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Abstract. To enable rich and meaningful Augmented Reality (AR) ex-
periences within a Ubiquitous Computing environment, a detailed, co-
herent and up-to-date spatial model of the world is essential. However,
current tracking technologies are limited in their range and operating en-
vironments. This has, so far, restricted the development of wide-area AR
applications. To extend the range of AR applications, it will be necessary
to combine widely different tracking technologies dynamically, aggregat-
ing their data and balancing their trade-offs. In this paper, we propose a
formal framework, called Ubiquitous Tracking, which uses a graph-based
model of spatial relationships to build dynamically extendible networks
of trackers suitable for the high-precision, low-latency requirements of
Augmented Reality. The framework is powerful, allowing us to model
existing complex tracking setups; extensible, accommodating new track-
ers, filtering schemes and optimisation criteria; and efficient, allowing an
effective implementation within existing AR systems.

1 Introduction and Related Work

There are many parallels and intersections between the fields of Ubiquitous Com-
puting [27] (UbiComp) and Augmented Reality (AR). Approaches such as Sen-
tient Computing [1, 11, 13] maintain a detailed and up-to-date model of spatial
relationships, which appear to reproduce the perceptions a user has of the world.
Given a suitably large model it is possible to create AR scenarios that allow users
to roam through a wide area interacting with a rich and responsive environment.

In contrast, the majority of AR applications developed so far has been con-
strained, by the working volumes of existing tracking technologies, to carefully
arranged spaces of a few square meters. Examples include the Boeing wire as-
sembly feasibility study [7] and classroom-based geometrical construction [15].
Systems that have aimed at true mobility such as the Touring machine [9], Sen-
tient AR [21], and Tinmith [23] have typically relied on a ubiquitous tracking
infrastructure, such as GPS. Wide-area trackers generally provide only modest
levels of accuracy at a low update rate, and cannot be used for tasks requiring
greater precision. Furthermore, these systems generally assume that sensors are



deployed homogeneously throughout the entire area of interest, which results in
much tedious off-line calibration and registration.

In this paper we propose a new approach, Ubiquitous Tracking, which for-
malises a mathematical framework in which dynamic qualities of spatial relation-
ships between objects can be modelled as a graph. The mathematical specifica-
tion has been designed, such that a software implementation of the framework
maps intuitively to the component-based paradigm used in AR frameworks such
as DWARF [3] and Studierstube [25].

In real large-scale AR environments it is probable that the quality of tracking
will vary significantly. There will be a few, small high precision spots where ex-
pensive trackers such as those used to track medical instruments in an operating
theatre would support a particular task, e.g. surgery. Conversely, in other areas,
like hallways, cheap cell-based tracking may be sufficient. An optimal trade-off
between precision, hardware cost and complexity must be struck in order to make
such a system both effective and affordable and will be the ultimate criterion on
which the strength of the framework will be judged.

2 Spatial Relationship Graphs

In order to provide a rich and meaningful Augmented Reality experience, it
is important that we have a consistent, up-to-date model of the world which
contains relevant environmental state, especially the spatial properties of objects.

The goal of the theoretical framework discussed in this paper is to provide a
query mechanism that returns an optimal estimate of the geometric relationships
between arbitrary objects, according to user-defined criteria.

For this purpose, we use a a graph-based model of spatial relationships.
We first discuss properties of real-world relationships, then consider properties
of measurements made in the real world and finally present a general concept
of how knowledge can be inferred from these measurements, resulting in the
construction and maintenance of a model of the real world.

2.1 Fundamentals

We visualise the spatial relationships between objects in a graph structure [5] in
which nodes represent objects and edges represent spatial relationships between
the objects.

A tracking device is simply a sensor that makes measurements of the spatial
properties of objects within range. Initially we will consider object pose before
turning to other properties such as velocity and acceleration. In order to to inter-
pret data appropriately other attributes such as a timestamp and the uncertainty
associated with a measurement must also be considered. We distinguish between
three different sorts of graph: an idealised view of the world from the point of
view of an omniscient observer, directly measured relationships corrupted by
noise, and finally a graph derived from inferred relationships.



2.2 Real Relationships

In the real world, each pair of objects has, at every point in time, a geometric
relationship that can, for example, be expressed using the standard computer
graphics notation of a 4 × 4 homogeneous matrix representing arbitrary trans-
formations between coordinate systems. We define a binary relation Ω on our
object space N = {A,B, C, . . .}. We then map every element (X, Y ) of Ω onto
a function wXY describing the spatial relationship between the objects X and
Y over time. This attribution scheme is called W.

W : (Ω = N × N) → w, where w : Dt → R4×4 (1)

Dt is the source time domain, mapped by w onto the target spatial relationship
domain. This definition matches the output of common tracking devices, yielding
spatial relationships for different points in time.
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Fig. 1. Complete graph representing geometric relationships between three objects as
perceived by an omniscient observer

For clarity of notation, we define the directed graph G(Ω) that represents
the relation Ω. Thus, whenever two objects A,B ∈ N are in a geometrical
relationship with one another, the nodes representing these objects are connected
by an edge that is annotated with the function wAB . It can be seen in figure 1,
that Ω is transitive, reflexive and symmetric, yielding a complete graph G(Ω).
An omniscient observer would be able to perceive all geometrical relationships
represented in this graph and the Ubiquitous Tracking problem would be solved.

2.3 Measured Relationships

Unfortunately, we can only make estimates of geometric relationships between
real objects by performing measurements. Each measurement is made at a dis-
crete point in time, yielding a geometric relationship that is equivalent to the
real relationship, but corrupted by noise. In order to generalise the framework



to accommodate all possible measurements, we do not restrict ourselves to a
fixed noise model, but rather describe the quality of measurements using a set
of attributes, A, which includes properties such as the latency between the ac-
tual measurement and the time at which the result is delivered, or a standard
deviation in meters. A more detailed discussion of possible attributes is given in
section 3.

By analogy to the relation Ω, we now define a relation Φ and an attribution
P describing the measurements:

P : (Φ ⊆ N × N) → p, where p : Dt → R4×4 ×A (2)

The directed graph in figure 2, G(Φ), provides a visual representation of the
relation Φ. An edge between two nodes exists only if measurements have been
made. In the example, we assume that the geometric relationship between objects
A and B has been measured twice, at times t1 and t2, yielding homogeneous
matrices H1 and H2 and attribute sets A1 and A2 describing the quality of the
measurements. The relationships between A and C and between B and C were
only measured once at times t3 and t4 respectively, yielding H3,A3 and H4,A4

respectively. The relation Φ represented by the graph G(Φ) can be seen to be
neither symmetric, transitive nor reflexive.
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Fig. 2. Graph G(Φ) describing the measurements we made.

Note that the source time domain Dt of p is not continuous, instead consisting
of a discrete set of points in time at which the measurements were taken. In our
example, we derive the following functions p:

pAB : {t1, t2} → R4×4 ×A pAC : {t3} → R4×4 ×A
t1 %→ (H1,A1) t3 %→ (H3,A3)
t2 %→ (H2,A2) pBC : {t4} → R4×4 ×A

t4 %→ (H4,A4)

(3)

2.4 Inferred Relationships

The measurement relation Φ and its associated graph G(Φ) are of little use in
providing a general query mechanism. At any point in time t = T , we can usually



expect to get no result from a query for the relationship between two objects,
unless there has been a measurement at exactly time T , which is improbable.

In consequence, we have to infer knowledge about spatial relationships be-
tween objects. Our final goal is the binary relation Ψ that approximates the
world relation Ω:

Q : (Ψ ⊆ N × N) → q, where q : Dt → R4×4 ×A (4)

Every q is a multivalued function that can be seen as the union of basis
functions q′, q′′, . . . . Thus, the corresponding graph G(Ψ) is modelled best as
a multigraph, having an edge between two nodes representing objects A and B
for every basis function that was inferred.

Adding new inferences. The relation Ψ is assembled by making new inferences of
geometrical relationships, and for each new inference adding a new edge to the
graph G(Ψ). The process of assembling Ψ will be illustrated by using examples of
increasing complexity starting with the simplest possible setup consisting of just
two objects; N = {A,B}. Initially, given the measurements from the relation Φ:

qm
AB(t) = pAB(t) =

 (H1,A1) if t = t1
(H2,A2) if t = t2
undefined otherwise

(5)

The definition range of qm
AB is Dqm

A,B
= {t1, t2}. By merely extending the defi-

nition range we obtain a new straightforward inference and consequently add a
new edge to the graph G(Ψ) between nodes A and B:

qe
AB(t) =

{
(H1,A1) if |t − t1| < |t − t2|
(H2,A2) otherwise (6)

Obviously, there are many other inference schemes that can be applied in parallel.
The properties of a particular inference can be expressed through the attributes,
which are likely to different from that of the raw measurement.

Given additional knowledge concerning the relation between objects A and
B, further inferences can be made, yielding a general filter function

qf
AB(t) = f((H1,A1), (H2,A2), . . . , t) (7)

For example, if we assume that A moves smoothly with respect to B, we could
peform interpolation qi

AB(t), using knowledge of motion properties could yield
a Kalman filter qk

AB(t) or particle filter qp
AB(t).

Modelling inferences as edges leads to a natural mapping to software com-
ponents; every new inference is conceptually a new software component added
to the overall tracking setup. This is described in detail in section 4.1.

Choosing an optimal inference. Figure 3 shows a graph with the inferences made
thus far. The query mechanism proposed in the framework must now choose
between these inferences, i.e. one edge from node A to node B. Obviously, the
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Fig. 3. A graph describing multiple inferences about the spatial relationship between
two objects.

inquirer desires an “optimal” result (according to certain criteria). However, we
cannot know a priori the optimal result for a particular application, as some
applications have strict real-time requirements whilst others might prioritise
high precision.

To address this problem, we define an error function operating on the at-
tributes:

e : A → R (8)
Ai %→ e(Ai)

The query mechanism now evaluates the error function for all inferred functions
and returns the one corresponding to the lowest value. The general definition
of an error function provides a plug-in mechanism for designing arbitrary op-
timisation criteria; it is the responsibility of the designer of the error function,
for example, to favour low-latency inferences over those with low absolute spa-
tial errors. An in-depth discussion of the error function’s role can be found in
section 3.

Making optimal inferences given complex setups. The simple two node example
is now extended to n nodes. Given a query “Optimal spatial relationship at time
T between objects X and Y with error function e”, the framework performs the
following steps:

1. Find all paths from X to Y in graph G(Ψ), with the additional constraint
that an edge corresponding to an inference q(t) is only considered if q(t) is
defined at t = T .

2. Evaluate the given error function e over all the detected paths. The defini-
tion of the error function must be extended, essentially assigning the error
function an ordered set of attribute sets to evaluate.

e : A∗ → R (9)
A∗

i %→ e(A∗
i )

3. Use the path corresponding to the lowest value of e to calculate the spatial
relationship between X and Y by multiplying all the homogeneous matrices
along the path together.



We cannot guarantee that a well-defined and correct set of attributes de-
scribing the properties of the query result is returned. The effect of a path
evaluation on the resulting attributes is highly application-dependent and
cannot be solved generally.

Every query adds an additional entry to Q and an extra edge to G(Ψ). Section
4 contains details as to how the large amount of data resulting from queries can
be dealt with.

Example. The measurements depicted in figure 2, have an attribute set consisting
of a single value, the latency of the measurement. Assuming A1 = {2ms}, A2 =
{2ms}, A3 = {10ms} and A4 = {5ms}, we can initialize relation Ψ with the
measured functions in equation (2), setting qm

XY (t) = pXY (t). For the sake of
simplicity, we add the simple inference qe, defined analogously to equation (6),
with no modification of the attribute set. The resulting graph is shown in figure 4.
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Fig. 4. A graph describing multiple inferences about the relationship between three
objects. The attributes of the relation functions are shown in the boxes on the edges.

Assume further that the measurements were taken at different times, such
that t1 < t2 < t3 < t4 and that we query for the relationship at time T = t3.
Thus, step 1 of the algorithm yields the following paths:

P1 : A
qe

AB−→ B
qe

BC−→ C, P2 : A
qm

AC−→ C, P3 : A
qe

AC−→ C

The error function e is defined such that it returns the sum of latency values of all
edges along a given path: e(P1) = 2ms+5ms = 7ms, e(P2) = 10ms and e(P3) =
10ms. In consequence, the algorithm chooses P1 and returns (H2 · H4,Anew).
Anew can be calulated by summing the latencies along all the involved edges,
giving Anew = {7ms}.

Modelling sensor fusion and filter schemes. Hightower [12] describes sensor fu-
sion as the “use of multiple location systems simultaneously to form hierarchical



and overlapping levels of sensing to increase accuracy beyond what is possible
using any individual system.” Multiple inferences of the type described earlier
correspond to Hightower’s “levels of sensing”. Fusion can be performed by tak-
ing several measurements and then inferring a new estimate for a given time. If
we fuse multiple information sources of object X’s pose relative to object Y , we
add a new inference qf

XY to Q, leading to a new edge AC in G(Ψ).
Other filter schemes can be modelled in the same way as sensor fusion. Given

knowledge of the environment such as the locations of walls and other obstacles,
it is possible to create new inferences that exploit the constraint that objects can-
not generally pass through walls. Hightower et al. [10] employ Bayesian filters,
particle filters and Voronoi graphs [17], while Höllerer et al. [14] use a combi-
nation of spatial maps and accessibility graphs. New inferences can be made on
the basis of this environmental knowledge.

3 Model Parameters

Now that we have described the theoretical framework behind Ubiquitous Track-
ing graphs, we will discuss in more detail how the parameters of our model have
to be adjusted to make it useful for particular applications. Hitherto, we defined
the relationships between different objects to be functions that take time as an
input, and output both a spatial relationship and a set of attributes describing
the “quality” of the given spatial relationship. These attributes acted as inputs
to an error function that assisted in obtaining an inferred spatial relationship
that is optimal in some sense. The spatial relationship itself, was simply mod-
elled as a transformation matrix, although this representation is not generally
sufficient to model all sensor measurements or spatial state.

3.1 Spatial Relationship Modelling

Representing geometrical relationships by a 4×4 homogeneous matrix has useful
properties. However, there are other ways of expressing spatial relationships, for
example a 3-vector and a quaternion can also represent the full range of affine
transformations.

Many tracking sensors measure properties other than pose, such as 3D posi-
tion (x, y, z), pixel location (x, y), or scalar distance ranges, d, which can only
be related to pose indirectly when combining many such measurements. Other
sensors measure different properties such as linear and angular velocities and
accelerations. It is necessary to accommodate diverse representations of relation-
ship state between objects, as well as the way in which different measurements
affect the estimate of that state.

3.2 Attributes

Common attributes used to describe tracking quality are:



Latency describes the time (in seconds) between the actual measurement and
the availability of its result to the rest of the system.

Update frequency measured in 1/s, indicates the rate at which trackers make
their measurements.

Confidence value attributes are important for optical trackers that may mis-
classify video images and detect non-existent features. A well suited range
would be [0; 1], indicating the probability that the identification is correct.

Pose accuracy determination is the major problem when developing a tracker
abstraction to integrate multiple trackers [6]. Even when simple Gaussian
noise models are assumed, the evaluation of accuracy over multiple paths is
non-trivial.

Monetary cost per measurement may be significant in the design of tracking
setups. The tracking graph can incorporate all the trackers available on the
market and then a suitable error function can be evaluated for the desired
relationships between objects. The resulting optimal path consists of the
trackers that should be installed.

Time to live is primarily relevant for temporarily static targets, indicating how
long (in seconds) a relationship’s value is likely to be valid.

Note that once a set of attributes has been defined, there may still be problems
in obtaining actual values for given measurements or inferences. Firstly, the
manufacturers of commercial trackers are often reluctant for their devices to
output accuracy metrics. Secondly it may be difficult to calculate the attributes
resulting from a hand-crafted inference. Although the cases of latency and update
frequency are trivial, it becomes awkward to determine accuracy unless a very
simple model is used. Even assuming Gaussian noise, the evaluation of absolute
levels of accuracy, along a path incorporating multiple tracking devices, is non-
trivial [6].

3.3 Error Functions

The error function is the core of the framework’s path-finding algorithm. A whole
path is taken as input, and the attributes along the path’s edges’ are extracted
and an error value is computed, that is defined to be lower if the desired quality
of the overall measurement is better. One simple example of an error function,
et, that aims to tradeoff latency against update rate could be:

et :=
∑

q∈path

lag(q) +
λ

rate(q)
(10)

The weighting of lag versus rate is determined by the variable λ.
As can be seen in this example, error functions exist that allow edgewise

evaluation of paths. If such an error function is used, we can gain a speedup in the
optimal path algorithm a well-known shortest path algorithms such as Dijkstra’s
algorithm [8]. The evaluated error functions can be used as edge weightings.

This strategy will not suceed for more complex attribute evaluations, as the
error function cannot be expressed as the sum of the errors associated with each



edge along a path. For example, if the unscented transformation [19] is used to
compute the covariance of tracking paths attributed with Gaussian covariance
matrices, we must first compute the covariance of the whole path before the
error function can be evaluated. Obviously, this leads to higher computational
complexity, and other steps have to be taken to ensure that an unacceptable
latency is not introduced. Some proposals are described in section 4.

4 Implementation and Optimisation

The formal framework described in the previous sections can easily be imple-
mented within a software framework, as we plan to do within Studierstube [26]
and DWARF [3]. Two possible optimisations can reduce the computational com-
plexity within such an implementation: precomputing data flow graphs and en-
capsulating spatial hierarchies within supernodes.

4.1 Precomputing Data Flow Graphs

An implementation of Ubiquitous Tracking within Studierstube or DWARF can
precompute a data flow graph of components that calculate the quantity re-
quired by an application. The construction of this data flow graph depends only
on the infrequently changing structure Φ of the measured spatial relationship
graph and the associated attributes from A, not on the pose measurements
themselves. Thus, the implementation can precompute the data flow graph at
lengthy intervals, and then leave the real-time computation of pose data to the
correctly configured components.

Components. Both Studierstube and DWARF are based on extensible, com-
municating components that can be easily arranged into data flow graphs [4].
The formalisms described previously can be mapped onto software components.
Although the granularity and distribution of such components and the tight-
ness of their coupling will be different in different implementations, their basic
functionality remains the same.

The relation Ψ and attribution Q of all measured and inferred spatial re-
lationships is constructed by performing several different kinds of operations:
making measurements with trackers, querying a database, applying filters, and
multiplying matrices along paths within the graph.

We can thus identify several different types of components that perform trans-
formations on Ψ and its attribution Q. Generally, these have the effect of adding
new edges to the graph G(Ψ) and new attributions to Q.

Tracking components provide a stream of measurements, consisting of pose
information and the quality of the measurement. This corresponds to qm

AB
from equation 5, where A is the tracker, and B is the tracked object.
Note that a single tracking component may well track several objects B1..n;
it then adds several functions qm

AB1..n
to Q, extending Ψ .



Static components provide static measurements, e.g. from a database, con-
sisting of pose information and the quality of the measurement. This also
corresponds to qm

AB from equation 5.
Again, a single static component may know of several objects B1..n.

Extrapolation, interpolation and filtering components for a pair of ob-
jects A and B take some existing qin

AB and calculate an output of qout
AB .

Examples of qout are qe (extrapolation), qi (interpolation), qk (Kalman fil-
ter), given in equations 6 and 7.

Fusion components are more complex; at the very least, they take two differ-
ent inputs qin,1

AB and qin,2
AB for a relationship between the same two objects A

and B, and calculate an output of qout
AB .

However, a more complex fusion component may take several different ex-
isting measurements into account.

Inference components perform inferences upon an existing subset of Q, ef-
fectively performing transitive closure on Ψ . The simplest possible inference
component computes qout

AC from qin
AB and qin

BC .
In general, an inference component takes several different inputs qin

A1..AmB1..Bm

from Q and calculate one or more outputs qout
A1..AnB1..Bn

, following the algo-
rithm described in section 2.4.
Inference components use an error function e, to choose between alternative
paths through the graph. An inference component may also calculate spatial
relationships for more than one pair of objects.
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Fig. 5. Data flow graph for inference example of figure 4

Data Flow Graphs. To compute a desired function qapp
AB , an implementation

constructs a tree of components, with data flowing from the leaves to the root.
The leaves are trackers and databases encapsulating static measurements, the
interior nodes are filters, interpolaters, extrapolators, inference components, and
the output of the root node is the desired qapp

AB . An example data flow graph is
shown in figure 5; this corresponds to path P1 in the inference example shown
in figure 4.

More generally, to compute several values simultaneously, the implementation
will construct a directed graph, computing qout

A1..AnB1..Bn
at the sinks.



We now assume that the attributes A of a given ouput function qout of a
component change more slowly than the corresponding pose data (or do not
change at all). Since the error function e depends only on the attributes, and
not on the pose data itself (equation 8), a recomputation of an optimal data flow
graph will not be necessary every time a position update must be delivered to the
application. Consequently, the implementation may perform a computationally
complex graph search in the background, while the components simultaneously
compute the pose estimation in real time.

The way in which changes to the structure of the data flow graph is problem-
atic. Whenever an attribute of any function within Ψ changes, the graph might
need to be recomputed. An efficient algorithm for this is highly dependent on
the types of attribute changes and the error function e.

4.2 Grouping Nodes

In many applications precise tracking is not important when the objects being
queried are far away from one another. For example, when standing in front
of a building it may be interesting to see which people are inside (and maybe
where in the building they are located) but their exact position is not important.
This is similar to the rendering of complex 3D scenes using level of detail [18]
hierarchies. In the Ubiquitous Tracking scenario the same technique to reduce
complexity can be applied by grouping of nodes in the tracking graph.

In a large and complex graph there will be two circumstances in which groups
of nodes can be represented by a single supernode. Firstly, groups of nodes which
are only statically related to one another need only be represented as a single
node with respect to the rest of the graph. Secondly, it is reasonable to suppose
that graph searches will tend to concentrate on special highly connected clus-
ters of nodes known as cliques (if fully connected) or near-cliques (when highly
connected but not fully connected). These clusters correspond to areas with par-
ticular spatial significance such as a room, or mobile body-centred space. These
spaces we call locales [2].

In the top half of figure 6 two people can be seen with a variety of tracking
hardware, while in the lower half graphs form an abstract representation of the
spatial relationships. The shaded regions encompass objects with common fea-
tures to their spatial relationships. The person on the left hand side is equipped
with a camera, B, and a fiducial marker, A, rigidly attached to the head and
hence statically related both to one another and also to the eyes, C and D. Con-
sequently, these objects can be represented by a single supernode S1. Similarly,
the right hand person has the rigidly attached objects G, H, I and J represented
as the supernode S2; while in the rest of the room the fixed fiducial marker E
and the InterSense1 transmitter, F , form the supernode S3. Fiducial marker, K,
can be considered part of a mobile body-centred locale, S4, centred on the right
hand person. The whole room can be considered to be yet another locale, S5.

1 http://www.isense.com/



It is highly likely that a query for the spatial relationship between the objects
G and K (camera and marker) will find K within the same locality as G, and
consequently either within the same locale or a nearby one. The query can be
optimised by directing the search locally before looking further afield. Queries on
objects which are not local to one another can exploit the locality of supernodes
to distribute the search more effectively.

Fig. 6. People and objects in environment partitioned to form supernodes

5 Examples of the Framework

The decomposition of existing tracking setups using the framework, as it has
been described thus far, is a useful exercise in assessing the power and generality
of this approach.

Dynamically shared optical tracking as implemented by Ledermann et al. [16].
can be reproduced using the cameras and markers in figure 6. Figure 7 shows



the pose of mobile cameras, B and G, determined relative to the fixed marker
E. Marker K need only be visible to camera G in order to calculate its position
relative to the camera B. The rest of the figure shows how this setup maps into
a graph, in which the inferred spatial relationship qapp

S1K(t) can be determined
by evaluating and concatenating the relationships (including an inversion of the
inference qe

S2E we call qinv
ES2

) along the path:
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qinv
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E

B
G

K

WLAN: G  E, G  K
WLAN: B  E

E S2S1

q
S1E

(t)
e

q
S2K

(t)
eq

S1K
(t)

app

q
S2E

(t)
e

K

q
ES2

(t)
inv

Fig. 7. Shared tracking setup

The tracking setup can be extended to include the InterSense tracker which
should provide further tracking redundancy, increasing the range of possible
inferences.

Multi Camera System. The Advanced Real Time (A.R.T.)2 optical tracker (ART
Track) in figure 8 uses three cameras (A, B, C) to observe a target (supernode,
Smarker) built from retroreflective markers (D, E, F , G). The relationships be-
tween camera A and each individual marker is illustrated in more detail to the
right of the main graph. The markers are attached to a rigid body forming a sin-
gle composite target. The measurement made by the camera is not in the form
of a pose or even a 3D point, but a pixel location (x, y), which means that for
each camera the markers are constrained to lie on rays passing through the focal
points of the cameras and the real 3D positions of the markers. There is enough
information based on the geometry of the cameras and the relative positions of
the markers on the target to make an overall estimate of the target pose.

A complete treatment of this setup is beyond the scope of the paper, how-
ever, it should be possible to model this aggregation as a series of filters. First
the raw pixel measurements are used to generate inferences of the locations of
each marker defined as rays in the coordinate frame of the camera, (λx,λy,λz).
A further filter or “inference aggregator” takes all these inferences as well as
knowledge of the static relationships between the cameras and markers respec-
tively to generate an estimate of the pose of the target St as well as appropriate
attributes based on the noise in the pixel measurements, and timing errors.
2 http://www.ar-tracking.de/
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Fig. 8. ART optical tracker decomposition

Occluded Markers. One common medical Augmented Reality scenario involves
a patient being tracked optically using retroreflective markers registered preop-
eratively with three-dimensional images [22]. During system setup the patient is
visible to the tracking system, but during the operation the markers attached to
the patient are occluded by sterile tissue. However, markers fixed to the operat-
ing table are visible at all times. If the patient is assumed not to move relative
to the table, they can be tracked continuously.

In order to augment the surgeon’s view through a display D of structures
within the patient’s body B a query qapp

DB(t) is made. A suitable error func-
tion should always select a direct measurement when available and fall back on
indirect measurements otherwise.

6 Future Work

Simulation. To prove the applicability of the framework in a large building-wide
Ubiquitous Tracking setup, we will have to design and implement a simulation
environment that allows us to generate synthetic data of virtual trackers ob-
serving objects roaming through the environment. The data can serve as input
to a reference implementation of the framework. We will then conduct run-time
measurements to evaluate the efficiency of the framework, and accuracy analysis
to refine the design of attributes, error functions and the state space of objects.



Implementation. As described in section 4, both Studierstube and DWARF pro-
vide a suitable basis for the implementation of the ubiquitous tracking concepts.
We plan to pursue both implementation tracks in parallel, while maintaining
interoperability between DWARF and Studierstube.

An implementation in Studierstube would generate the data flow graphs in
the form of OpenTracker networks [24], which are then evaluated within the
Studierstube run-time environment.

An implementation in DWARF would use DWARF services as the compo-
nents in the data flow graph, and combine them dynamically, based on their
attributes, using the DWARF middleware [20].

Auto-calibration. In real environments, any form of infrastructure is vulnerable
— subject to vandalism, repair and manipulation by persons unknown. It is not
practical to regularly recalibrate every device, and consequently the parts of our
model which are generally static will become increasingly inaccurate unless it
is adaptive. If the attributes of the static spatial relationships include a level
of uncertainty that increases slowly with time, then probabilistic inferences will
take into account the possibility that the model has changed. Evidence from
sensors that are considered reliable can be used to effectively recalibrate the
model and reduce the level of uncertainty.

Evaluation. Once the framework has been used to implement real scenarios,
we hope to gather information and expertise in order to propose a suitable
set of standard attributes. These can then be used to describe new tracking
technologies and filtering schemes.

7 Conclusion

In this paper, we presented a theoretical framework to describe all current track-
ing setups in a standard way. The framework consists of relations modelled as
graphs, which allow application developers to satisfy tracking demands by defin-
ing: state spaces, attributes and error functions. The design of state spaces encap-
sulates the way in which sensor measurements are related to the representation
of spatial representationships. Attributes characterise sensor measurements, and
are operated on by error functions that are designed to discriminate between
different solutions to a spatial query on a per-application basis.

The framework is a first step towards a systematic implementation of Ubiqui-
tous Tracking concepts and hopefully serves as a basis for partial standardisation
of complex tracker setups. Modelling complex setups in a unified mathematical
framework brings up new issues commonly overlooked in real-world applications,
such as the role of time in processing sensor information. We hope to have started
a more formal approach towards the ubiquity of Augmented Reality.
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