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Abstract

Accurate segmentation of tubular, network-like struc-
tures, such as vessels, neurons, or roads, is relevant to
many fields of research. For such structures, the topology
is their most important characteristic; particularly preserv-
ing connectedness: in the case of vascular networks, miss-
ing a connected vessel entirely alters the blood-flow dynam-
ics. We introduce a novel similarity measure termed center-
lineDice (short clDice), which is calculated on the inter-
section of the segmentation masks and their (morpholog-
ical) skeleta. We theoretically prove that clDice guaran-
tees topology preservation up to homotopy equivalence for
binary 2D and 3D segmentation. Extending this, we pro-
pose a computationally efficient, differentiable loss func-
tion (soft-clDice) for training arbitrary neural segmenta-
tion networks. We benchmark the soft-clDice loss on five
public datasets, including vessels, roads and neurons (2D
and 3D). Training on soft-clDice leads to segmentation with
more accurate connectivity information, higher graph simi-
larity, and better volumetric scores.

*The authors contributed equally to the work

1. Introduction

Segmentation of tubular and curvilinear structures is an
essential problem in numerous domains, such as clinical
and biological applications (blood vessel and neuron seg-
mentation from microscopic, optoacoustic, or radiology im-
ages), remote sensing applications (road network segmen-
tation from satellite images) and industrial quality control,
etc. In the aforementioned domains, a topologically accu-
rate segmentation is necessary to guarantee error-free down-
stream tasks, such as computational hemodynamics, route
planning, Alzheimer’s disease prediction [17], or stroke
modeling [19]. When optimizing computational algorithms
for segmenting curvilinear structures, the two most com-
monly used categories of quantitative performance mea-
sures for evaluating segmentation accuracy of tubular struc-
tures, are 1) overlap based measures such as Dice, preci-
sion, recall, and Jaccard index; and 2) volumetric distance
measures such as the Hausdorff and Mahalanobis distance
[20, 40, 35, 15].
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Figure 1. Motivation: The figure shows a 3D rendering of a com-
plex, whole brain vascular dataset [48], where an exemplary 2D
slice of the data is chosen and segmented by two different models,
see purple (middle) and red (right), respectively. The two segmen-
tation results achieve identical quality in terms of the traditional
Dice score. Note that the purple segmentation does not capture the
small vessels while segmenting the large vessel very accurately;
on the other side, the red segmentation captures all vessels in the
image while being less accurate on the radius of the large vessel.
Skeleta are drawn in yellow. From a topology or network perspec-
tive, the red segmentation is evidently preferred.

However, in most segmentation problems, where the
object of interest is 1) locally a tubular structure and 2)
globally forms a network, the most important characteris-
tic is the connectivity of the global network topology. Note
that network in this context implies a physically connected
structure, such as a vessel network, a road network, etc.,
which is also the primary structure of interest for the given
image data. As an example, one can refer to brain vas-
culature analysis, where a missed vessel segment in the
segmentation mask can pathologically be interpreted as a
stroke or may lead to dramatic changes in a global simu-
lation of blood flow. On the other hand, limited over- or
under-segmentation of vessel radius can be tolerated, be-
cause it does not affect clinical diagnosis.
For evaluating segmentations in such tubular-network struc-
tures, traditional volume-based performance indices are
sub-optimal. For example, Dice and Jaccard rely on the
average voxel-wise hit or miss prediction [46]. In a task
like network-topology extraction, a spatially contiguous se-
quence of correct voxel prediction is more meaningful than
a spurious correct prediction. This ambiguity is relevant for
objects of interest, which are of the same thickness as the
resolution of the signal. For them, it is evident that a single-
voxel shift in the prediction can change the topology of the

whole network. Further, a globally averaged metric does
not equally weight tubular-structures with large, medium,
and small radii (cf. Fig 1). In real vessel datasets, where
vessels of wide radius ranges exist, e.g. 30 µm for arteri-
oles and 5 µm for capillaries [48, 9], training on a globally
averaged loss induces a strong bias towards the volumet-
ric segmentation of large vessels. Both scenarios are pro-
nounced in imaging modalities, such as fluorescence mi-
croscopy [48, 58] and optoacoustics, which focus on map-
ping small capillary structures.

To this end, we are interested in a topology-aware seg-
mentation of an image, eventually enabling correct network
extraction. Therefore, we ask the following research ques-
tions:

Q1. What is a good pixelwise measure to benchmark seg-
mentation algorithms for tubular, and related linear
and curvilinear structure segmentation while guaran-
teeing the preservation of the network-topology?

Q2. Can we use this improved measure as a loss function
for neural networks, which is a void in existing litera-
ture?

1.1. Related Literature

Achieving topology preservation can be crucial to ob-
tain meaningful segmentation, particularly for elongated
and connected shapes, e.g. vascular structures or roads.
However, analyzing preservation of topology while simpli-
fying geometries is a difficult analytical and computational
problem [11, 10].
For binary geometries, various algorithms based on thin-
ning and medial surfaces have been proven to be topology-
preserving according to varying definitions of topology
[22, 24, 25, 34]. For non-binary geometries, existing meth-
ods applied topology and connectivity constraints onto vari-
ational and Markov random field-based methods: tree shape
priors for vessel segmentation [44], graph representation
priors to natural images [2], higher-order cliques which con-
nect superpixels [53] and adversarial learning for road seg-
mentation [51], integer programming to general curvilin-
ear structures [49], and proposed a tree-structured convo-
lutional gated recurrent unit [21], among others [3, 14, 31,
30, 33, 36, 41, 52, 57, 56]. Further, topological priors of
containment were applied to histology scans [5], a 3D CNN
with graph refinement was used to improve airway connec-
tivity [18], and recently, Mosinska et al. trained networks
which perform segmentation and path classification simul-
taneously [29]. Another approach enables the predefinition
of Betti numbers and enforces them on the training[8].

The aforementioned literature has advanced the com-
munities understanding of topology-preservation, but crit-
ically, they do not possess end-to-end loss functions that
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Figure 2. Schematic overview of our proposed method: Our proposed clDice loss can be applied to any arbitrary segmentation network.
The soft-skeletonization can be easily implemented using pooling functions from any standard deep-learning toolbox.

optimize topology-preservation. In this context, the litera-
ture remains sparse. Recently, Mosinska et al. suggested
that pixel-wise loss-functions are unsuitable and used se-
lected filter responses from a VGG19 network as an addi-
tional penalty [28]. Nonetheless, their approach does not
prove topology preservation. Importantly, Hu et al. pro-
posed the first continuous-valued loss function based on the
Betti number and persistent homology [16]. However, this
method is based on matching critical points, which, accord-
ing to the authors makes the training very expensive and
error-prone for real image-sized patches [16]. While this is
already limiting for a translation to large real world data set,
we find that none of these approaches have been extended
to three dimensional (3D) data.

1.2. Our Contributions

The objective of this paper is to identify an efficient,
general, and intuitive loss function that enables topology
preservation while segmenting tubular objects. We intro-
duce a novel connectivity-aware similarity measure named
clDice for benchmarking tubular-segmentation algorithms.
Importantly, we provide theoretical guarantees for the topo-
logical correctness of the clDice for binary 2D and 3D seg-
mentation. As a consequence of its formulation based on
morphological skeletons, our measure pronounces the net-
work’s topology instead of equally weighting every voxel.
Using a differentiable soft-skeletonization, we show that the
clDice measure can be used to train neural networks. We
show experimental results for various 2D and 3D network
segmentation settings and tasks to demonstrate the practical

applicability of our proposed similarity measure and loss
function.

2. Let’s Emphasize Connectivity

We propose a novel connectivity-preserving metric to
evaluate tubular and linear structure segmentation based on
intersecting skeletons with masks. We call this metric a
centerline-in-mask-Dice-coefficient or centerlineDice or
clDice. We consider two binary masks: the ground truth
mask (VL) and the predicted segmentation masks (VP ).
First, the skeletons SP and SL are extracted from VP and
VL respectively. Subsequently, we compute the fraction of
SP that lies within VL, which we call Topology Precision or
Tprec(SP , VL), and vice-a-versa we obtain Topology Sen-
sitivity or Tsens(SL, VP ) as defined bellow;

Tprec(SP , VL) =
|SP ∩ VL|
|SP |

; Tsens(SL, VP ) =
|SL ∩ VP |
|SL|

(1)

We observe that the measure Tprec(SP , VL) is suscepti-
ble to false positives in the prediction while the measure
Tsens(SL, VP ) is susceptible to false negatives. This ex-
plains our rationale behind referring to the Tprec(SP , VL)
as topology’s precision and to the Tsens(SL, VP ) as its sen-
sitivity. Since we want to maximize both precision and sen-
sitivity (recall), we define clDice to be the harmonic mean
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(also known as F1 or Dice) of both the measures:

clDice(VP , VL) = 2× Tprec(SP , VL)× Tsens(SL, VP )

Tprec(SP , VL) + Tsens(SL, VP )
(2)

Note that our clDice formulation is not defined for Tprec =
0 and Tsens = 0, but can easily be extended continuously
with the value 0.

3. Topological Guarantees for clDice
The following section provides general theoretical

guarantees for the preservation of topological properties
achieved by optimizing clDice under mild conditions on the
input. Roughly, these conditions state that the object of in-
terest is embedded in S3 in a non-knotted way, as is typi-
cally the case for blood vessel and road structures.

Specifically, we assume that both ground truth and
prediction admit foreground and background skeleta,
which means that both foreground and background are
homotopy-equivalent to topological graphs, which we
assume to be embedded as skeleta. Here, the voxel grid is
considered as a cubical complex, consisting of elementary
cubes of dimensions 0, 1, 2, and 3. This is a special case
of a cell complex (specifically, a CW complex), which is a
space constructed inductively, starting with isolated points
(0-cells), and gluing a collection of topological balls of
dimension k (called k-cells) along their boundary spheres
to a k − 1-dimensional complex. The voxel grid, seen as a
cell complex in this sense, can be completed to an ambient
complex that is homeomorphic to the 3-sphere S3 by
attaching a single exterior cell to the boundary. In order to
consider foreground and background of a binary image as
complementary subspaces, the foreground is now assumed
to be the union of closed unit cubes in the voxel grid,
corresponding to voxels with value 1; and the background
is the complement in the ambient complex. This conven-
tion is commonly used in digital topology [23, 22]. The
assumption on the background can then be replaced by a
convenient equivalent condition, stating that the foreground
is also homotopy equivalent to a subcomplex obtained from
the ambient complex by only removing 3-cells and 2-cells.
Such a subcomplex is then clearly homotopy-equivalent to
the complement of a 1-complex.

We will now observe that the above assumptions imply
that the foreground and the background are connected
and have a free fundamental group and vanishing higher
fundamental groups. In particular, the homotopy type is
already determined by the first Betti number 1; moreover,

1Betti numbers: β0 represents the number of distinct connected-
components, β1 represents the number of circular holes, and β2 represents
the number of cavities, for depictions see Supplementary material

a map inducing an isomorphism in homology is already
a homotopy equivalence. To see this, first note that both
foreground and background are assumed to have the
homology of a graph, in particular, homology is trivial in
degree 2. By Alexander duality [1], then, both foreground
and background have trivial reduced cohomology in degree
0, meaning that they are connected. This implies that both
have a free fundamental group (as any connected graph)
and vanishing higher homotopy groups. In particular,
since homology in degree 1 is the Abelianization of the
fundamental group, these two groups are isomorphic.
This in turn implies that in our setting a map that induces
isomorphisms in homology already induces isomorphisms
between all homotopy groups. By Whitehead’s theorem
[54], such a map is then a homotopy equivalence.

The following theorem shows that under our assump-
tions on the images admitting foreground and background
skeleta, the existence of certain nested inclusions already
implies the homotopy-equivalence of foreground and back-
ground, which we refer to as topology preservation.

Theorem 1. Let LA ⊆ A ⊆ KA and LB ⊆ B ⊆ KB

be connected subcomplexes of some cell complex. Assume
that the above inclusions are homotopy equivalences. If the
subcomplexes also are related by inclusions LA ⊆ B ⊆
KA and LB ⊆ A ⊆ KB , then these inclusions must be
homotopy equivalences as well. In particular, A and B are
homotopy-equivalent.

Proof. An inclusion of cell complexes map is a homotopy
equivalence if and only if it induces isomorphisms on all
homotopy groups. Since the inclusion LA ⊆ B ⊆ KA

induces an isomorphism, the inclusion LA ⊆ B induces a
left-inverse, and since B ⊆ KB induces an isomorphism,
the inclusion LA ⊆ KB also induces a left-inverse. At the
same time, since the inclusion LB ⊆ A ⊆ KB induces an
isomorphism, the inclusion A ⊆ KB induces a left-inverse,
and since LA ⊆ A induces an isomorphism, the inclusion
LA ⊆ KB also induces a right-inverse. Together, this im-
plies that the inclusion LA ⊆ KB induces an isomorphism.

Together with the isomorphisms induced byLA ⊆ A and
B ⊆ KB , we obtain isomorphisms induced byLA ⊆ B and
by A ⊆ KB , which compose to an isomorphism between
the homotopy groups of A and B.

Corollary 1.1. Let VL and VP be two binary masks admit-
ting foreground and background skeleta, such that the fore-
ground skeleton of VL is included in the foreground of VP
and vice versa, and similarly for the background. Then the
foregrounds of VL and VP are homotopy equivalent, and the
same is true for their backgrounds.

Note that the inclusion condition in this corollary is sat-
isfied if and only if clDice evaluates to 1 on both foreground
and background of (VL, VP ).
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This proof lays the ground for a general interpretation
of clDice as a topology preserving metric. Additionally,
we provide an elaborate explanation of clDice topological
properties, using concepts of applied digital topology in the
theory section of the Supplementary material [23, 22].

4. Training Neural Networks with clDice
In the previous section we provided general theoretic

guarantees how clDice has topology preserving properties.
The following chapter shows how we applied our theory
to efficiently train topology preserving networks using the
clDice formulation.

4.1. Soft-clDice using Soft-skeletonization:

Extracting accurate skeletons is essential to our method.
For this task, a multitude of approaches has been proposed.
However, most of them are not fully differentiable and
therefore unsuited to be used in a loss function. Popular
approaches use the Euclidean distance transform or utilize
repeated morphological thinning. Euclidean distance
transform has been used on multiple occasions [42, 55],
but remains a discrete operation and, to the best of our
knowledge, an end-to-end differentiable approximation
remains to be developed, preventing the use in a loss
function for training neural networks. On the contrary,
morphological thinning is a sequence of dilation and
erosion operations [c.f. Fig. 3]. Importantly, thinning using
morphological operations (skeletonization) on curvilinear
structures is indeed topology-preserving [34]. Min- and
max filters are commonly used as the grey-scale alternative
of morphological dilation and erosion. Motivated by
this, we propose ‘soft-skeletonization’, where an iterative
min- and max-pooling is applied as a proxy for morpho-
logical erosion and dilation. The Algorithm 1 describes
the iterative processes involved in its computation. The
hyper-parameter k involved in its computation represents
the iterations and has to be greater than or equal to the
maximum observed radius. In our experiments, this param-
eter depends on the dataset. For example, it is k = 5...25
in our experiments, matching the pixel radius of the largest
observed tubular structures. Choosing a larger k does not
reduce performance but increases computation time. On the
other hand, a too low k leads to incomplete skeletonization.
In Figure 3, the successive steps of our skeletonization
are intuitively represented. In the early iterations, the
structures with a small radius are skeletonized and pre-
served until the later iterations when the thicker structures
become skeletonized. This enables the extraction of a
parameter-free, morphologically motivated soft-skeleton.
The aforementioned soft-skeletonization enables us to use
clDice as a fully differentiable, real-valued, optimizable
measure. The Algorithm 2 describes its implementation.
We refer to this as the soft-clDice.

For a single connected foreground component and in the
absence of knots, the homotopy type is specified by the
number of linked loops. Hence, if the reference and the pre-
dicted volumes are not homotopy equivalent, they do not
have pairwise linked loops. To include these missing loops
or exclude the extra loops, one has to add or discard de-
formation retracted skeleta of the solid foreground. This
implies adding new correctly predicted voxels. In contrast
to other volumetric losses such as Dice, cross-entropy, etc.,
clDice only considers the deformation-retracted graphs of
the solid foreground structure. Thus, we claim that clDice
requires the least amount of new correctly predicted voxels
to guarantee the homotopy equivalence. Along these lines,
Dice or cross-entropy can only guarantee homotopy equiv-
alence if every single voxel is segmented correctly. On the
other hand, clDice can guarantee homotopy equivalence for
a broader combinations of connected-voxels. Intuitively,
this is a very much desirable property as it makes clDice
robust towards outliers and noisy segmentation labels.

4.2. Cost Function

Since our objective here is to preserve topology while
achieving accurate segmentations, and not to learn skeleta,
we combine our proposed soft-clDice with soft-Dice in the
following manner:

Lc = (1− α)(1− softDice) + α(1− softclDice) (3)

where α ∈ [0, 0.5]. In stark contrast to previous works,
where segmentation and centerline prediction has been
learned jointly as multi-task learning [50, 47], we are not
interested in learning the centerline. We are interested in
learning a topology-preserving segmentation. Therefore,
we restrict our experimental choice of alpha to α ∈ [0, 0.5].
We test clDice on two state-of-the-art network architec-
tures: i) a 2D and 3D U-Net[37, 6], and ii) a 2D and 3D
fully connected networks (FCN) [47, 13]. As baselines, we
use the same architectures trained using soft-Dice [26, 45].

4.3. Adaption for Highly Imbalanced Data

Our theory (Section 3), describes a two-class problem
where clDice should be computed on both the foreground
and the background channels. In our experiments, we show
that for complex and highly imbalanced dataset it is suffi-
cient to calculate the clDice loss on the underrepresented
foreground class. We attribute this to the distinct properties
of tubularness, sparsity of foreground and the lack of cavi-
ties (Betti number 2) in our data. An intuitive interpretation
how these assumptions are valid in terms of digital topology
can be found in the supplementary material.

5



after	i	iterations after	j	iterations after	k	iterations

Initial	vessel	structure

Figure 3. Based on the initial vessel structure (purple), sequential bagging of skeleton voxels (red) via iterative skeletonization leads to a
complete skeletonization, where d denotes the diameter and k > j > i iterations.

Algorithm 1: soft-skeleton
Input: I, k
I ′ ← maxpool(minpool(I))
S ← ReLU(I − I ′)

for i← 0 to k do
I ← minpool(I)
I ′ ← maxpool(minpool(I))
S ← S + (1− S) ◦ ReLU(I − I ′)

end
Output: S

Algorithm 2: soft-clDice
Input: VP , VL
SP ← soft-skeleton(VP )
SL ← soft-skeleton(VL)
Tprec(SP , VL)← |SP ◦VL|+ε

|SP |+ε

Tsens(SL, VP )← |SL◦VP |+ε
|SL|+ε

clDice←
2× Tprec(SP ,VL)×Tsens(SL,VP )

Tprec(SP ,VL)+Tsens(SL,VP )

Output: clDice
Figure 4. Algorithm 1 calculates the proposed soft-skeleton, here
I is the mask to be soft-skeletonized and k is the number of itera-
tions for skeletonization. Algorithm 2, calculates the soft-clDice
loss, where VP is a real-valued probabilistic prediction from a seg-
mentation network and VL is the true mask. We denote Hadamard
product using ◦.

5. Experiments

5.1. Datasets

We employ five public datasets for validating clDice and
soft-clDice as a measure and an objective function, respec-
tively. In 2D, we evaluate on the DRIVE retina dataset [43],
the Massachusetts Roads dataset [27] and the CREMI neu-

ron dataset [12]. In 3D, a synthetic vessel dataset with an
added Gaussian noise term [39] and the Vessap dataset of
multi-channel volumetric scans of brain vessels is used [48].
For the Vessap dataset we train different models for one and
two input channels. For all of the datasets, we perform three
fold cross-validation and test on held-out, large, and highly-
variant test sets. Details concerning the experimental setup
can be found in the supplementary material.

5.2. Evaluation Metrics

We compare the performance of various experimental
setups using three types of metrics: volumetric, topology-
based, and graph-based.

1. Volumetric: We compute volumetric scores such as
Dice coefficient, Accuracy, and the proposed clDice.

2. Topology-based: We calculate the mean of absolute
Betti Errors for the Betti Numbers β0 and β1 and the
mean absolute error of Euler characteristic, χ = V −
E+F , where V,E, and F denotes number of vertices,
edges, and faces.

3. Graph-based: we extract random patch-wise graphs for
the 2D/3D images. We uniformly sample fixed num-
ber of points from the graph and compute the Street-
moverDistance (SMD) [4]. SMD captures a Wasser-
stein distance between two graphs. Additionally we
compute the F1 score of junction-based metric [7].

5.3. Results and Discussion

We trained two segmentation architectures, a U-Net
and an FCN, for the various loss functions in our exper-
imental setup. As a baseline, we trained the networks
using soft-dice and compared it with the ones trained us-
ing the proposed loss (Eq. 3), by varying α from (0.1 to 0.5).

6



Table 1. Quantitative experimental results for the Massachusetts road dataset (Roads), the CREMI dataset, the DRIVE retina dataset and
the Vessap dataset (3D). Bold numbers indicate the best performance. The performance according to the clDice measure is highlighted in
rose. For all experiments we observe that using soft-clDice in Lc results in improved scores compared to soft-Dice. This improvement
holds for almost α > 0; α can be interpreted as a dataset specific hyper-parameter.

Dataset Network Loss Dice Accuracy clDice β0 Error β1 Error SMD [4] χerror Opt-J F1 [7]

Roads

FCN soft-dice 64.84 95.16 70.79 1.474 1.408 0.1216 2.634 0.766
Lc, α = 0.1 66.52 95.70 74.80 0.987 1.227 0.1002 2.625 0.768
Lc, α = 0.2 67.42 95.80 76.25 0.920 1.280 0.0954 2.526 0.770
Lc, α = 0.3 65.90 95.35 74.86 0.974 1.197 0.1003 2.448 0.775
Lc, α = 0.4 67.18 95.46 76.92 0.934 1.092 0.0991 2.183 0.803
Lc, α = 0.5 65.77 95.09 75.22 0.947 1.184 0.0991 2.361 0.782

U-NET

soft-dice 76.23 96.75 86.83 0.491 1.256 0.0589 1.120 0.881
Lc, α = 0.1 76.66 96.77 87.35 0.359 0.938 0.0457 0.980 0.878
Lc, α = 0.2 76.25 96.76 87.29 0.312 1.031 0.0415 0.865 0.900
Lc, α = 0.3 74.85 96.57 86.10 0.322 1.062 0.0504 0.827 0.913
Lc, α = 0.4 75.38 96.60 86.16 0.344 1.016 0.0483 0.755 0.916
Lc, α = 0.5 76.45 96.64 88.17 0.375 0.953 0.0527 1.080 0.894

Mosinska et al. [28, 16] - 97.54 - - 2.781 - - -
Hu et al. [16] - 97.28 - - 1.275 - - -

CREMI

U-NET

soft-dice 91.54 97.11 95.86 0.259 0.657 0.0461 1.087 0.904
Lc, α = 0.1 91.76 97.21 96.05 0.222 0.556 0.0395 1.000 0.900
Lc, α = 0.2 91.66 97.15 96.01 0.231 0.630 0.0419 0.991 0.902
Lc, α = 0.3 91.78 97.18 96.21 0.204 0.537 0.0437 0.919 0.913
Lc, α = 0.4 91.56 97.12 96.09 0.250 0.630 0.0444 0.995 0.902
Lc, α = 0.5 91.66 97.16 96.16 0.231 0.620 0.0455 0.991 0.907

Mosinska et al. [28, 16] 82.30 94.67 - - 1.973 - - -
Hu et al. [16] - 94.56 - - 1.113 - - -

DRIVE retina

FCN

soft-Dice 78.23 96.27 78.02 2.187 1.860 0.0429 3.275 0.773
Lc, α = 0.1 78.36 96.25 79.02 2.100 1.610 0.0393 3.203 0.777
Lc, α = 0.2 78.75 96.29 80.22 1.892 1.382 0.0383 2.895 0.793
Lc, α = 0.3 78.29 96.20 80.28 1.888 1.332 0.0318 2.918 0.798
Lc, α = 0.4 78.00 96.11 80.43 2.036 1.602 0.0423 3.141 0.764
Lc, α = 0.5 77.76 96.04 80.95 1.836 1.408 0.0394 2.848 0.794

U-Net soft-Dice 74.25 95.63 75.71 1.745 1.455 0.0649 2.997 0.760
Lc, α = 0.5 75.21 95.82 76.86 1.538 1.389 0.0586 2.737 0.767

Mosinska et al. [28, 16] - 95.43 - - 2.784 - - -
Hu et al. [16] - 95.21 - - 1.076 - - -

Vessap data

FCN, 1 ch soft-dice 85.21 96.03 90.88 3.385 4.458 0.00459 5.850 0.862
Lc, α = 0.5 85.44 95.91 91.32 2.292 3.677 0.00417 5.620 0.864

FCN, 2 ch

soft-dice 85.31 95.82 90.10 2.833 4.771 0.00629 6.080 0.849
Lc, α = 0.1 85.96 95.99 91.02 2.896 4.156 0.00447 5.980 0.860
Lc, α = 0.2 86.45 96.11 91.22 2.656 4.385 0.00466 5.530 0.869
Lc, α = 0.3 85.72 95.93 91.20 2.719 4.469 0.00423 5.470 0.866
Lc, α = 0.4 85.65 95.95 91.65 2.719 4.469 0.00423 5.670 0.869
Lc, α = 0.5 85.28 95.76 91.22 2.615 4.615 0.00433 5.320 0.870

U-Net, 1 ch soft-dice 87.46 96.35 91.18 3.094 5.042 0.00549 5.300 0.863
Lc, α = 0.5 87.82 96.52 93.03 2.656 4.615 0.00533 4.910 0.872

U-Net, 2 ch

soft-dice 87.98 96.56 90.16 2.344 4.323 0.00507 5.550 0.855
Lc, α = 0.1 88.13 96.59 91.12 2.302 4.490 0.00465 5.180 0.872
Lc, α = 0.2 87.96 96.74 92.52 2.208 3.979 0.00342 4.830 0.861
Lc, α = 0.3 87.70 96.71 92.56 2.115 4.521 0.00309 5.260 0.858
Lc, α = 0.4 88.57 96.87 93.25 2.281 4.302 0.00327 5.370 0.868
Lc, α = 0.5 88.14 96.74 92.75 2.135 4.125 0.00328 5.390 0.864

Quantitative: We observe that including soft-clDice in
any proportion (α > 0) leads to improved topological, vol-
umetric and graph similarity for all 2D and 3D datasets, see
Table 1. We conclude that α can be interpreted as a hy-
per parameter which can be tuned per-dataset. Intuitively,
increasing the α improves the clDice measure for most ex-
periments. Most often, clDice is high or highest when the

graph and topology based measures are high or highest, par-
ticularly the β1 Error, Streetmover distance and Opt-J F1
score; quantitatively indicating that topological properties
are indeed represented in the clDice measure.

In spite of not optimizing for a high soft-clDice on
the background class, all of our networks converge to
superior segmentation results. This not only reinforces
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our assumptions on dataset-specific necessary conditions
but also validates the practical applicability of our loss.
Our findings hold for the different network architectures,
for 2D or 3D, and for tubular or curvilinear structures,
strongly indicating its generalizability to analogous binary
segmentation tasks.

Observe that CREMI and the synthetic vessel dataset
(see Supplementary material) appear to have the smallest
increase in scores over the baseline. We attribute this to
them being the least complex datasets in the collection, with
CREMI having an almost uniform thickness of radii and
the synthetic data having a high signal-to-noise ratio and
insignificant illumination variation. More importantly, we
observe larger improvements for all measures in case of the
more complex Vessap and Roads data see Figure 5. In direct
comparison to performance measures reported in two recent
publications by Hu et al. and Mosinska et al. [16, 28], we
find that our approach is on par or better in terms of Accu-
racy and Betti Error for the Roads and CREMI dataset. It is
important to note that we used a smaller subset of training
data for the Road dataset compared to both while using the
same test set.

Hu et al. reported a Betti error for the DRIVE data,
which exceeds ours; however, it is important to consider
that their approach explicitly minimizes the mismatch of
the persistence diagram, which has significantly higher
computational complexity during training, see the section
below. We find that our proposed loss performs superior
to the baseline in almost every scenario. The improvement
appears to be pronounced when evaluating the highly
relevant graph and topology based measures, including
the recently introduced OPT-Junction F1 by Citraro et al.
[7]. Our results are consistent across different network
architectures, indicating that soft-clDice can be deployed to
any network architecture.

Qualitative: In Figure 5, typical results for our datasets
are depicted. Our networks trained on the proposed loss
term recover connections, which were false negatives when
trained with the soft-Dice loss. These missed connections
appear to be particularly frequent in the complex road and
DRIVE dataset. For the CREMI dataset, we observe these
situations less frequently, which is in line with the very high
quantitative scores on the CREMI data. Interestingly, in the
real 3D vessel dataset, the soft-Dice loss over segments ves-
sels, leading to false positive connections. This is not the
case when using the proposed loss function, which we at-
tribute to its topology-preserving nature. Additional qual-
itative results can be inspected in the supplementary mate-
rial.

Computational Efficiency: Naturally, inference times
of CNNs with the same architecture but different training

Image Label Soft-Dice Ours

Figure 5. Qualitative results: from top to bottom we show two rows
of results for: the Massachusetts road dataset, the DRIVE retina
dataset, the CREMI neuron data and 2D slices from the 3D Vessap
dataset. From left to right, the real image, the label, the predic-
tion using soft-Dice and the U-Net predictions using Lc(α = 0.5)
are shown, respectively. The images indicate that clDice segments
road, retina vessel connections and neuron connections which the
soft-Dice loss misses, but also does not segment false-positive ves-
sels in 3D. Some, but not all, missed connections are indicated
with solid red arrows, false positives are indicated with red-yellow
arrows. More qualitative results can be found in the Supplemen-
tary material.
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losses are identical. However, during training, our soft-
skeleton algorithm requiresO(kn2) complexity for an n×n
2D image where k is the number of iterations. As a com-
parison, [16] needs O(c2mlog(m)) (see [14]) complexity
to compute the 1d persistent homology where d is the num-
ber of points with zero gradients in the prediction and m is
the number of simplices. Roughly, c is proportional to n2,
and m is of O(n2) for a 2D Euclidean grid. Thus, the worst
complexity of [16] is O(n6log(n)). Additionally, their ap-
proach requires an O(clog(c)) complexity to find an opti-
mal matching of the birth-death pairs.

6. Conclusive Remarks

We introduce clDice, a novel topology-preserving sim-
ilarity measure for tubular structure segmentation. Impor-
tantly, we present a theoretical guarantee that clDice en-
forces topology preservation up to homotopy equivalence.
Next, we use a differentiable version of the clDice, soft-
clDice, in a loss function, to train state-of-the-art 2D and
3D neural networks. We use clDice to benchmark seg-
mentation quality from a topology-preserving perspective
along with multiple volumetric, topological, and graph-
based measures. We find that training on soft-clDice leads
to segmentations with more accurate connectivity infor-
mation, better graph-similarity, better Euler characteristics,
and improved Dice and Accuracy. Our soft-clDice is com-
putationally efficient and can be readily deployed to any
other deep learning-based segmentation tasks such as neu-
ron segmentation in biomedical imaging, crack detection in
industrial quality control, or remote sensing.
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[49] Engin Türetken et al. Reconstructing curvilinear networks
using path classifiers and integer programming. IEEE
TPAMI, 38(12):2515–2530, 2016. 2

[50] Fatmatülzehra Uslu and Anil Anthony Bharath. A multi-
task network to detect junctions in retinal vasculature. In
MICCAI, pages 92–100. Springer, 2018. 5

[51] Subeesh Vasu, Mateusz Kozinski, Leonardo Citraro, and
Pascal Fua. Topoal: An adversarial learning approach
for topology-aware road segmentation. arXiv preprint
arXiv:2007.09084, 2020. 2

[52] Sara Vicente et al. Graph cut based image segmentation with
connectivity priors. In CVPR, pages 1–8. IEEE, 2008. 2

[53] Jan D Wegner et al. A higher-order CRF model for road net-
work extraction. In CVPR, pages 1698–1705. IEEE, 2013.
2

[54] John HC Whitehead. Combinatorial homotopy. i. Bulletin of
the American Mathematical Society, 55(3):213–245, 1949. 4

[55] Mark W Wright et al. Skeletonization using an extended
euclidean distance transform. Image and Vision Computing,
13(5):367–375, 1995. 5

[56] Aaron Wu, Ziyue Xu, Mingchen Gao, Mario Buty, and
Daniel J Mollura. Deep vessel tracking: A generalized prob-
abilistic approach via deep learning. In 2016 IEEE 13th In-
ternational Symposium on Biomedical Imaging (ISBI), pages
1363–1367. IEEE, 2016. 2

[57] Yun Zeng et al. Topology cuts: A novel min-cut/max-flow
algorithm for topology preserving segmentation in n–d im-
ages. CVIU, 112(1):81–90, 2008. 2

[58] Shan Zhao et al. Cellular and molecular probing of intact
human organs. Cell, 2020. 2

10



A. Theory - clDice in Digital Topology
In addition to our Theorem 1 in the main paper, we are

providing intuitive interpretations of clDice from the digital
topology perspective. Betti numbers describe and quantify
topological differences in algebraic topology. The first three
Betti numbers (β0, β1, and β2) comprehensively capture
the manifolds appearing in 2D and 3D topological space.
Specifically,

• β0 represents the number of connected-components,
• β1 represents the number of circular holes, and
• β2 represents the number of cavities (Only in 3D)

Figure 6. Examples of the topology properties. Left, a hole in 2D,
in the middle a hole in 3D and right a cavity inside a sphere in 3D.

Using the concepts of Betti numbers and digital topol-
ogy by Kong et al. [22, 38], we formulate the effect of
topological changes between a true binary mask (VL) and
a predicted binary mask (VP ) in Fig. 7. We will use the
following definition of ghosts and misses, see Figure 7.

1. Ghosts in skeleton: We define ghosts in the predicted
skeleton (SP ) when SP 6⊂ VL. This means the pre-
dicted skeleton is not completely included in the true
mask. In other words, there exist false-positives in the
prediction, which survive after skeletonization.

2. Misses in skeleton: We define misses in the predicted
skeleton (SP ) when SL 6⊂ VP . This means the true
skeleton is not completely included in the predicted
mask. In other words, there are false-negatives in the
prediction, which survive after skeletonization.

The false positives and false negatives are denoted by
VP \VL and VL\VP , respectively, where \ denotes a set dif-
ference operation. The loss function aims to minimize both
errors. We call an error correction to happen when the value
of a previously false-negative or false-positive voxel flips
to a correct value. Commonly used voxel-wise loss func-
tions, such as Dice-loss, treat every false-positive and false-
negative equally, irrespective of the improvement in regards
to topological differences upon their individual error cor-
rection. Thus, they cannot guarantee homotopy equivalence
until and unless every single voxel is correctly classified. In
stark contrast, we show in the following proposition that
clDice guarantees homotopy equivalence under a minimum
error correction.

Proposition 2. For any topological differences between VP
and VL, achieving optimal clDice to guarantee homotopy
equivalence requires a minimum error correction of VP .

Proof. From Fig 7, any topological differences between
VP and VL will result in ghosts or misses in the foreground
or background skeleton. Therefore, removing ghosts and
misses are sufficient conditions to remove topological dif-
ferences. Without the loss of generalizability, we consider
the case of ghosts and misses separately:

For a ghost g ⊂ SP ,∃ a set of predicted voxels E1 ⊂
{VP \ VL} such that VP \ E1 does not create any misses
and removes g. Without the loss of generalizability, let’s
assume that there is only one ghost g. Now, to remove g,
under a minimum error correction of VP , we have to min-
imize |E1|. Let’s say an optimum solution E1min exists.
By construction, this implies that VP \ E1min removes g.

For a miss m ⊂ V {
P ,∃ a set of predicted voxels E2 ⊂

{VL \ VP } such that VP ∪ E2 does not create any ghosts
and removes m. Without the loss of generalizability, let’s
assume that there is only one miss m. Now, to remove
m, under a minimum error correction of VP , we have to
minimize |E2|. Let’s say an optimum solution E2min
exists. By construction, this implies that VP ∪ E2min
removes m.

Thus, in the absence of any ghosts and misses, from
Lemma 2.1, clDice=1 for both foreground and background.
Finally, Therefore, Theorem 1 (from the main paper) guar-
antees homotopy equivalence.

Lemma 2.1. In the absence of any ghosts and misses
clDice=1.

Proof. The absence of any ghosts SP ∈ VL implies
Tprec = 1; and the absence of any misses SL ∈ VP implies
Tsens = 1. Hence, clDice=1.

A.1. Interpretation of the Adaption to Highly Un-
balanced Data According to Digital Topology:

Considering the adaptions we described in the main
text, the following provides analysis on how these assump-
tions and adaptions are funded in the concept of ghosts
and misses, described in the previous proofs. Importantly,
the described adaptions are not detrimental to the perfor-
mance of clDice for our datasets. We attribute this to the
non-applicability of the necessary conditions specific to the
background (i.e. II, IV, VI, VII, and IX in Figure A), as
explained below:

• II. → In tubular structures, all foreground objects are
eccentric (or anisotropic). Therefore isotropic skele-
tonization will highly likely produce a ghost in the
foreground.
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I. New CC  is created

II. CC are merged

III. A CC is deleted

IV. New hole is created

V. Holes are merged

VI. A hole is deleted

VII. New cavity is created

VIII. Cavities are merged

IX. A Cavity is deleted
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Figure 7. Upper part, left, taxonomy of the iff conditions to preserve topology in 3D using the concept of Betti numbers [22, 23];
interpreted as the necessary violation of skeleton properties for any possible topological change in the terminology of ghosts and misses
(upper part right) . Lower part, intuitive depictions of ghosts and misses in the prediction; for the skeleton of the foreground (left) and the
skeleton of the background (right).

• IV.→ Creating a hole outside the labeled mask means
adding a ghost in the foreground. Creating a hole in-
side the labeled mask is extremely unlikely because no
such holes exist in our training data.

• VI.→ The deletion of a hole without creating a miss is
extremely unlikely because of the sparsity of the data.

• VII.and IX. (only for 3D) → Creating or removing a
cavity is very unlikely because no cavities exist in our
training data.

B. Additional Qualitative Results
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Image Label Soft-Dice Ours

Figure 8. Qualitative results: for the Massachusetts Road dataset and for the DRIVE retina dataset (last row). From left to right, the real image, the label,
the prediction using soft-dice and the predictions using the proposed Lc(α = 0.5), respectively. The first three rows are U-Net results and the fourth row
is an FCN result. This indicates that soft-clDice segments road connections which the soft-dice loss misses. Some, but not all, missed connections are
indicated with solid red arrows, false positives are indicated with red-yellow arrows.
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Image Label Soft-Dice Ours

Figure 9. Qualitative results: 2D slices of the 3D vessel dataset for different sized field of views. From left to right, the real image, the label, the
prediction using soft-dice and the U-Net predictions using Lc(α = 0.4), respectively. These images show that soft-clDice helps to better segment the vessel
connections. Importantly the networks trained using soft-dice over-segment the vessel radius and segments incorrect connections. Both of these errors are
not present when we train including soft-clDice in the loss. Some, but not all, false positive connections are indicated with red-yellow arrows.

C. Comparison to Other Literature:

A recent pre-print proposed a region-separation ap-
proach, which aims to tackle the issue by analysing dis-
connected foreground elements [32]. Starting with the pre-
dicted distance map, a network learns to close ambiguous
gaps by referring to a ground truth map which is dilated
by a five-pixel kernel, which is used to cover the ambigu-
ity. However, this does not generalize to scenarios with

a close or highly varying proximity of the foreground el-
ements (as is the case for e.g. capillary vessels, synaptic
gaps or irregular road intersections). Any two foreground
objects which are placed at a twice-of-kernel-size distance
or closer to each other will potentially be connected by the
trained network. This is facilitated by the loss function con-
sidering the gap as a foreground due to performing dilation
in the training stage. Generalizing their approach to smaller
kernels has been described as infeasible in their paper [32].
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D. Datasets and Training Routine

For the DRIVE vessel segmentation dataset, we perform
three-fold cross-validation with 30 images and deploy the
best performing model on the test set with 10 images. For
the Massachusetts Roads dataset, we choose a subset of 120
images (ignoring imaged without a network of roads) for
three-fold cross-validation and test the models on the 13 of-
ficial test images. For CREMI, we perform three-fold cross-
validation on 324 images and test on 51 images. For the 3D
synthetic dataset. we perform experiments using 15 vol-
umes for training, 2 for validation, and 5 for testing. For the
Vessap dataset, we use 11 volumes for training, 2 for vali-
dation and 4 for testing. In each of these cases, we report
the performance of the model with the highest clDice score
on the validation set.

E. Network Architectures

We use the following notation: In(input channels),
Out(output channels),
B(output channels) present input, output, and bottleneck
information(for U-Net); C(filter size, output channels)
denote a convolutional layer followed by ReLU and batch-
normalization; U(filter size, output channels) denote
a trans-posed convolutional layer followed by ReLU and
batch-normalization; ↓ 2 denotes maxpooling; ⊕ indicates
concatenation of information from an encoder block. We
had to choose a different FCN architecture for the Mas-
sachusetts road dataset because we realize that a larger
model is needed to learn useful features for this complex
task.

E.1. Drive Dataset

E.1.1 FCN :

IN(3 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

E.1.2 Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(3 ch) → CB(3, 64) → CB(3, 128) →
CB(3, 256)→ CB(3, 512)→ CB(3, 1024)→ B(1024)

Decoder : B(1024) → UB(3, 1024) → UB(3, 512) →
UB(3, 256)→ UB(3, 128)→ UB(3, 64)→ Out(1)

E.2. Road Dataset

E.2.1 FCN :

IN(3 ch) → C(3, 10) → C(5, 20) → C(7, 30) →
C(11, 30) → C(7, 40) → C(5, 50) → C(3, 60) →
C(1, 1)→ Out(1)

E.2.2 Unet :

Same as Drive Dataset, except we used 2x2 up-convolutions
instead of bilinear up-sampling followed by a 2D-
convolution with kernel size 1.

E.3. Cremi Dataset

E.3.1 Unet :

Same as Road Dataset.

E.4. 3D Dataset

E.4.1 3D FCN :

IN(1 or 2 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

E.4.2 3D Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(1 or 2 ch) → CB(3, 32) → CB(3, 64) →
CB(3, 128)→ CB(5, 256)→ CB(5, 512)→ B(512)

Decoder : B(512) → UB(3, 512) → UB(3, 256) →
UB(3, 128)→ UB(3, 64)→ UB(3, 32)→ Out(1)

Table 2. Total number of parameters for each of the architectures
used in our experiment.

Dataset Network Number of parameters
Drive FCN 15.52K

UNet 28.94M
Road FCN 279.67K
Cremi UNet 31.03M

3D FCN 2ch 58.66K
Unet 2ch 19.21M

F. Soft Skeletonization Algorithm
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Figure 10. Scheme of our proposed differentiable skeletonization.
On the top left the mask input is fed. Next, the input is reatedly
eroded and dilated. The resulting erosions and dilations are com-
pared to the image before dilation. The difference between thise
images is part of the skeleton and will be added iteratively to ob-
tain a full skeletonization. The ReLu operation eliminates pixels
that were generated by the dilation but are not part of the oirginal
or eroded image.

G. Code for the clDice similarity measure and
the soft-clDice loss (PyTorch):

G.1. clDice measure

from sk image . morphology import s k e l e t o n i z e
import numpy as np
def c l s c o r e ( v , s ) :

re turn np . sum ( v* s ) / np . sum ( s )
def c l D i c e ( v p , v l ) :

t p r e c = c l s c o r e ( v p , s k e l e t o n i z e ( v l ) )
t s e n s = c l s c o r e ( v l , s k e l e t o n i z e ( v p ) )
re turn 2* t p r e c * t s e n s / ( t p r e c + t s e n s )

G.2. soft-skeletonization in 2D

import t o r c h . nn . f u n c t i o n a l a s F
def s o f t e r o d e ( img ) :

p1 = −F . max pool2d ( − img , ( 3 , 1 ) , ( 1 , 1 ) , ( 1 , 0 ) )
p2 = −F . max pool2d ( − img , ( 1 , 3 ) , ( 1 , 1 ) , ( 0 , 1 ) )
re turn t o r c h . min ( p1 , p2 )

def s o f t d i l a t e ( img ) :
re turn F . max pool2d ( img , ( 3 , 3 ) , ( 1 , 1 ) , ( 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )

d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

G.3. soft-skeletonization in 3D

import t o r c h . nn . f u n c t i o n a l a s F

def s o f t e r o d e ( img ) :
p1 = −F . max pool3d ( − img , ( 3 , 1 , 1 ) , ( 1 , 1 , 1 ) , ( 1 , 0 , 0 ) )
p2 = −F . max pool3d ( − img , ( 1 , 3 , 1 ) , ( 1 , 1 , 1 ) , ( 0 , 1 , 0 ) )
p3 = −F . max pool3d ( − img , ( 1 , 1 , 3 ) , ( 1 , 1 , 1 ) , ( 0 , 0 , 1 ) )

re turn t o r c h . min ( t o r c h . min ( p1 , p2 ) , p3 )

def s o f t d i l a t e ( img ) :
re turn F . max pool3d ( img , ( 3 , 3 , 3 ) , ( 1 , 1 , 1 ) , ( 1 , 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

H. Evaluation Metrics

As discused in the text, we compare the performance of var-
ious experimental setups using three types of metrics: vol-
umetric, graph-based and topology-based.

H.1. Overlap-based:

Dice coefficient, Accuracy and clDice, we calculate
these scores on the whole 2D/3D volumes. clDice is calcu-
lated using a morphological skeleton (skeletonize3D from
the skimage library).

H.2. Graph-based:

We extract graphs from random patches of 64×64 pixels
in 2D and 48× 48× 48 in 3D images.

For the StreetmoverDistance (SMD) [4] we uniformly
sample a fixed number of points from the graph of the pre-
diction and label, match them and calculate the Wasserstein-
distance between these graphs. For the junction-based met-
ric (Opt-J) we compute the F1 score of junction-based met-
rics, recently proposed by [7]. According to their paper
this metric is advantageous over all previous junction-based
metrics as it can account for nodes with an arbitrary number
of incident edges, making this metric more sensitive to end-
points and missed connections in predicted networks. For
more information please refor to their paper.
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H.3. Topology-based:

For topology-based scores we calculate the Betti Errors
for the Betti Numbers β0 and β1. Also, we calculate the
Euler characteristic, χ = V −E+F , whereE is the number
of edges, F is the number of faces and V is the number of
vertices. We report the relative Euler characteristic error
(χratio), as the ratio of the χ of the predicted mask and
that of the ground truth. Note that a χratio closer to one is
preferred. All three topology-based scores are calculated on
random patches of 64 × 64 pixels in 2D and 48 × 48 × 48
in 3D images.

I. Additional Quantitative Results

Table 3. Quantitative experimental results for the 3D synthetic
vessel dataset. Bold numbers indicate the best performance. We
trained baseline models of binary-cross-entropy (BCE), softDice
and mean-squared-error loss (MSE) and combined them with our
soft-clDice and varied the α > 0. For all experiments we observe
that using soft-clDice in Lc results in improved scores compared
to soft-Dice. This improvement holds for almost α > 0. We
observe that soft-clDice can be efficiently combined with all three
frequently used loss functions.

Loss Dice clDice
BCE 0.9982 0.9369
0.5 BCE + 0.5 ClDice 0.9976 0.9932
0.6 BCE + 0.4 ClDice 0.9978 0.9937
0.7 BCE + 0.3 ClDice 0.9977 0.9928
0.8 BCE + 0.2 ClDice 0.9979 0.9930
0.9 BCE + 0.1 ClDice 0.9982 0.9914
0.99 BCE + 0.01 ClDice 0.9984 0.9734
0.999 BCE + 0.001 ClDice 0.9985 0.9528
soft-dice 0.9957 0.9896
0.5 Dice + 0.5 ClDice 0.9975 0.9913
0.6 Dice + 0.4 ClDice 0.9974 0.9896
0.7 Dice + 0.3 ClDice 0.9981 0.9932
0.8 Dice + 0.2 ClDice 0.9974 0.9896
0.9 Dice + 0.1 ClDice 0.9974 0.9897
0.99 Dice + 0.01 ClDice 0.9974 0.9896
0.999 Dice + 0.001 ClDice 0.9974 0.9897
MSE 0.9953 0.9339
0.5 MSE + 0.5 ClDice 0.9967 0.9937
0.6 MSE + 0.4 ClDice 0.9969 0.9896
0.7 MSE + 0.3 ClDice 0.9970 0.9935
0.8 MSE + 0.2 ClDice 0.9972 0.9898
0.9 MSE + 0.1 ClDice 0.9975 0.9936
0.99 MSE + 0.01 ClDice 0.9983 0.9940
0.999 MSE + 0.001 ClDice 0.9985 0.9938
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