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Abstract— Reliable and real-time 3D reconstruction and
localization functionality is a crucial prerequisite for the nav-
igation of actively controlled capsule endoscopic robots as
an emerging, minimally invasive diagnostic and therapeutic
technology for use in the gastrointestinal (GI) tract. In this
study, we propose a fully dense, non-rigidly deformable, strictly
real-time, intraoperative map fusion approach for actively con-
trolled endoscopic capsule robot applications which combines
magnetic and vision-based localization, with non-rigid defor-
mations based frame-to-model map fusion. The performance
of the proposed method is evaluated using four different ex-
vivo porcine stomach models. Across different trajectories of
varying speed and complexity, and four different endoscopic
cameras, the root mean square surface reconstruction errors
vary from 1.58 to 2.17 cm.

I. INTRODUCTION

Gastrointestinal diseases are the primary diagnosis for
about 28 million patient visits per year in the United
States[1]. In many cases, endoscopy is an effective diagnostic
and therapeutic tool, and as a result about 7 million upper and
11.5 million lower endoscopies are carried out each year in
the U.S. [2]. Wireless capsule endoscopy (WCE), introduced
in 2000 by Given Imaging Ltd., has revolutionized patient
care by enabling inspection of regions of the GI tract that are
inaccessible with traditional endoscopes, and also by reduc-
ing the pain associated with traditional endoscopy [3]. Going
beyond passive inspection, researchers are striving to create
capsules that perform active locomotion and intervention [4].
With the integration of further functionalities, e.g. remote
control, biopsy, and embedded therapeutic modules, WCE
can become a key technology for GI diagnosis and treatment
in near future.

Several research groups have recently proposed active,
remotely controllable robotic capsule endoscope prototypes
equipped with additional operational functionalities, such as
highly localized drug delivery, biopsy, and other medical
functions [5]–[15]. To facilitate effective navigation and
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Fig. 1: System overview including 5-DoF magnetic local-
ization, 6-DoF visual joint photometric-geometric frame-to-
model pose optimization, inter-sensor calibration, particle
filtering based sensor fusion, non-rigid deformations based
frame-to-model map fusion.

intervention, the robot must be accurately localized and must
also accurately perceive the surrounding tissues as demon-
strated in Fig. 2. Three-dimensional intraoperative SLAM
algorithms will therefore be an indispensable component of
future active capsule systems. Several localization methods
have been proposed for robotic capsule endoscopes such as
fluoroscopy [16], ultrasonic imaging [17], positron emission
tomography (PET) [16], magnetic resonance imaging (MRI)
[16], radio transmitter based techniques, and magnetic field-
based techniques [18]. It has been proposed that combina-
tions of sensors, such as RF range estimation and visual
odometry, may improve the estimation accuracy [19]. More-
over, solutions that incorporate vision are attractive because a
camera is already present on capsule endoscopes, and vision
algorithms have been widely applied for robotic localization
and map reconstruction.

Feature-based SLAM methods have been applied on endo-
scopic type of image sequences in the past e.g [6], [8]–[11],
[20]–[23]. As improvements to accomodate the flexibility of
the GI tract, [24] suggested a motion compensation model
to deal with peristaltic motions, whereas [25] proposed a
learning algorithm to deal with them. [26] adapted paral-
lel tracking and mapping techniques to a stereo-endoscope
to obtain reconstructed 3D maps that were denser when
compared to monoscopic camera methods. [27] has applied



Fig. 2: Demonstration of the active endoscopic capsule robot operation using MASCE (Magnetically actuated soft capsule
endoscope) designed for disease detection, drug delivery and biopsy-like operations in the upper GI-tract. MASCE is
composed of a RGB camera, a permanent magnet, an empty space for drug chamber and a biopsy tool. Electromagnetic coils
based actuation unit below the patient table exerts forces and torques to execute the desired motion. Medician in real-time
using the live video stream onto the medical workstation and the controller joystick to manevour the endoscopic capsule to
the desired position/orientation.

ORB features to track the camera and proposed a method to
densify the reconstructed 3D map, but pose estimation and
map reconstruction are still not accurate enough. All of these
methods can fail to produce accurate results in cases of low
texture areas, motion blur, specular highlights, and sensor
noise – all of which are typically present during endoscopy.
In this study, we propose a non-rigidly deformable RGB
Depth fusion method for endoscopic capsule robot, which
combines magnetic localization and visual pose estimation
using particle filtering (see Fig. 1). We evaluate the proposed
system in terms of surface mapping and capsule localization,
using four different ex-vivo porcine stomachs.

II. SYSTEM OVERVIEW AND ANALYSIS

The system architecture of the method is depicted in
Figure 1. Alternating between localization and mapping, our
approach performs frame-to-model 3D map reconstruction
in real-time. Below we summarize key steps of the proposed
system:

• Perform offline inter-sensor calibration between mag-
netic hall sensor array and capsule camera system;

• Estimate 3D position of the endoscopic capsule robot
using magnetic localization;

• Estimate 3D rotation of the endoscopic capsule robot
using visual pose optimization;

• Fuse magnetic position and visual rotation information
using particle filtering and 6-DoF rigid body motion
model;

• Perform non-rigid frame-to-model map registration
making use of hybrid magneto-visual pose information
and deformation constraints defined by the graph equa-
tions;

III. METHOD

A. Magnetic Localization System

Our 5-DoF magnetic localization system is designed
for the position and orientation estimation of untethered
mesoscale magnetic robots [18]. The system uses an external
magnetic sensor system and electromagnets for the localiza-
tion of the magnetic capsule robot. A 2D-Hall-effect sensor
array measures the component of the magnetic field from
the permanent magnet inside the capsule robot at several
locations outside of the robotic workspace. Additionally, a
computer-controlled magnetic coil array consisting of nine
electromagnets generates the magnetic field for actuation.
The core idea of our localization technique is the separation
of the capsule’s magnetic field component from the actuator’s
magnetic field component. For that purpose, the actuator’s
magnetic field is subtracted from the magnetic field data
which is acquired by a Hall-effect sensor array. The magnetic
localization system estimates a 5-DoF pose, which includes
3D translation and rotation about two axes. (From the mag-
netic localization information, our system only uses the 3D
position parameters and the scale information). Figures 2 and
3 demonstrate the magnetic actuation and localization setup.

B. Visual Localization

1) Multi-scale vessel enhancement and depth image cre-
ation: Endoscopic images have mostly homogeneous and
poorly textured areas. To prepare the camera frames for
input into the ElasticFusion pipeline, our framework starts
with a vessel enhancement operation inspired from [29]. Our
approach enhances blood vessels by analyzing the multiscale
second order local structure of an image. First, we extract



Fig. 3: Illustration of the experimental setup. MASCE is a magnetically actuated robotic capsule endoscope prototype which
has a ringmagnet on the body. An electromagnetic coil array consisting of nine coils is used for the actuation of the MASCE.
An opened and oiled porcine stomach simulator is used to represent human stomach. Artec 3D scanner is used for ground
truth map estimation. OptiTrack system consisting of eight infrared cameras is employed for the ground truth pose estimation.

the Hessian matrix :

H =

[
Ixx Ixy
Iyx Iyy

]
(1)

where I is the input image, and Ixx, Ixy, Iyx, Iyy the second
order derivatives, respectively. Secondly, eigenvalues |λ1| ≤
|λ2| and principal directions u1, u2 of the Hessian matrix are
extracted. The eigenvalues and principal directions are then
ordered and analyzed to decide whether the region belongs
to a vessel. To identify vessels in different scales and sizes,
multiple scales are created by convolving the input image
and the final output is taken as the maximum of the vessel
filtered image across all scales. Figure 4 shows input RGB
images, vessel detection and vessel enhancement results for
four different frames.

To create depth from input RGB data, we implemented
a real-time version of the perspective shape from shading
under realistic conditions [30] by reformulating the com-
plex inverse problem into a highly parallelized non-linear
optimization problem, which we solve efficiently using GPU
programming and a Gauss-Newton solver. Figure 4 shows
samples of input RGB images and depth images created from
them.

2) Joint photometric-geometric pose estimation: We
make use of direct surfel map fusion approach. The core
algorithm is inspired by and modified from the ElasticFusion
method originally described by Whelan et al. [28], which
uses a dense map and non-rigid model deformation to
account for changing environments. In parallel to Whelan et
al. [28], our approach performs joint volumetric-photometric
alignment, frame-to-model predictive tracking, and dense
model-to-model loop closure with non-rigid space deforma-
tions.

The vision-based localization system operates on the prin-
ciple of optimizing both relative photometric and geometric
pose errors between consecutive frames. The camera pose of
the endoscopic capsule robot is described by a transformation
matrix Pt :

Pt =

[
Rt tt

01×3 1

]
∈ SE3. (2)

Given the depth image D , the 3D back-projection of a
point u is defined as p(u,D) = K−1ud(u), where K is the

camera intrinsics matrix and u is the homogeneous form of u.
Geometric pose estimation is performed by minimizing the
energy cost function Eicp between the current depth frame,
D l

t , and the active depth model, D̂a
t−1:

Eicp = ∑
k
((vk− exp(ξ̂ )Tvt

k) ·nk)2 (3)

where vk
t is the back-projection of the k-th vertex in D l

t ,
vk and nk are the corresponding vertex and normal from
the previous frame. T is the estimated transformation from
the previous to the current robot pose and exp(ξ̂ ) is the
exponential mapping function from Lie algebra se3 to Lie
group SE3, which represents small changes The photometric
pose ξ between the current surfel-based reconstructed RGB
image C l

t and the active RGB model Ĉ a
t−1 is determined by

minimizing the photometric energy cost function:

Ergb = ∑
u∈Ω

(
I(u,C l

t )− I(π(Kexp(ξ̂ )Tp(u,D l
t )), Ĉ

a
t−1)

)2

(4)
where as above T is the estimated transformation from
previous to the current camera pose.

The joint photometric-geometric pose optimization is de-
fined by the cost function:

Etrack = Eicp +wrgbErgb, (5)

with wrgb = 0.13, which was determined experimentally for
our datasets. For the minimization of this cost function in
real-time, the Gauss-Newton method is employed. At each
iteration of the method, the transformation T is updated as
T→ exp(ξ̂ )T.

C. Relative pose of magnetic and visual localization systems

To relate the magnetic actuation and localization system
with the proposed vision system, the relative pose has to
be estimated, which can be done using rigid motion model
and the constraint of the rigid transformation between the
magnetic localization system, magnetic actuation system and
the camera. To estimate the relative pose, we assumed a value
for the missing rotational DoF in the magnetic sensor data
and used an approach based on the method described in [32].
Several motions were performed, and using the estimates
of the relative pose (between consecutive positions), the
rigid transformation between the two coordinate systems was



Fig. 4: For a given RGB frame, we extract the Hessian matrix
and derive its eigenvalues and principal directions to detect
the vessel. We convolve the input frame and final output to
create multiple scale representations to identify the different
vessels. After enhancement of vessel detected frame, we use
shape from shading to create depth map. Qualitative results
for sample frames are illustrated in the figure. Here, the
dataset of our samples are collected in our experimental setup
from an ex-vivo real pig stomach.

estimated. The use of several motions allowed the estimation
of the uncertainty in the parameters.

D. Particle Filtering based Magneto-Visual Sensor Fusion

We developed a particle filtering based sensor fusion
method for endoscopic capsule robots which is inspired
by and modifed from [31]. As motion model, we use a
rigid body motion model (3D rotation and 3D translation)
assuming a constant velocity which is fairly obeyed during
incremental motions of magnetically actuated endoscopic
capsule robots. The proposed fusion approach estimates the
3D translation using the measurements from the magnetic
sensor, including the scale factor, and the 3D rotation using
visual localization.

The state xt composes the 6-DoF pose for the capsule
robot, which is assumed to propagate in time according to a
transition model:

xt = f (xt−1,vt) (6)

where f is a non-linear state transition function and vt
is white noise. t is the index of a time sequence, t ∈
{1,2,3, ...}. Observations of the pose are produced by n
sensors zk,t(k = 1, ...,n) in general, where the probability
distribution p(zk,t |xt) is known for each sensor. We estimate
the 6-DoF pose states relying on latent (hidden) variables by
using the Bayesian filtering approach. The hidden variables
of sensor states are denoted as sk,t , which we call switch
variables, where sk,t ∈ {0, ...,dk} for k = 1, ...,n. dk is the
number of possible observation models, e.g., failure and
nominal sensor states. The observation model for zk,t can
be described as:

zk,t = hk,sk,t ,t(xt)+wk,sk,t ,t (7)

where hk,sk,t ,t(xt) is the non-linear observation function and
wk,sk,t ,t is the observation noise. The prior probability for the
switch parameter sk,t being in a given state j, is denoted as
αk, j,t and it is the probability for each sensor to be in a given
state:

Pr(sk,t = j) = αk, j,t , 0≤ j ≤ dk (8)

where αk, j,t ≥ 0 and ∑
dk
j=0 αk, j,t = 1 with a Markov evo-

lution property. The objective posterior density function
p(x0:t ,s1:t ,α0:t |z1:t) and the marginal posterior probability
p(xt |z1:t) , in general, cannot be determined in a closed form
due to its complex shape. However, sequential Monte Carlo
methods (particle filters) provide a numerical approximation
of the posterior density function with a set of samples (par-
ticles) weighted by the kinematics and observation models.

E. Scene Reconstruction

For scene reconstruction, we use surfels. Each surfel has
a position, normal, color, weight, radius, initialization times-
tamp and last updated timestamp. We also define a deforma-
tion graph consisting of a set of nodes and edges to detect
non-rigid deformations throughout the frame sequence. Each
node G n has a timestamp G n

t0 , a position G n
g ∈R3 and a set of

neighboring nodes N (G n). The directed edges of the graph
are neighbors of each node. A graph is connected up to a
neighbor count k such that ∀n, |N (G n)|= k. Each node also
stores an affine transformation in the form of a 3×3 matrix
G n

R and a 3× 1 vector G n
t . When deforming a surface, the

G n
R and G n

t parameters of each node are optimized according
to surface constraints. In order to apply a deformation graph
to the surface, each surfel M s identifies a set of influencing
nodes in the graph I (M s,G ). The deformed position of a
surfel is given by:

M̂ s
p = φ(M s)= ∑

n∈I (M s,G )

wn(M s)[G n
R(M

s
p−G n

g )+G n
g +G n

t ]

(9)
while the deformed normal of a surfel is given by:

M̂ s
p = ∑

n∈I (M s,G )

wn(M s)G n−1T

R M s
n , (10)

where wn(M s) is a scalar representing the influence of G n

on surfel M s, summing to a total of 1 when n = k:

wn(M s) = (1−||M s
p−G n

g ||2/dmax)
2. (11)

Here, dmax is the Euclidean distance to the k+1-nearest node
of Ms.

To ensure a globally consistent surface reconstruction, the
framework closes loops with the existing map as those areas
are revisited. This loop closure is performed by fusing reac-
tivated parts of the inactive model into the active model and
simultaneously deactivating surfels which have not appeared
for a period of time.



(a) Translational error (b) Rotational error

(c) Depth error (d) Trajectory error

Fig. 5: Figure (a) and Figure (b) demonstrates translational and rotational errors of x, y, z axes for our proposed method.
The translational motion of 5 mm results in around 0.5 mm drift on average for x,y,z, whereas a 5 degree rotational motion
results in 0.5 degree error maximum. The absolute depth error results for magnetic localization, visual localization and our
method is illustrated in (c). It can be observed that our method outperforms the others in depth estimation for different
trajectory lengths. In (d), we compare the trajectory errors of magnetic localization, visual localization, ORB SLAM, LSD
SLAM and our method. For each of different trajectory lengths, our method outperforms the localization methods that use
only visual or magnetic sensors and SLAM methods. For example, in a trajectory with 20 cm, our method estimates with
a 1.25 cm error, whereas the error of magnetic localization is 1.6, visual localization is 2.1, ORB SLAM is 2.6, and LSD
SLAM is 3.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of our system both quan-
titatively and qualitatively in terms of surface reconstruc-
tion, trajectory estimation and computational performance.
Figure 3 illustrates our experimental setup. Four different
endoscopic cameras were used to capture endoscopic capsule
videos which were mounted on our magnetically activated
soft capsule endoscope (MASCE) systems. The dataset was
recorded on four different open non-rigid porcine stomach.
Ground truth 3D reconstructions of stomachs were acquired
by scanning with a high-quality 3D scanner Artec Space
Spider. These 3D scans served as the gold standard for the
evaluations of the 3D map reconstruction. To obtain the
ground truth for 6-DoF camera pose, an OptiTrack motion
tracking system consisting of eight infrared cameras was
utilized. A total of 15 minutes of stomach videos were
recorded containing over 10K frames. Some sample frames

of the dataset are shown in Fig. 4 for visual reference.

A. Surface reconstruction and trajectory estimation

We used the map benchmarking technique proposed by
[33] for the evaluation of the map reconstruction and ATE
[34] for trajectory comparisons. Since iterative closest point
algorithm (ICP) is a non-convex procedure highly dependent
on a good initialization, we first manually align reference
and estimated point cloud by picking six corresponding point
pairs between both point clouds. Using these six manually
picked corresponding point pairs, the transformation matrix
is estimated which minimizes square sum difference between
aligned and reference cloud. As a next step, ICP is applied
between manually aligned cloud pair to fine-tune the align-
ment. The termination criteria for ICP iterations is an RMSE
difference of 0.001 cm between consecutive iterations. We
use Euclidean distances between aligned and reference cloud
points to calculate the RMSE for depth. Surface reconstruc-



(a) 10 frames (b) 100 frames (c) 300 frames (d) 500 frames

Fig. 6: Reconstructed 3D map of a porcine non-rigid stomach simulator for total number of 10, 100, 300 and 500 frames,
respectively. The illustrations are complementary to surface reconstruction errors given in Fig. 5d. It is observable that the
proposed method reconstructs 3D organ surface precisely.

tion errors are compared with the magnetic localization-
based and visual localization-based surface reconstruction
errors in Fig. 5c. Results indicate that the proposed method
reconstructs 3D organ surface very precisely outperforming
both methods. Table I shows the reconstruction error metrics
for full trajectory lengths and four different porcine stomachs
including mean, median, standard deviation, minimum and
maximum error. Sample 3D reconstructed maps for different
lengths of frame sequences (10, 100, 300, 500 frames) are
shown in Fig. 6, for visual reference.

Figures 5a and 5b demonstrate absolute translational and
rotational errors for our method, magnetic sensor-based lo-
calization and vision-based localization. Observation shows
that proposed hybrid approach outperforms both sensor types
clearly in terms of translational and rotational motion esti-
mation. A translational motion of 5 mm results in a drift
of around 0.5 mm on average for x,y,z axes, whereas a
5 degree rotational motion results in a maximum error of
0.5 degree. Figure 5 shows the absolute trajectory errors
acquired by our method, compared to ORB SLAM [34],
LSD SLAM [35], magnetic sensor-based and visual sensor-
based localization. Results again indicate, that the proposed
hybrid method outperforms other methods. For example, in
a trajectory of 20 cm length, our method estimates with
an error of 1.25 cm, whereas magnetic localization, visual
localization, ORB and LSD SLAM estimate with an error of
1.6 cm, 2.1 cm, 2.6 cm, and 3 cm, respectively.

TABLE I: Reconstruction results for different stomach se-
quences.

Error (cm) St0 St1 St2 St3
Mean 1.81 1.97 1.58 2.17

Median 1.69 1.55 1.38 1.98
Std. 1.94 2.67 1.73 2.32
Min 0.00 0.00 0.00 0.00
Max 3.4 4.2 3.1 4.5

B. Computational Performance

To analyze the computational performance of the system,
we observed the average frame processing time across the

videos. The test platform was a desktop PC with an Intel
Xeon E5-1660v3-CPU at 3.00 GHz, 8 cores, 32GB of RAM
and an NVIDIA Quadro K1200 GPU with 4GB of memory.
The execution time of the system is depended on the number
of surfels in the map, with an overall average of 45 ms per
frame scaling to a peak average of 52 ms implying a worst
case processing frequency of 19 Hz.

V. CONCLUSION

In this paper, we have presented a magnetic-RGB Depth
fusion based 3D reconstruction and localization method
for endoscopic capsule robots. Our system makes use of
dense reconstruction in combination with particle filter based
fusion of magnetic and visual localization. The proposed
system is able to produce a highly accurate 3D map of
the explored inner organ tissue and is able to stay close to
the ground truth endoscopic capsule robot trajectory even
for challenging robot trajectories. Even though the proposed
system shows surface reconstruction errors varying between
1.58 to 2.17 cm, critical medical operations such as biopsy,
drug delivery etc. require sub-millimeter precision which was
not achievable with our framework. To reach sub-millimeter
precisions and increase the robustness of the system, we
intend to extend our work into stereo capsule endoscopy.
Moreover, we plan to perform in vivo testings to validate the
accuracy and robustness of the proposed approach in real
medical conditions.
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“A non-rigid map fusion-based rgb-depth SLAM method for
endoscopic capsule robots,” CoRR, vol. abs/1705.05444, 2017.
[Online]. Available: http://arxiv.org/abs/1705.05444

[16] T. D. Than, G. Alici, H. Zhou, and W. Li, “A review of localization
systems for robotic endoscopic capsules,” IEEE Transactions on
Biomedical Engineering, vol. 59, no. 9, pp. 2387–2399, 2012.

[17] S. Yim and M. Sitti, “3-d localization method for a magnetically actu-
ated soft capsule endoscope and its applications,” IEEE Transactions
on Robotics, vol. 29, no. 5, pp. 1139–1151, 2013.

[18] D. Son, S. Yim, and M. Sitti, “A 5-d localization method for a
magnetically manipulated untethered robot using a 2-d array of hall-
effect sensors,” IEEE/ASME Transactions on Mechatronics, vol. 21,
no. 2, pp. 708–716, 2016.

[19] Y. Geng and K. Pahlavan, “On the accuracy of rf and image processing
based hybrid localization for wireless capsule endoscopy,” in Wireless
Communications and Networking Conference (WCNC), 2015 IEEE,
2015, pp. 452–457.

[20] P. Mountney and G.-Z. Yang, “Dynamic view expansion for minimally
invasive surgery using simultaneous localization and mapping,” in
Engineering in Medicine and Biology Society, 2009. EMBC 2009.
Annual International Conference of the IEEE. IEEE, 2009, pp. 1184–
1187.

[21] O. G. Grasa, E. Bernal, S. Casado, I. Gil, and J. Montiel, “Visual slam
for handheld monocular endoscope,” IEEE transactions on medical
imaging, vol. 33, no. 1, pp. 135–146, 2014.

[22] D. Stoyanov, M. V. Scarzanella, P. Pratt, and G.-Z. Yang, “Real-
time stereo reconstruction in robotically assisted minimally invasive
surgery,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, 2010, pp. 275–282.

[23] L. Liu, C. Hu, W. Cai, and M. Q.-H. Meng, “Capsule endoscope
localization based on computer vision technique,” in Engineering in

Medicine and Biology Society, 2009. EMBC 2009. Annual Interna-
tional Conference of the IEEE. IEEE, 2009, pp. 3711–3714.

[24] P. Mountney and G.-Z. Yang, “Motion compensated slam for image
guided surgery,” Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2010, pp. 496–504, 2010.

[25] P. Mountney, D. Stoyanov, A. Davison, and G.-Z. Yang, “Simultaneous
stereoscope localization and soft-tissue mapping for minimal invasive
surgery,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, 2006, pp. 347–354.

[26] B. Lin, A. Johnson, X. Qian, J. Sanchez, and Y. Sun, “Simultaneous
tracking, 3d reconstruction and deforming point detection for stereo-
scope guided surgery,” in Augmented Reality Environments for Medical
Imaging and Computer-Assisted Interventions. Springer, 2013, pp.
35–44.

[27] N. Mahmoud, I. Cirauqui, A. Hostettler, C. Doignon, L. Soler,
J. Marescaux, and J. Montiel, “Orbslam-based endoscope tracking and
3d reconstruction,” arXiv preprint arXiv:1608.08149, 2016.

[28] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, pp.
1697–1716, 2016.

[29] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever,
“Multiscale vessel enhancement filtering,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 1998, pp. 130–137.

[30] M. Visentini-Scarzanella, D. Stoyanov, and G.-Z. Yang, “Metric depth
recovery from monocular images using shape-from-shading and spec-
ularities,” IEEE International Conference on Image Processing (ICIP),
2012.

[31] F. Caron, M. Davy, E. Duflos, and P. Vanheeghe, “Particle filtering
for multisensor data fusion with switching observation models: Ap-
plication to land vehicle positioning,” IEEE Transactions on Signal
Processing, vol. 55, no. 6, pp. 2703–2719, 2007.
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