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ABSTRACT

It is widely recognized that inertial sensors, in particular gyro-
scopes, can improve the latency and accuracy of orientation track-
ing by fusing the inertial measurements with data from other sen-
sors. In our previous work, we introduced the concepts of spa-
tial relationship graphs and spatial relationship patterns to formally
model multi-sensor tracking setups and derive valid applications of
well-known algorithms in order to infer new spatial relationships
for tracking and calibration.

In this work, we extend our approach by providing additional
spatial relationship patterns that transform incremental rotations
and add gyroscope alignment and fusion. The usefulness of the
resulting tracking configurations is evaluated in two different sce-
narios with both inside-out and outside-in tracking.
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1 INTRODUCTION

In our previous work, we introduced the concepts of spatial rela-
tionship graphs (SRGs) [3] and spatial relationship patterns [4],
which allow for formally modeling relationships between the dif-
ferent coordinate frames in a tracking setup and for describing the
operations performed by a tracking/calibration algorithm. The goal
of this work is to derive new spatial relationship patterns that allow
us to integrate gyroscopes into our formal framework and to show
that this results in useful sensor fusion configurations.

Related Work Hybrid tracking setups, consisting of inertial
sensors combined with other means of tracking, are a well-studied
field of research. Azuma [2] has introduced gyroscopes into AR,
and the topic has been further investigated by many others. Inertial
sensing has also enjoyed some attention in the robotics community.

2 SPATIAL RELATIONSHIP GRAPHS AND PATTERNS

A Spatial Relationship Graph (SRG) is a graph which captures the
structure of a tracking environment. The nodes of the graph rep-
resent the coordinate frames or orientation free points of real or
virtual objects, while the directed edges represent the actual infor-
mation about relationships between these objects.

A Spatial Relationship Pattern represents a subgraph template
which captures the structural properties of an algorithm for tracking
or calibration. Patterns have input (dashed lines) and output (solid
lines) edges, that describe the new relationships that can be inferred
from given data by a particular algorithm. Starting from an initial
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SRG with only the pure tracking data, a chain of pattern applica-
tions can be used to construct a dataflow network that computes a
particular relationship at runtime [4].

3 INCREMENTAL ROTATION

We start the discussion of gyroscope integration by deriving some
basic patterns for transforming incremental rotations. Given two
sequential rotations rt1 and rt2 at times t1 and t2, we can express rt2
by rt1 multiplied by an incremental rotation ∆r:

rt2 = rt1 ·∆r where ∆r = r−1
t1 · rt2

In the SRG notation, we treat incremental rotations as separate
edges, labeled ∆Rot. Absolute rotation edges are labeled Rot.

The first important transformation of relative orientation is the
change of the target coordinate frame. For any given pair of rota-
tions r and q let r′ = r ·q be the product of r and q which effectively
moves the target coordinate frame of the transformation r. As q is
static in typical gyroscope scenarios, we can derive

∆r′ = q−1 ·∆r ·q.

Similarly, if we let r′ = q · r we can change the source coordi-
nate frame of the rotation r. In this case we calculate the resulting
incremental rotation in the transformed coordinate frame ∆r′, again
assuming that q is static, as

∆r′ = ∆r

This means that incremental rotations are valid for all source coor-
dinate frames that are connected by static transformations.

The third transformation of incremental rotation we need is the
inversion, i.e. the exchange of source and target coordinate frames.
In order to compute ∆r′ of r′ = r−1, we also need to know the
absolute orientation:

∆r′ = rt1 ·∆r−1 · r−1
t1

The resulting spatial relationship patterns for transforming incre-
mental rotation are displayed in figures 1 (a)-(c).

4 GYROSCOPE ALIGNMENT

Before the gyroscope can be fused with another tracking system,
we need to compute the unknown but static transformation between
the gyroscope and the object it is attached to. This is an instance
of the so-called “hand-eye calibration” problem [1], for which the
robotics community has developed a number of solutions. As only
the rotation part needs to be computed, we use the first step of the
Tsai-Lenz [6] algorithm, which is based on quaternions and is easy
to implement. The spatial relationship pattern of the gyroscope cal-
ibration is shown in figure 1 (d).

5 GYROSCOPE FUSION

In order to fuse the incremental gyroscope measurements with those
of an absolute tracker we use an extended kalman filter similar
to the one described by Azuma [2]. However, we distinguish be-
tween the two cases of outside-in and inside-out tracking. While the
outside-in case is straightforward, the inside-out fusion filter uses a
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Figure 1: New spatial relationship patterns for dealing with incremental rotations: (a) target coordinate transformation, (b) source coordinate
transformation, (c) incremental rotation inversion, (d) gyroscope calibration, (e) outside-in fusion, (f) inside-out fusion

different motion model that explicitly takes into account the fact
that rotation of the object also results in a translation of the fixed
world coordinate frame as observed by the tracker. The spatial re-
lationship patterns for gyroscope outside-in respectively inside-out
fusion are shown in figures 1 (e) and (f). It can be seen that for
inside-out tracking, the gyroscope edge is inverted, compared to
the absolute tracker.

6 EVALUATION

We evaluated the gyroscope calibration and fusion in two different
scenarios. We first attached the gyroscope to a camera that tracked
a square marker, similar to the AR-Toolkit. Four different cam-
era motion sequences were recorded and the prediction error was
computed, i.e. how well the Kalman filter was able to predict the
next measurement of the absolute tracker. Table 1 shows that using
the gyroscope improves the prediction in all cases. Furthermore,
the inside-out motion model is significantly better in the “still” se-
quence, where the camera does not move, and is placed directly in
front of the marker, resulting in poor orientation estimation.

outside-in inside-out
w/ gyro w/o gyro w/ gyro w/o gyro

still 22.8 68.0 1.2 1.2
slow rotation 2.6 5.6 3.0 5.2
fast rotation 9.1 94.1 10.8 91.0
full motion 6.5 11.0 7.3 9.3

Table 1: Average prediction error in pixels

In the second evaluation scenario, the gyroscope was attached to
a head-mounted laser projector [5], tracked by an A.R.T. infrared
outside-in tracker. Figure 2 shows the projected image during a
typical head rotation. The registration with the target hole is signif-
icantly improved when using the gyroscope (square) compared to
using the outside-in tracking alone (triangle).
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Figure 2: Projection while a sideways rotation is performed
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