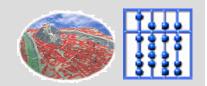
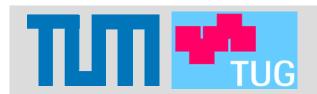
Ubiquitous Tracking for Augmented Reality

IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'04)


Martin Wagner, Martin Bauer, Asa MacWilliams, Dagmar Beyer, Daniel Pustka, Franz Strasser, Gudrun Klinker

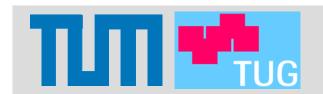
> Institut für Informatik Technische Universität München martin@augmentedreality.de

Joe Newman, Thomas Pintaric, Dieter Schmalstieg


Institut für Maschinelles Sehen und Darstellen Technische Universität Graz jfn@icg.tu-graz.ac.at

Overview

- Why we need Ubiquitous Tracking
- Formal model
- Implementation concepts
- DWARF-based implementation
- Simulation environment
- Conclusions & Future work

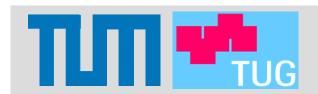


Why we need Ubiquitous Tracking

Bringing AR to intelligent environments:

- AR applications extend their range of operation

 Mobile AR
 - Powerful wearable devices
- Ubicomp applications extend their immersivity
 - "Natural" interaction benefits from accurate location information
- Combining tracking requirements from ubicomp and AR allows to use AR interaction in ubiquitous environments



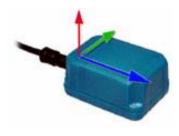
Why we need Ubiquitous Tracking

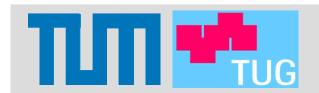
Enhancing AR tracking technology:

- No single sensor is perfect for all AR applications
 - Sensor fusion gains attention
 - Reusable solutions required
- Tracking technologies tend to build upon each other
 - Initialization problem for natural feature tracking
 - Stabilize results of absolute by relative tracker

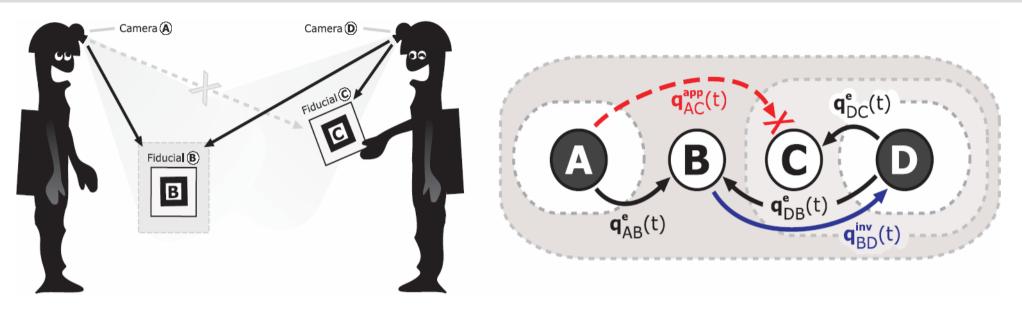
What is Ubiquitous Tracking?

- Abstraction Layer between location sensors and applications
- Gathers all available spatial relationships from sensors
- Provides inferences to deduce "best" possible spatial relationship between arbitrary objects in the system
 - Semantics of "best" is application dependent
 - Existing inferences (i.e. filter and fusion components) have to be integrated

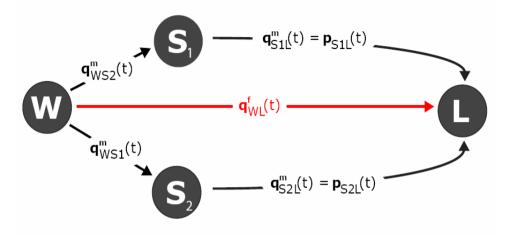


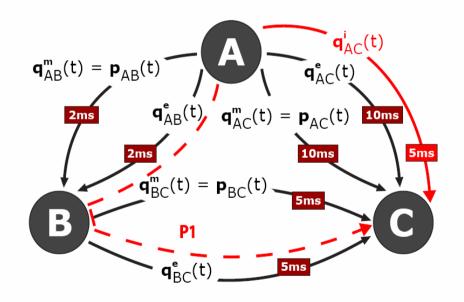

Definition of Terms

- A spatial relationship between two objects can be expressed in terms of multiple parameters (e.g. any dimension of position, orientation and their derivatives)
- A sensor performs a measurement of some physical property and computes an estimate of some spatial relationship parameter
- A *locatable* is an object whose spatial relationship to some reference coordinate system is estimated by a sensor
- An *inference* is an estimate of a spatial relationship computed from single or multiple estimates of spatial relationships



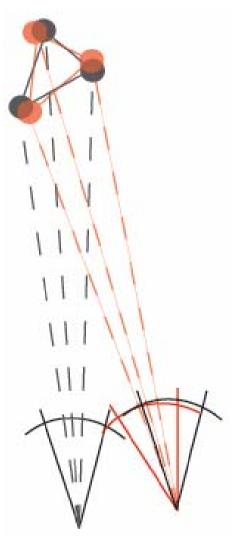
Formal Model


- Goal: uniform modelling of all spatial relationships
 - Handle estimates of diverse sensor classes
 - Handle inferences (i.e. filtering data, sensor fusion)
- Approach: directed *spatial relationship graph*
 - Describe spatial relationships as functions of time
 - Functions yield estimates of spatial relationship characterised by attributes



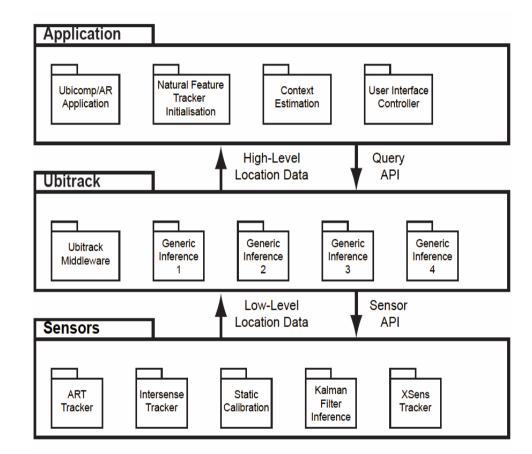
Formal Model: Inferring Knowledge

- Integrate existing inferences (e.g. Kalman Filter fusing two sensors) by adding new edges to SR graph
- Provide generic inferences by using transitivity property of spatial relationships
 - Search path in SR graph between relevant nodes



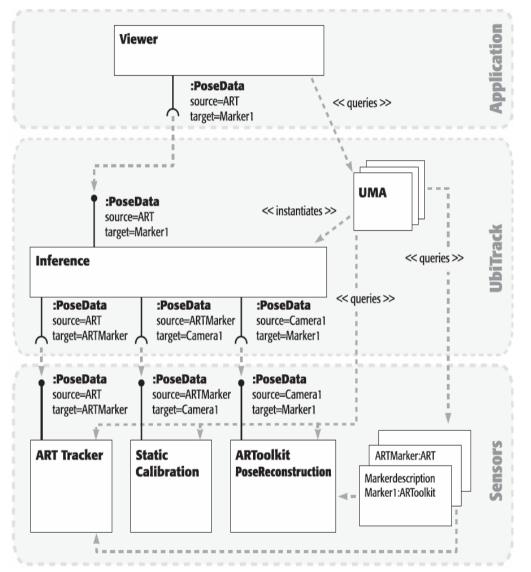
Formal Model: Challenges

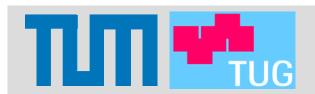
- Directed graph: non-trivial inversion of edges
- Timing issues: measurements made at discrete points in time, demand for estimates in continuous time
- Should map onto real implementation without too many restrictive assumptions
- For this purpose: handle dynamic changes in availability of spatial relationships



Implementation Concepts

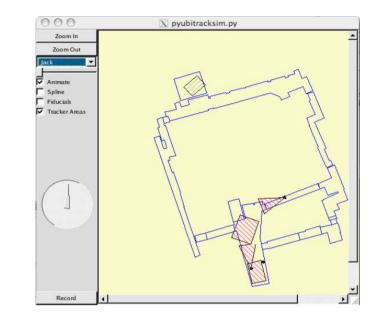
- Layered Architecture:
 - Spatial relationship data moves from sensors to applications through filters inferring new spatial relationships
 - Set of filters built and connected on demand according to application's needs
- Data flow graphs
 - Flow of data through filters can be modeled as a graph
 - Assumption: form of data flow changes seldom compared to spatial relationships





DWARF-Based Implementation

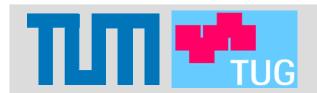
- DWARF is a distributed peer-topeer middleware, modelling AR applications as set of distributed *services*
- Extension of DWARF middleware to allow generic Ubitrack inferences
- Resulting data flow consists of a set of services:
 - Sensor services encapsulate hardware devices
 - Inference services aggregate data (on multiple levels)
 - Application services consume data



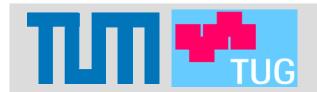


Simulation Environment

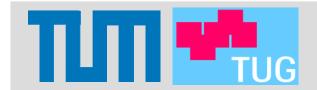
- Large-scale Ubitrack environments are not yet ready
 - Limited amount of sensors
- Ubitrack simulation environment allows to generate artificial multi-sensor tracking data
 - Test Ubitrack implementation by comparing results to simulation ground truth
- Generation of simulated images of scenes for feeding visionbased trackers



Conclusions


- Automated reusable sensor fusion is a prerequisite for bringing AR applications into large intelligent environments
- Formal model allows automated handling of large multi-sensor setups
- DWARF-based implementation shows feasibility of approach

Future Work


- Build large-scale setups for real world applications
- Incorporate sensors using different representations of spatial relationships (e.g. cellbased trackers)
- Exploit Ubitrack for natural feature trackers
- Autocalibrate parts of Ubitrack setups

Thank you.

• Any questions?

