Towards Application-specific Multi-modal Similarity
Measures: a Regression Approach.”

Olivier Pauly!, Nicolas Padoy!-2, Holger Poppert®, Lorena Esposito®, Hans-Henning
Eckstein? and Nassir Navab!

1 Computed Assisted Medical Procedures, Technische Universitit Miinchen, Germany
? LORIA-INRIA Lorraine, France
3 Neuro-Kopf Zentrum, Klinikum Rechts der Isar, Germany
4 Klinik fiir GefaBchirurgie, Klinikum Rechts der Isar, Germany
{pauly, padoy, navab}@cs.tum.edu

Abstract. In multi-modal registration, similarity measures based on intensity
statistics are the current standard for aligning medical images acquired with dif-
ferent imaging systems. In fact, the statistical relationship relating the intensities
of two multi-modal images is constrained by the application, defined in terms
of anatomy and imaging modalities. In this paper, we present the benefits of ex-
ploiting application-specific prior information contained in one single pair of reg-
istered images. By varying the relative transformation parameters of registered
images around the ground truth position, we explore the manifold described by
their joint intensity distributions. An adapted measure is fitted using support vec-
tor regression on the training set formed by points on the manifold and their
respective geometric errors. Experiments are conducted on two different pairs of
modalities, MR-T1/MR-TOF and MR-T1/SPECT. We compare the results with
those obtained using mutual information and Kullback-Leibler distance. Exper-
imental results show that the proposed method presents a promising alternative
for multi-modal registration.

1 Introduction

Image registration is a crucial processing step in all image analysis tasks in which
information from various imaging sources needs to be combined. Establishing corre-
spondences between images acquired with different medical imaging modalities is a
challenging task known as multi-modal registration. Objective functions that evaluate
the quality of alignment, known as similarity measures, are optimized to identify the
geometric transformation that maps the coordinate system of one modality to the other
[8]. The choice of the appropriate measure is not straightforward, because it implicitly
models the relationship between the different images to register [4]. Classical mea-
sures such as sum of square differences (SSD) or correlation coefficient (CC) make
the assumption of a linear functional mapping between the intensities of the images to
align. But this hypothesis is far from being realistic according to the physics of different
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imaging systems. Modeling the real relationship between different imaging modalities
is very difficult and this explains why statistical measures have become more and more
popular. Since its introduction by Viola and Wells [6] and Collignon et al [2], mutual
information remains the state of the art of multi-modal registration of medical images.

Even though the statistics relating intensities of two multi-modal images is modality-
specific, there were only few attempts to incorporate prior knowledge in such similar-
ity measures. Chung et al. [1] proposed to use as prior information a reference joint
probability distribution of registered images from different modalities. Images are then
aligned by minimizing the Kullback-Leibler distance between an observed and the ex-
pected joint histogram. Leventon et al. [3] compared two methods to model this refer-
ence histogram from a training set of registered images, namely a mixture of Gaussians
and Parzen windowing. The distance to this expected histogram is then estimated by us-
ing log likelihood. In these works however, the use of prior information remains limited
to one reference joint distribution.

Zhou et al.[7] propose an approach based on Adaboost to learn local similarity mea-
sures for anatomic landmarks detection in echocardiac images. It uses an atlas of the left
ventricle containing pairs of local patches with their relative displacements. In a mono-
modal scenario, the method shows that incorporating prior information can improve the
detection results. This approach requires however extensive initial supervision.

Joint histograms of multi-modal images warped with different relative transforma-
tions describe a manifold embedded in the joint distribution space. Our contribution is
to define a similarity measure relating the topology of such manifolds to the registration
error. This yields an application-specific similarity measure, which requires one single
pair of registered images as prior information. Using a set of relative transformations
between the two images, we generate a training set of data points from the correspond-
ing joint histograms and their associated geometric error values defined in section 2.
The similarity measure is then learned by performing a support vector regression on
this data.

The remainder of the paper is organized as follows: Section 2 presents our regres-
sion approach to define an application-specific similarity measure. Section 3 reports
experiments performed in two different and challenging applications in comparison to
classical methods such as mutual information and Kullback-Leibler distance. Results
show that our approach presents a promising alternative for multi-modal registration.
Section 4 concludes the paper and gives an outlook on future work.

2 Methods

2.1 Problem statement

The goal of multi-modal image registration is to identify the geometric transformation
that maps the coordinate system of one modality to the other. Let us consider two 2D
images defined on the domains (2, and (2, with intensity functions I; : 2, C R> — R
and I : 2, C R?> — R. The two dimensional case is discussed for better readability,
the extension to three dimensions being straightforward. The registration task can be
defined as a maximization problem, in which we want to estimate the best transforma-
tion T according to a chosen similarity measure S computed on the discrete overlap



domain 2 = 2, N T(§2):

T = argmax Sp(I1,T(12)). (1)
T

The joint intensity distribution p(Iy, I2) of both images can be evaluated by his-
togramming or parzen windowing. In most of statistical measures, the similarity S, is
a mapping from the joint distribution space 7 into R. While Mutual Information (MI)
gives a measure of the distance between the joint histogram of both images and what
it would be if their intensity distributions were independant, the Kullback-Leibler dis-
tance (KL) [1] evaluates the distance between an observed p, and an expected p,. joint
histogram:

MI(Iy, Iz) = D(p(Iy, I2)||p(11)p(12)) 2
KL(Iy, I) = D(po(I1, I2)||pe (11, I2)), €))

where D in its general form is defined on two histograms p and q as:

Diplla) = 3" pla)iog ({;Ex;) @

The statistical relationship relating the intensities of two different multi-modal im-
ages is constrained by the application. With “application”, we mean the combination
of the modalities to relate and the different tissues appearing in the imaged anatomy,
e.g. blood, bones or muscles. Joint histograms of images warped with different relative
transformations describe a manifold M embedded in J which is application-specific.
In [1], Chung et al. makes use of one expected joint histogram, corresponding to one
single reference point on such a manifold. The used Kullback-Leibler divergence is
however not adapted to its topology.

Instead, we propose to model an application-specific similarity ¥ taking into ac-
count how the topology of M relates to the registration error. By using a set of relative
geometric transformations {7}, between a source and a target image, we sample M
by the joint histograms Jr, 7,(r,)- Each of these “points™ is then associated to a geomet-
ric error derived from the corresponding transformation parameters, generating thereby
a set of data points. Finally, the similarity ¥ is defined by performing a regression on
these points. The following section presents how to generate data points to relate this
manifold M to the geometric error.

2.2 Data points generation
Our objective is to model a similarity ¥ learned on the full manifold M:
¥v: M—R, 5)

which has favorable characteristics for registration purposes, namely convexity, smooth-
ness and the ability to estimate the geometric error. To model an accurate mapping ¥,



the manifold M must be sampled thoroughly as a function of the transformation T,
whose space is parameterized as follows:

ty € [—M,+M]
T(ty,ty,0) where ¢ t, € [-N,+N] (6)

By sampling the space of transformations, a set {T; }, _, <gof @ transformations is gen-
erated. Then, by using a pair of registered images from different modalities, joint his-
tograms are computed according to these {7} }, ., <g- Asillustrated by Fig. 1, each joint
histogram is then associated to a geometric error value. In medical image registration,
the target registration error (TRE) permits the evaluation of error in translation and ori-
entation between corresponding structures or organs appearing in both modalities. The
TRE is computed by comparing the positions of a set of points {p;, 1 < i < P} after
being mapped by the estimated transformation 7" and by the ground truth transform G:

i=P
E(T) = 3 IT(0) ~ Gl ™
i=1

This procedure permits us to generate following couples:
{(‘]IhTi(Iz)’E(E))}lS’LSQ’ ®)

which we denote {(J;, &)}, << for better readability.

Fig. 1. Our regression approach: learn a similarity ¥ mapping each point of the manifold
M (abtract representation on the left) to a value of the geometric error (on the right).

2.3 Fitting the similarity model through support vector regression

We propose to learn the similarity by approximating the function ¥ with the previously
generated data points. Since this function is a high dimensional non-linear mapping, we
use support vector regression for its ability of modeling complex non-linear functions.
We consider the problem of fitting a similarity function on the set of () data points
{(Ji,€:) }<i<q- The {J;}, as discrete approximations of the joint intensity distribu-
tions, consist of B x B bins. They are linearized into a vector of dimensionality B2.
Let ¢ be a non-linear mapping from M into a hidden feature space H with dimension-
ality dim(H) > B? used to model non-linear relationships between joint histograms



and their corresponding geometric error values. The mapping ¥ is modeled by the fol-
lowing function:

U(J) =w-o(J)+0b, ©)

where w is a linear separator of dimensionality dim(H) and b a bias. The optimal
regression function is then given by the minimum of the following functional [5]:

Q
1 _
S lwl” +Cd (6" +&), (10)

i=1

where C' controls the flexibility of the model. This functional aims at minimizing the
norm of w and the regression errors on the data points, characterized by the slack vari-
ables §Z+ and £; . The optimal vector wg can be written as a linear combination of the
training vectors in H with weights {c; }1<i<o:

Q
wo =Y a; (). (11)
i=1
The regression function becomes then:
Q Q
U(J) =Y o) o(J)+b=" a; K(Ji,J) +b, (12)
i=1 i=1

where K is the kernel associated to ¢ in H. To handle non-linear relations between
the manifold M and the TRE, K is chosen as a RBF kernel, giving thus the following
similarity model:

o2

Q 2
w(J) = a; exp <_|J_J|> +b. (13)
=1

3 Experiments and Results

Our regressed similarity measure is evaluated on two challenging applications for multi-
modal registration: rigid registration of MR-T1 and MR-TOF (Angiography) images of
the carotid artery, and of MR-T1 and SPECT images of the brain. In this paper, we
focus on 2D rigid-body experiments to prove the concept of our novel approach.

This permits in particular to show that the approach is not limited to pairs of images
with a tissue distribution similar to the image pair used for training. Indeed, in the
following experiments, a pair of corresponding images from a 3D dataset is used for
training. The obtained similarity measure is then evaluated on pairs of images taken
from the 3D datasets of the other patients. For statistical relevance, the pairs are chosen
randomly and the tests are repeated. It must be noted that the tissue distribution varies
depending on the randomly chosen slices, which can originate from the neck or from
the head.



3.1 Experimental Setup

Our similarity measure will be compared to normalized mutual information (NMI) and
Kullback-Leibler distance (KL) in terms of success rate, accuracy and capture range.

We consider a registration experiment as successful when the final target registration
error is inferior to a given threshold ¢.. In fact, this permits to quantify the ability of
an approach to converge in the neighborhood of the right solution. We then define the
accuracy as the mean target registration error on all registered images after the removal
of such outliers. Capture range is evaluated by assessing the success rate as function of
an increasing initial TRE. Knowing the ground truth position of each dataset, an initial
random perturbation is applied to each pair of images according to a given value of
TRE. Experiments are then repeated with an increasing initial target registration error.

The objective of our experiments is to highlight the benefits of a similarity measure
taking advantage of prior information. Since the convergence to the right solution de-
pends on the topography of the search space offered by a similarity measure, we use
a Downhill-Simplex optimizer, that does not require any gradient information. For fair
comparison, all measures have the same number of joint histogram bins (32 x 32) and
are tested in the same conditions.

In both experimental setups T1/TOF and T1/SPECT, a cross-validation of IV tests
is performed on a set of P patients. A test consists of one regression step performed
on a random pair of slices from a given patient and one validation step consisting of
P — 1 evaluations performed on the other P — 1 patients. During the regression step,
our similarity measure and the expected joint histogram needed by KL are computed
on the same pair of images. During an evaluation, all measures are tested in the same
conditions on a random pair of slices taken from another patient with the same initial
perturbation. By using 10 initializations with an increasing TRE per evaluation, we
can investigate the ability of each measure to converge towards the right solution and
thereby assess their capture range.

The transformation space is sampled as follows: —40 < t, < 440 (in pixels),
—40 < t, < 440 and —40 < § < +40 (in degrees) with a step of 4 for each param-
eter, generating thereby 9261 data points. For the choice of the hyperparameters ¢ and
C, a grid-search has been performed. All experiments are performed with the Spider
environment for MATLAB on an Intel Core 2 Duo CPU 2.40 GHz.

Fig. 2. From left to right: T1 and TOF MR Angiography of the neck of the same patient.
Then T1 and SPECT-Tc images of the brain of a healthy patient

MR-T1 and MR-TOF Angiography images: experiments are conducted on images
(refer to Fig. 2) taken from P = 8 patients (48 pairs of images) with different staging of



atherosclerosis. Both sequences were consecutively acquired, patients were positioned
on a vacuum pillow and the acquisition was ECG gated to ensure perfect alignment.
Images have a resolution of 128x128 with a pixel size of 2.5mm x 2.5mm. The threshold
te is set to lcm which corresponds to 4 pixels. A cross-validation of N = 32 tests has
been performed, which then corresponds to N x (P — 1) x 10 = 2240 registration
experiments.

MR-T1 and SPECT-Tc images: experiments are conducted on images (refer to Fig.2)
taken from P = 5 patients (73 pairs of images): a healthy patient, one with a glioma,
one with a carcinoma, one with a stroke and finally one with an encephalopathy. These
already registered datasets are taken from the publicly available Whole Brain Atlas
database. Images have a resolution of 128x128 with a pixel size of 1.67mm x 1.67mm.
The threshold ¢, is set to lcm which corresponds to 6 pixels. A cross-validation of
N = 40 tests has been performed, which then corresponds to N x (P —1) x 10 = 1600
registration experiments.

3.2 Results

The objective of our experiments is to show the benefits of a similarity measure tak-
ing full advantage of prior information. As shown on Fig. 3, the optimal regression
model provides a smooth and convex search space, which is very close to the original
TRE surface to approximate. Moreover, the global optimum has been preserved at the
right position. In fact, smoothness and convexity are crucial characteristics to prevent
the optimizer of being stuck in a local optimum and to ensure its convergence to the
global one. The great advantage of our approach is its ability to model the convexity,
the smoothness and the capture range of the similarity measure. Indeed, its convexity
can be changed by choosing another function of the geometric error. The choice of hy-
perparameters C' and o influences the flexibility of the regression and thus the smooth-
ness of the resulting function. During the regression process, increasing the sampling
range of the transformation space permits to increase the capture range of the trained
similarity. A high capture range is crucial when no good initialization parameters are
available. Results presented in Fig. 3 shows the overall success rate and the final TRE
as functions of the initial TRE. While the success rate of other measures sinks with an
increasing initial TRE, our regressed similarity measure shows a good behaviour. This
highlights its greater capture range and this, for a better accuracy. In the T1-TOF exper-
iments, KL provided once a better accuracy for an initial TRE of 22.5 mm. This comes
from the fact that KL was only successful on three registration experiments: ¥ and MI
were actually better than KL in these specific experiments, but in the displayed results
their accuracy is averaged on many more experiments as they have much higher sucess
rates.

Our method was robust face to different tissue distributions, e.g. coming from pa-
tients affected by different kinds of disease or from different locations of the head that
were not learned during the regression phase. For example, while slices from the top of
the skull contain mostly skin, bone, cerebrospinal fluid, grey and white matter, slices in
the middle of the head also consists of muscles and eyes. This could suggest that the
manifold on which the similarity was learned is not strictly dependent on the anatomy.
This needs however to be extensively studied with further experimentations.
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Fig. 3. From top to bottom: Plot of the similarity ¥ (PSI) for variations in translation
in x and y between —20 and +20 pixels. Plot of the success rate (in percent) and final
TRE (mean and standard deviation in mm) according to an increasing initial TRE. Left
MR-SPECT, right T1-TOF

4 Discussion and Conclusion

In this work, we propose to take advantage of prior information, namely a registered
pair of images, in order to improve results in multi-modal registration. Our contribution
is to define, with a regression approach, a new similarity measure relating the mani-
fold described by joint histograms of two different modalities to the registration error.
Experiments conducted on MR-T1/MR-TOF and MR-T1/SPECT images show that the
presented method is a promising alternative for multi-modal registration. We empiri-
cally demonstrated that these manifolds are not dependant on the choice of the particu-
lar training pair within the dataset. This means that such an adapted application-specific
measure can be defined by using a single pair of manually registered images from the
specific application. Moreover, its robustness to different or new tissue distributions
suggests that such manifolds could be modality-specific. In future work, we will further
study their dependence to the variations of tissue distribution within the images.



References

1

2.

A. Chung, W. Wells, A. Norbash, and E. Grimson. Multi-modal image registration by min-
imising kullback-leibler distance. Proc. of MICCAI Conf., pp:525-532, 2002. 2, 3

A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal. 3d multi-modality medical
image registration using feature space clustering. Proc. of Computer Vision, Virtual Reality
and Robotics in Medicine Conf., pp:195-204, 1995. 2

. M. E. Leventon and E. Grimson. Multi-modal volume registration using joint intensity distri-

butions. Proc. of MICCAI Conf., pp:1057-1066, 1998. 2

. A. Roche, G. Malandain, N. Ayache, and S. Prima. Towards a better comprehension of sim-

ilarity measures used in medical image registration. Proc. of MICCAI Conf., pp:555-567,
1999. 1

. A.J. Smola and B. Scholkopf. A tutorial on support vector regression. Statistics and Com-

puting, 14:199-222,2004. 5

. P. Viola and W. Wells. Alignment by maximization of mutual information. IJCV, 24(2):137-

154, 1997. 2

. S. K. Zhou, J. Zhou, and D. Comaniciu. A boosting regression approach to medical anatomy

detection. Proc. of CVPR Conf., pp:1-8, 2007. 2

. L. Zollei, J. Fisher, and W. Wells. A unified statistical and information theoretic framework

for multi-modal image registration. Proc. of IPMI Conf., pp:366-377, 2003. 1



