
Parallel Visualization of the Sloan Digital Sky Survey DR6

Balázs Domonkos Kristóf Ralovich
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Magyar tudósok krt. 2., H-1117, Budapest, Hungary

domonkos@iit.bme.hu, kristof.ralovich@gmail.com

ABSTRACT

The new generation astronomy digital archives cover large area of thesky at fine resolution in many wavelengths from ultraviolet
through optical and infrared. For instance, one of these projects the Sloan Digital Sky Survey is creating a detailed catalog
covering more than a quarter of the sky with images measured with five different filters. The size of the data set can be
measured in terabytes. These archives enable astronomers to explore the data for their research. However, virtually walking
through these huge data sets also enables to visualize the beauty of the Universe and raises problems which can be interesting
for people related to computer graphics. In this paper we present a technique for parallel visualization of large-scale scattered
astrophysical data that has wide-spectrum photometric property. Our method performs sort-last parallel particle rendering using
hierarchical, static data distribution; and its performance scales up linearlyby increasing the number of the rendering nodes. It
also enables setting the color matching function in the rendering phase and as well as altering the distance calculation formulae
that calculates spatial coordinates from the redshift – all interactively.

Keywords: Graphics Systems, Distributed/Network Graphics

1 INTRODUCTION

Up till now, the Sloan Digital Sky Survey (SDSS) is
one of the largest astronomical survey ever undertaken.
When completed, it will provide detailed optical im-
ages covering more than a quarter of the sky and a three
dimensional atlas of about a million galaxies, quasars,
and stars. As the survey progresses, the data is released
to the scientific community and the general public as
well. The latest release to date (SDSS Data Release 6)
has been announced in June 2007. The amount of gath-
ered and processed photometric and spectroscopic data
exceeds 10 terabytes. This data contains detailed imag-
ing and spectroscopic description of more than 800000
astronomical objects.

This data is indisputably a treasury for the astrophysi-
cists for checking the validity of numerous models re-
lated to the origin and evolution of the Universe and
to the fundamental characteristics of the galaxy popu-
lation. However, this huge data set is interestingfor
itself, too. The photometric images of the astronomical
objects with aid of spectroscopic data can be visualized
in three dimensions interactively in order to show the
structure and the beauty of the observed part of the Uni-
verse. Moreover, it is possible to alter the color match-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2008 conference proceedings, ISBN 80-903100-7-9
WSCG’2008, February 4 – 7, 2008
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ing functions that maps the original photometric data to
pixel colors in the rendering phase. On the other hand,
the visualization system can be designed to enable vary-
ing the distance calculation algorithm and tuning its pa-
rameters also during the image synthesis.

However, such amount of data fairly exceeds the
memory capacityof a recent graphics hardware. To
overcome this limitation while keeping the advantage
of hardware accelerated rendering that produces accept-
able frame rates, the rendering has to be decomposed
to run in parallel utilizing the cumulative processing
power of multiple computer nodes. First, the data have
to be distributed among the nodes, then the visualiza-
tion of the partial data is performed in parallel, and
finally the rendering outputs have to be composited.
Both image-order (ray casting) and object-order meth-
ods (splatting or particle rendering) exist for rendering
scattered data. In our work we have investigated the
latter approach.

Parallel rendering necessarily raise the issue of load
balancing that is originated indata distribution strat-
egy, especially when the memory is the bottleneck of
overall visualization task. Image-space partitioning is
not feasible when using such a huge data set since it
requires all nodes to be able to render potentially any
part of the dataset. Because of the size of the whole
data set exceeds the capacity of the system memory of
a render node only object-space distribution is appro-
priate for interactive rendering. In case of particles rep-
resenting astrophysical objects with photometric data,
the rendering cost of a particle is inversely proportional
to the square of its distance. When simply partition-
ing the data set into axis-aligned blocks according to

1



the number of the rendering nodes, the rendering cost
per node does not necessarily decreases linearly by in-
creasing the number of nodes (Fig. 3). However, when
the data set is partitioned by distributing the leaves of
a space partitioning treebuilt on the data set, a linear
scale-up can be guaranteed.

In this work we used images and numerical data of
more than 800000 objects over about 8000 square de-
grees of the sky forsort-last [8] parallel particle vi-
sualization using kD-tree data partitioning and sort-
independent blending. The purpose of our rendering
scheme is to support interactive visualization of such
data sets. This paper summarizes our experiments and
suggestions.

2 RELATED WORK

One of the most popular architectures is Chromium, a
parallel implementation of OpenGL that allows flexible
sort-first parallel rendering. Distributed particle-based
simulation and rendering that uses Chromium and MPI
was investigated by Smith [13]. A distributed scene
graph library (Aura) was developed and compared to
Chromium for parallel particle rendering by Schaaf et
al. [16]. A system for real-time animation and ren-
dering of large particle sets using GPU computation
including inter-particle collisions and visibility sorting
was presented by Kipfer et al. [6]. Taylor et al. dis-
cussed a parallel implementation of the visualization of
galaxy formation simulation running in a grid environ-
ment using a decentralized peer-to-peer approach [15].

From the application point of view, Rosner et al. have
created a movie from the SDSS Data Release 4 data set
walkthrough [12]. Subbarao et al. have made a three di-
mensional model of the galaxies and quasars found by
the SDSS. They visualized 250000 galaxies and 40000
quasars including the cosmic microwave background
radiation. Their model is interactive, which means one
can fly around in it exploring both galaxies close up and
the large scale structure of the Universe [14]. The Ex-
tragalactic Atlas of the Digital Universe visualization
program by Hayden Planetarium can render the whole
SDSS Data Release 6 data set [4]. For the preceding
movie and the applications Partiview was used which is
an interactive open-source tool from the National Cen-
ter for Supercomputing Applications at the University
of Illinois at Urbana-Champaign [9].

3 PREPROCESSING THE SDSS DR6
DATA SET

The rendering scheme of ours can be divided into three
main stages. First, the data used for rendering is down-
loaded from the SDSS servers andpreprocessedto meet
the requirements of the graphics hardware. This long
process that have to be performed once is detailed in
this section. Before starting the effective rendering an

initialization stephas to be performed during applica-
tion startup in which the geometry and the textures are
computed (Sec. 4). This is followed by the visualization
step in which the rendered frames are produced and the
user inputs are handled (Sec. 5).

The SDSS Data Release 6 data is distributed via
the Catalog Archive Server(CAS) which is an SQL
database that contains the measured spectroscopic
properties of the astrophysical objects, and theData
Archive Server(DAS) which is a file server storing the
outputs of the imaging pipelines. From now on we
will refer these as the structural (or spectroscopic) and
image (or photometric) data, respectively. For creating
our data set, we have queried all the records that
has accurately measured spectroscopic data (redshift,
viewing angle, etc.) from the SQL database and then
retrieved the photometric data for these objects from
DAS; i.e. the corresponding image taken by the SDSS
telescope for every single object.

DAS contains images of the emitted spectrum of
galaxies, quasars and stars recorded with five different
filters. We preferred to keep the possibility of post-
shading the objects. That means, one could interac-
tively modify the color matching functions either to en-
hance a small frequency domain or to get a comprehen-
sive view of the whole spectrum. On the other hand
though, it is possible to handle these five color chan-
nels on the GPU at the cost of multiple textures and
a more complex logic in the pixel shader, it is reason-
able to choose a trade-off between the performance and
the accuracy. In our solution the photometric data were
transformed from the five-channel UGRIZ color space
(ultra violet, blue-green, red, far red and near infrared
pass band filters [3]) to four-channel images that have
the same extent in the frequency domain but fit better to
the 4-wide SIMD architecture of the graphics hardware.

The original fi(λ ) color matching functionsillus-
trated in Fig. 1 (a) are described on the SDSS web site
while the pixel valuesci are known from the down-
loaded images for each filteri. However, the orig-
inally measuredΦ(λ ) spectrum cannot be calculated
from these quantities. We treatedΦ(λ ) as a constant
Φi for each filter:

ci =
∫

λ
Φ(λ ) fi(λ )dλ = Φi

∫

λ
fi(λ )dλ

︸ ︷︷ ︸

Fi

(1)

From these Φi values an estimated spectrum
can be calculated using the weight functions
wi(λ ) = fi(λ )/∑ fi(λ ) (Fig. 1 (b)):

Φest(λ ) = ∑
j

w j(λ )Φ j = ∑
j

w j(λ )
1
Fj

c j (2)

The new pixel values can be computed refiltering this
estimated spectrum with the new four-channel color



400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Original UGRIZ filters. (b) Filter weightswi(λ ) (c) Our 4-channel filters (stored in RGBA
format in our rendering system)

Figure 1: Transformation from 5-channel to 4-channel filters. The abscissa is the wavelength in nanometers and the ordinates show the
transmission of the filter for figures (a) and (c) and the weighting values for figure (b)

matching functionsf ′i (λ ) . We applied simple box fil-
ters (Fig. 1 (c)) partitioning the spectrum into four in-
tervals with equal extent betweenλ0 andλ1, λ1 andλ2,
and so on:

c′i =
∫

λ
Φest(λ ) f ′i (λ )dλ =

∫ λi+1

λi

Φest(λ )dλ =

=
∫ λi+1

λi
∑

j
w j(λ )

1
Fj

c j dλ =

= ∑
j

1
Fj

∫ λi+1

λi

w j(λ )dλ
︸ ︷︷ ︸

Ci, j

c j (3)

According to (3), the transformed color vectorc′i can
be efficiently calculated multiplying the 4-by-5 matrix
[Ci, j ] by the input color vectorc.

The original-scale images are resampled to 32× 32
smaller images also in the preprocessing step. This in-
fers only marginal information loss, since the vast ma-
jority of the images did originally fit into this size. In
order to reduce the size of the data stored offline, ev-
ery image is compressed using the lossless DEFLATE
algorithm.

4 INITIALIZATION STEP
In the following sections the preliminary computations
are introduced that precede the rendering steps. First,
during application startup the structural data is read
in, and spatial coordinates are calculated from the red-
shift values based on a given parametrized cosmolog-
ical distance model (Sec. 4.1). Then the objects are
distributed among the rendering nodes based on their
position (Sec. 4.2). The next section explains how the
spatial structure of the data set is calculated that has to
be distributed.

4.1 Distance Measures in Cosmology
The small-scaled concept of distance between two
points in our immediate environment cannot be ex-
tended to cosmological scales. Since the distances

Figure 2:Redshift and blueshift in wavelength due to the relative
motion

between comoving objects are constantly changing in
the expanding Universe, and since the Earth-bound
observers look back in time as they look out in dis-
tance, manydistance measurescan be defined [5].
They are often based on observable quantities such
as the wavelength shift of a receding galaxy or the
luminosity of a distant quasar. However, the concept of
“distance measurement” can be treated more generally.
For instance the time elapsed since the emission and
the observation of the photons (lookback time) can be
considered as distance measure as well.

The dominant motion in the Universe is the expan-
sion described by Hubble’s Law. It states that the ob-
served velocity of a distant galaxy away from us is pro-
portional to its distance, where the proportion coeffi-
cient H0 is calledHubble constant. it is currently be-
lieved to be about 77 km/sec/Mpc. The symbol “Mpc”
denotes mega parsec which is approximately 3.09·1016

meters.
Light from moving objects appears to have different

wavelengths depending on the relative motion of the
source and the observer. An observer looking at an ob-
ject that is moving away receives light that has a longer
wavelength than it had when it was emitted. For opti-
cal wavelengths this means that the wavelength of the
emitted light is shifted towards the red end of the elec-
tromagnetic spectrum. More generally, any increase in
wavelength is calledredshiftConversely, a decrease in
wavelength is called blueshift (Fig. 2).

Redshiftz can be calculated as the Doppler shift of
its emitted light resulting from radial motion:

z≡ λo

λe
−1, (4)

whereλe is the emitted andλo is the observed wave-
length. The cosmological redshift is directly related to



the scale factor a(t) of the Universe, which is a func-
tion of time and represents the relative expansion of the
Universe. For redshiftz

1+z=
a(to)
a(te)

=
1
a

, (5)

using the normalizationa(t0) = 1 anda≡ a(te) where
a(te) is the scale factor when the photons were emit-
ted, anda(to) is the scale factor at the time they are
observed.

Distance Measures

The small comoving radial distance∆DCMR between
two nearby objects in the Universe is defined as the
distance between them which remains constant when
the two objects are moving with the Hubble flow [5].
Generally, thecomoving radial distanceDCMR of two
objects is computed by integrating the infinitesimal
∆DCMR contributions between nearby events along a
radial ray [18]:

DCMR =
∫

c
a

dt =
∫ 1

1
1+z

c
aȧ

da, (6)

wherec is the speed of light and ˙a is the time derivative
of a. The light travel time DLTT is calculated simi-
larly: [18]

DLTT =
∫

cdt =
∫ 1

1
1+z

c
ȧ

da. (7)

The mean mass densityρ of the Universe and the
value of thecosmological constantΛ are dynamical
properties of the Universe which affect the time evolu-
tion of the metric [17] [5]. They can be converted into
dimensionless density parameters by [11]

ΩM =
8π Gρ0

3H2
0

and ΩΛ =
Λc2

3H2
0

, (8)

whereG is Newton’s gravitational constant. There are
two additional density parameters: theradiation density
Ωr and thecurvature termΩk = 1−ΩM−ΩΛ−Ωr [18].

Using the Newtonian approximation to capture the
dynamics of the Universe ˙a can be substituted by
H0

√

X(a) with [18]

X(a) ≡ ΩM

a
+

Ωr

a2 +ΩΛa2 +Ωk . (9)

This enables to calculate (6) and (7) from redshiftz

DCMR =
c

H0

∫ 1

1
1+z

1

a
√

X(a)
da and (10)

DLTT =
c

H0

∫ 1

1
1+z

1
√

X(a)
da. (11)

The angular diameter distanceDA can be calcu-
lated directly fromDCMR as follows: [5]

DA ≡ R
Θ

= (12)

=
c

H0 (1+z)
·







1√
Ωk

sinh

(
H0
√

Ωk
c DCMR

)

for Ωk > 0

DCMR for Ωk ≈ 0

1√
Ωk

sin

(
H0
√

Ωk
c DCMR

)

for Ωk < 0

The luminosity distanceDL is related to the angular
diameter distance [18]:

DL ≡
√

L
4π S

= (1+z)2DA . (13)

We do thenumerical evaluation of the integrals(10)
and (11) using the mid-point rule with ten million pan-
els. Instead of evaluation for each object, they are
sorted by ascending redshifts and the distance integrals
are evaluated for all objects in a single pass through the
sorted redshifts. Moreover,DCMR andDLTT values are
calculated in parallel while calculatingDA andDL does
not need any iterative calculation only evaluation of ex-
plicit formulae (12 and 13). The total time cost of the
calculation for the whole data set is under a second on
a 2 GHz AMD64 processor.

4.2 Data Distribution

The data set is partitioned amongN rendering nodes by
distributing the astrophysical objects. The distribution
is based on the spatial coordinates of the objects that
are calculated in the preceding section. It is achieved
as a result of building akD-tree over the whole data
set – constrained by the fact that all except one of the
leaves of the tree must containN particles – and uni-
formly distributing the contents of the leaves (Fig. 4).
This is more favorable than simple chopping the scene
into axis aligned blocks according to the number of ren-
dering nodes. The former approach guarantees practi-
cally linear scale-up in the rendering frame rates since
the data set partitions have uniform spatial distribu-
tion. The scale-up is worse for the latter one when only
the particles per node ratio is reduced by adding more
nodes to the system but the particles are assigned to the
nodes as a spatially centralized way (Fig. 3). Unfortu-
nately, the other side of the coin is that thekD-tree dis-
tribution cannot be efficiently used with sort-dependent
blending operators, since each node generates images
not for a convex volume but for any part of the space;
and the complete ordering of the object images would
be required. Even so, when the scalability and the load
balancing strategy has great importance a space parti-
tioning tree aided data distribution can be preferred.

As a final step of the initialization the spatial data is
uploaded to the graphics hardware and the interactive
visualization is started.



Figure 3:Rendering using block partitions. The rendering cost of a
particle is proportional to the area of its projection on thecamera im-
age, thus it is inversely proportional to the square of its distance. The
rendering cost isnot decreasing linearly with the increasing number
of nodes. The load is not balanced well among the nodes therefore the
overall rendering time is dominated by the most loaded node. (Nodes
B, C, and D have to wait until Node A completes the rendering.)

Figure 4:Distributing the contents of the leaves of the data splitting
kD-tree during initialization.

5 RENDERING
The following subsections discuss the sort-last [8]
parallel rendering process in detail. The rendering is
accomplished separately on each node of the cluster,
while the final parallel compositing of the partial
images is performed as a co-operation of the nodes.

5.1 View Frustum Culling
The most obvious way of visualizing such number of
astrophysical objects is by the means of a particle sys-
tem. But since in our case each particle has a cor-
responding unique texture – derived from the image
recorded by a telescope – the major issue is the high
memory requirement instead of the large number of the
particles.

In order to avoid unnecessary renderingview frustum
cullingwas applied using akD-tree space partitioning
scheme. The data distribution hierarchy described in
Sec. 4.2 sports also a straightforward way to cull invis-
ible geometry: the tree is traversed from the root node,
an intersection test is performed between the viewing
frustum and the axis aligned bounding box (AABB) of
the children nodes. If an AABB turns to be outside the
viewing frustum [2] its descendants do not have to be
processed thus all the belonging points can be culled.

During the construction of the tree it can be assured,
that the resulting tree is well balanced by choosing the
position of an axis aligned splitting plane as a median
of the corresponding coordinate of the objects. Since
a balanced tree can easily be represented as an array

of its nodes, a simple linear vertex buffer [10] is ca-
pable of storing the positions for all the points. The
additional advantage of using vertex buffers is they are
stored in the graphics memory requiring to upload them
only once.

5.2 Batch Rendering
Sending the image of each particle by itself to the
OpenGL rendering system would result in too many
API calls (not to mention that OpenGL cannot handle
so many textures objects concurrently) thus frittering
away the well-known performance potential of batch
rendering large parts of the visible particles. Our
strategy for avoiding this situation is packing sets
of individual particle images into larger textures, so
called texture atlases(e.g. OpenGL square textures
with size of ATLAS_SIZE = 512). The atlases are
filled with the images of the particles using the fast
glTexSubImage2D function replicating a tile pat-
tern (IMAGE_SIZEwas 32 in our case). Rendering all
the particles corresponding to an atlas can be performed
with a singleglDrawArrays function call. To make
the GPU able to recall which part of an atlas belongs
to an actual particle, a 2D offset is calculated and
assigned as a vertex attribute. Moreover, it is worth
using multiple atlases in a round-robin fashion in order
to defer synchronization between the CPU and the
GPU.

This technique seems to exploit the asynchronous op-
eration of the CPU and GPU, keeping both of them
busy. On the other hand, the high traffic generated by
texture uploads causes the bus to become the perfor-
mance bottleneck but on our cluster configuration this
setup yielded the highest frame rates. See Sec. 7 for
other possible approaches.

From the number of imagest = ⌊ ATLAS_SIZE
IMAGE_SIZE⌋2 that

fit into one atlas we can express the number of render-
ing passesn = ⌈ p

t ⌉ required to visualize the number of
visible particlesp returned by view frustum culling.

5.3 Color Matching and Blending
The fixed function OpenGL pipeline is replaced with a
pair of CG vertex and fragment shader programs [1].
Point sprites are used to visualize the particles, that
is for each astrophysical object a textured point
primitive is rendered. The following vertex attributes
are assigned to the points (see the Cg snippet below):
position is the position of the particle,texCoord0
is the texture coordinate generated by rasterization
while texCoordOffset is the 2D offset into the
atlas.

struct VertexInput {
float4 position : POSITION;
float2 texCoord0 : TEXCOORD0;
float2 texCoordOffset : TEXCOORD1;

};



(a)kD-tree space subdivision scheme. (b) BalancedkD-tree nodes. (c) Mapping tree nodes to vertex buffer
sequences.

Figure 5:Space partitioning and scene representation using a balancedkD-tree.

The vertex shader is quite simple, it passes the texture
coordinates through and in addition adjusts the proper
point size for the sprite considering its distance from the
eye. The pixel shader is where the actual texturing and
color adjustment takes place. Although, particle sort-
ing could be performed fast on the GPU, when using fi-
nal compositing of images ofkD-trees sorting the huge
number of partial images before blending is unfeasible.
Therefore, we gave up the order-dependent part of the
over operator that should be applied to capture the at-
tenuation of a distant object’s light obscured by a closer
one; and kept only the order-independent additive part
using the following blending equation:

PixelColor = (IncomingColor∗ IncomingAlpha)

+ (DestinationColor∗1.0) ,

whereIncomingAlphais the product of the average of
the incoming color channels (Fig. 1(c)) and the inten-
sity attenuation factor. The value of this factor is con-
stant 1.0 until the rendered size of the particle reaches
the size of a pixel; then it falls proportionally to the sub-
pixel area of the particle’s image.

5.4 Final Compositing
In the last phase of the image synthesis the partial im-
ages generated by the rendering nodes are transferred
through the interconnection network from one node
to another. For compositing, we applied theparallel
pipeline compositing algorithm [7] consisting of two
stages. The images to be composited are divided into
N framelets, which is the number of the compositing
processes. In most implementations,N equals the num-
ber of the rendering processes as well since every node
both renders and composites. In the first part of the al-
gorithm these framelets flow around through each node
in N−1 steps, each consisting of a compositing and a
communication stage. AfterN−1 steps each processor
will have a fully composited portion of the final frame.
The framelets are collected for an external display node
or for an internal node in the second part in one step.
The clear benefit of this compositing scheme is that the
amount of data transferred on the network in one step is
independent of the number of compositing processes.

6 RESULTS
For our experiments we used a Hewlett-Packard “Scal-
able Visualization Array” consisting of four render-
ing nodes. Each node has a dual-core AMD Opteron
246 processor, 2 GBytes of memory, an nVidia Quadro
FX3450 graphics controller with 256 MBytes graphics
memory, and an InfiniBand network adapter.

The initialization step (different distance calcula-
tions, space partitioning, and loading all the images)
could be performed under a minute for the whole
data set. The color matching functions, the distance
calculation models, and the parameters of these could
be altered during the visualization.

To illustrate the scalability of our rendering system,
configurations of one up to four rendering nodes were
investigated for different subset of the SDSS DR6. One
of the nodes displayed the final output on a 800×600
viewport. The average frame rates and their standard
deviation calculated for 500 frames are illustrated in
Table 1. The rendering results are presented in Fig. 6.
For creating these images comoving radial distance was
applied withH0 = 77 km/sec/Mpc,ΩM = 0.27, ΩΛ =
0.73, andΩr = 7.0210−5; according to [18].

It is hard to make any valuable comparison between
the results presented by other interactive approaches
(e.g. [4], [12], or [14]) and our achievements. This
is because – according to our best knowledge – other
interactive simulations do not use unique images for
every visualized particle. The other factor limiting
the direct comparison is that Partiview-based visualiza-
tions [9] lack support for distributed computation and
programmable graphics pipeline.

All the source code of the tools were used for down-
loading and preprocessing the SDSS data files as well as
the final data set (≈ 7.3 GB at full resolution with com-
pression) are available from the authors upon request.
Comments and corrections are highly appreciated.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we have demonstrated that using hierar-
chical object-space partitioning a large-scale scattered
astrophysical data set can be efficiently visualized in a



Nodes 1% (85 MB) 5% (425MB) 20% (1.66GB) 50% (4.15GB) 100% (8.3GB)

1 8.04±0.03 1.87±0.02 0.46±0.00 N/A N/A
2 12.13±1.06 2.95±0.09 0.83±0.01 0.35±0.00 N/A
3 12.99±1.52 3.84±0.58 1.11±0.02 0.49±0.01 N/A
4 14.20±1.32 4.10±0.61 1.52±0.01 0.65±0.01 0.34±0.01

Table 1: Scalability results for the average frame rate when rendering increasing subsets of the SDSS DR6 data set. All test cases was
measured on a 800×600 viewport. The images were downsampled to 8-bit color depthand downscaled to 32×32. The N/A sign indicates
that the test case cannot be measured due to the lack of memory capacity of our nodes. The size of a texture atlas was 512×512.

distributed rendering environment using sort-last paral-
lel particle rendering. The performance of our test sys-
tem scales up approximately linearly by increasing the
number of the rendering nodes. As an extra feature in
order to support interactive demands, it also enables set-
ting the color matching function in the rendering phase
and as well as altering the distance calculation formula
that calculates spatial coordinates from the redshift.

The disadvantage of our approach is that itdoes not
support efficient sort-dependent blendingfor composit-
ing the partial images, so thus the light attenuation can-
not be taken into account. However, when dealing with
huge data sets the scalability of the rendering frame
rates has great importance. This is true especially when
the amount of photometric data to be rendered on a
node exceeds of the capacity of the texture memory and
therefore multiple rendering passes are required within
a frame; for instance for a practical data set: the SDSS
DR6. In these circumstances, the space partitioning tree
aided data distribution can be preferred.

As our measurements reflect, increasing the number
of rendering nodes results in a near linear frame rate im-
provement letting us conclude that more nodes would
render faster or be able to handle even larger data sets
efficiently.

However, our current configuration was evidently
bandwidth limited. If the graphics cards were equipped
with more memory (e.g. one gigabyte would be compa-
rable to the size of the image data handled by a node) a
completely different storage method could be relevant.
Some parts of the image data could be kept in the graph-
ics memory and be accessed orders faster than continu-
ous uploads. This would necessitate the administration
where the particle images are stored.

On the other hand, applying level of detail on the par-
ticles – like replacing textured point sprites not greater
than a pixel with an appropriately colored point – could
also impact performance positively.

ACKNOWLEDGEMENTS
This work has been supported by Hewlett-Packard and
the Hungarian National Office for Research and Tech-
nology. We are also grateful to Dávid Koronczay for
his remarkable guidance in astrophysics.

REFERENCES
[1] K. M. J. Fernando R.The Cg Tutorial: The Definitive Guide to

Programmable Real-Time Graphics. Addison-Wesley Profes-
sional, 2003.

[2] K. H. Gil Gribb. Fast Extraction of Viewing Frus-
tum Planes from the World-View-Projection Matrix.
http://www2.ravensoft.com/users/ggribb/
plane20extraction.pdf [Online; accessed 18-10-
2007].

[3] J. Gunn, M. Carr, C. Rockosi, and M. Sekiguchi. The Sloan
Digital Sky Survey Photometric Camera.Astronomical Journal,
116:3040, 1998.

[4] Hayden Planetarium.
http://haydenplanetarium.org/ [Online; accessed
20-09-2007].

[5] D. W. Hogg. Distance measures in cosmology.ArXiv Astro-
physics e-prints, May 1999.

[6] P. Kipfer, M. Segal, and R. Westermann. UberFlow: a GPU-
based particle engine. InHWWS ’04: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 115–122, New York, NY, USA, 2004. ACM Press.

[7] T.-Y. Lee, C. S. Raghavendra, and J. B. Nicholas. Image Com-
position Schemes for Sort-Last Polygon Rendering on 2D Mesh
Multicomputers.IEEE Transactions on Visualization and Com-
puter Graphics, 2(3):202–217, 1996.

[8] S. Molnar, M. Cox, and D. Ellsworth. A Sorting Classification
of Parallel Rendering.IEEE Computer Graphics and Applica-
tions, 14(4):23–32, 1994.

[9] National Center for Supercomputing Applications. Partiview.
http://virdir.ncsa.uiuc.edu/ partiview/ [On-
line; accessed 20-09-2007].

[10] D. S. OpenGL Architecture Review Board, M. Woo, J. Nei-
der, and T. Davis.OpenGL(R) Programming Guide: The Of-
ficial Guide to Learning OpenGL(R), Version 2 (5th Edition).
OpenGL. Addison-Wesley Professional, 2005.

[11] P. Peebles.Principles of Physical Cosmology. Princeton Series
in Physics. Princeton University Press, Princeton, U.S.A., 1993.

[12] D. Rosner, R. Landsberg, and J. Frieman. SDSS Movie, 2005.
http://astro.uchicago.edu/ cosmus/projects/
sloanmovie/ [Online; accessed 20-09-2007].

[13] C. Smith. Distributed Rendering of Particle Systems. Technical
report, 2003.

[14] M. Subbarao, D. Surendran, and R. Landsberg. SDSS Galaxy
Fly-through.http://astro.uchicago. edu/cosmus/
projects/sloangalaxies/ [Online; accessed 20-09-
2007].

[15] I. Taylor, M. Shields, I. Wang, and R. Philp. Distributed P2P
Computing within Triana: A Galaxy Visualization Test Case. In
IPDPS ’03: Proceedings of the 17th International Symposium
on Parallel and Distributed Processing, page 16.1, Washington,
DC, USA, 2003. IEEE Computer Society.

[16] T. van der Schaaf, M. Koutek, and H. Bal. Parallel Particle
Rendering: a Performance Comparison between Chromium and
Aura. In Eurographics Symposium on Parallel Graphics and
Visualization Proceedings, pages 137–144, 2006.

[17] S. Weinberg.Gravitation and Cosmology : Principles and Ap-
plications of the General Theory of Relativity. Wiley, July 1972.

[18] E. L. Wright. A Cosmology Calculator for the World Wide
Web. ArXiv Astrophysics e-prints, 118:1711–1715, Dec. 2006.



(a) (b)

(c) (d)

(e) (f)

Figure 6: Rendering results of the parallel particle visualization. The whole SDSS DR6 data set was rendered.
The images were downsampled to 8-bit per channel color depthand downscaled to 32×32. (a) Close-up of the
center of the data set. (b) Seeing through the center from greater distance. (c) Large-scale structure of the data.
(d) Large-scale structure from greater distance. (e) Rendering 1 percent of the data set from a spectacular view. (f)
Rendering the whole data set from the same position.


