy the demands of cell nuclei segmentation as they have a low ease of
use (e.g., mix of programming languages, workspace management), employ only
few optimizers or only offer limited expandability. Furthermore, Google Vizier
is not publicly available.

In this work, we introduce a novel black-box optimization framework, where
hyperparameter optimization is formulated as a combination of candidate sam-
pling and an optimization strategy. Our framework allows a modular design of
new optimizers as well as quickly implementing state of the art optimizers. We
applied our framework to a clustering based pipeline as well as a deep neural
network based pipeline to segment cell nuclei in challenging prostate cell tissue
images. We evaluated the pipelines using different optimizers and 28388 pa-
rameter settings. We provide insights into cell nuclei segmentation and suggest
common practices for hyperparameter optimization in this application.

2 Methods

We investigated two nuclei segmentation pipelines, one based on K-means clus-
tering and the other based on a U-Net convolutional neural network (CNN).
The hyperparameters of the pipelines were optimized using our novel distributed
black-box optimization framework.

2.1 Segmentation pipelines

Clustering based segmentation The pipeline involves several parameters (in
the following highlighted in italic). An image is smoothed by a Gaussian filter
(sigma) before performing K-means clustering using intensity values (cluster ini-
tialization method). Cluster initialization with a random seed value leads to a

Fig. 1. Examples of prostate tissue images with various challenges for image anal-
ysis.(a) Strong background noise, (b) Low contrast, (c) Strong shape variation, (d)
Strong intensity variation.
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non-deterministic pipeline. To avoid this, we set the seed value to a fix value.
Median filter and morphological closing of small holes are applied subsequently.
By comparing a selected geometric feature of each cluster to the mean of all
clusters, one cluster is assigned as foreground, whose labels are subsequently
thresholded with regard to the geometric features area (upper and lower thresh-
old) and solidity before using the foreground cluster as segmentation result.

CNN based segmentation We train a U-Net [9] on the respective training and
validation datasets using the Adam optimizer and early stopping. For training
we perform offline data augmentation using rotation, flipping, and elastic defor-
mation. The local minimum found by Adam highly depends on the initialization
of the network. Therefore, for a fair comparison we use the same seed value for
sampling the initial network weights in all experiments. Small segmented objects
are discarded using a threshold for the area. The parameters of this pipeline are
the learning rate, batch size, and area threshold.

2.2 HyperHyper optimization framework

Our proposed distributed black-box optimization framework HyperHyper subdi-
vides hyperparameter optimization in a hyperparameter candidate sampler and
an optimization strategy. Candidate sampler and optimization strategy can be
selected from a model zoo to form an optimizer for a specific application. Se-
quential model-based optimization (SMBO) is performed by sampling candidates
and evaluating or dismissing them (Fig. 2). The candidate sampler employs a
specified hyperparameter space definition as prior, which allows using numerical
and categorical parameters with various distributions (e.g., discrete/continuous
uniform, Gaussian, log Gaussian, exponential). The sampled hyperparameters
are applied to the segmentation pipeline by a worker (compute node) and a per-
formance score with respect to manually annotated ground truth is calculated.
In our experiments, we use the Dice coefficient as performance measure. For
each hyperparameter evaluation, a dedicated workspace is created and managed
by the framework. The optimization can be performed by highly distributed
computation. A database is used for distributing compute jobs including the hy-
perparameters as well as the compute pipeline, and collecting respective results.
For each available compute cluster, a coordinator node manages the instantiation

Fig. 2. Schematic representation of the black-box optimization framework.
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of workers within the respective cluster. Since the used pipelines contain non-
ordinal parameters, we decided to choose optimizers which can handle variables
without a natural order. Besides random search (Random) we used sequential
model-based algorithm configuration (SMAC) [10], which combines a random
forest regression model and sampling from the prior, and represents a more so-
phisticated version of the general sequential model-based optimization (SMBO)
framework [10]. We also modified SMAC by using the XGBoost [11] regression
model (SMAC-XGBoost) instead of random forest (SMAC-RF), since XGBoost
is currently one of the most popular decision tree based models. Alternatively,
we use an evolutionary optimizer with a covariance matrix adaptation evolution
strategy (CMA-ES), which is a generic population-based meta-heuristic based
optimizer, where feature sets are assumed as “genomes”, which undergo evo-
lutionary processes like selection, recombination or mutation [12]. We further
investigated the tree of parzen estimator (TPE) surrogate, which performs a
nonparametric density approximation of a random variable [13].

3 Experimental results

We applied our hyperparameter optimization framework using multiple optimiz-
ers to two pipelines for cell segmentation in challenging prostate cancer tissue
images (Fig. 1). The tissue microarray (TMA) images of varying sizes were di-
vided into 256 × 256 pixel image patches before randomly splitting the dataset
into 75% for training and 25 % for testing. We used 60 ground truth images
which were manually annotated by an expert. The clustering based pipeline
includes six parameters, whereas the CNN based pipeline involves three pa-
rameters. As global optimum we used the result from extensive Grid Search.
For each optimizer, 200 evaluations were performed on 20 compute nodes (clus-
tering: 27280, CNN: 1108 parameter settings). The pipelines are deterministic,
since we used a fix seed value. However, the hyperparameter optimization itself
is stochastic. Therefore, we performed 10 runs per optimizer and report mean
and standard deviation of the results for the clustering based pipeline (Tab. 1).

(a) Clustering pipeline (b) CNN pipeline

Fig. 3. Comparison of the loss for different optimizers as a function of the number of
training iterations. The clustering pipeline is averaged over ten runs (standard deviation
highlighted).
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Table 1. Results for different optimizers. Shown is the improvement Δ Dice after the
warm-up phase and the absolute Dice value. Best results are highlighted in bold.

Pipeline Optimizer Δ Dice (Improvement) Dice

Clustering

Random 0.030 0.606 ± 0.025

TPE 0.045 0.609 ± 0.020

CMA-ES 0.077 0.642 ± 0.021

SMAC-RF 0.094 0.642 ± 0.026

SMAC-XGBoost 0.064 0.634 ± 0.021

Grid Search – 0.654

CNN

Random 0.019 0.847

TPE 0.038 0.850

CMA-ES 0.033 0.852

SMAC-RF 0.017 0.846

SMAC-XGBoost 0.039 0.847

Grid Search – 0.864

Due to computational resources needed for training deep neural networks, we ran
the CNN based pipeline once per optimizer. In addition to Dice, we report the
difference (Δ Dice) to the Dice value after the warm-up phase. The framework
performs a warm-up phase for exploring the parameter space by evaluating 20
random samples before performing optimization. Thus, Δ Dice reflects the im-
provement achieved by the optimizer. For the clustering based pipeline, it turns
out that SMAC-RF performs best regarding Δ Dice (Fig. 3), whereas for the
CNN pipeline our proposed SMAC-XGBoost achieves the best value for Δ Dice
(Fig. 4). Considering the absolute Dice value, CMA-ES and SMAC-RF perform
best, deviating only 0.012 from the global minimum, whereas TPE yields the
lowest standard deviation. SMAC-XGBoost achieves a slightly lower Dice value
than the best performing SMAC-RF. However, SMAC-XGBoost outperforms
SMAC-RF at the beginning of the training. For the CNN based pipeline, the
CMA-ES achieves the best absolute Dice value. Overall, the CNN based pipeline
significantly outperforms the clustering based pipeline.

(a) Ground truth (b) Clustering (c) Clustering (d) CNN

Fig. 4. Example image with ground truth (blue) and segmentation using SMAC-
RF (red) and SMAC-XGBoost (green).
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4 Conclusion

We presented a novel framework for hyperparameter optimization of nuclei seg-
mentation pipelines. The framework allows implementing common optimizers as
well as designing novel optimizers. From our study using two pipelines for seg-
menting cell nuclei in prostate tissue images, it turned out that CMA-ES and
SMAC derivatives perform best.
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Schöttler JJ, 74
Seitel A, 232, 238
Shpacovitch V, 339
Simon R, 345
Simson W, 257
Smith A-S, 116
Steffen J, 31
Steinmeister LA, 184
Stein T, 158
Stepina E, 270
Stieltjes B, 1
Stimpel B, 29, 92, 110, 134
Strobel N, 122, 146
Strumia M, 56
Suder S, 152
Swartman B, 104
Syben C, 29, 92, 110, 134
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