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Abstract. In response to the growing need for image analysis services
in the cloud computing environment, this paper proposes an automatic
system for detecting landmarks in 3D volumes. The inherent problem of
limited bandwidth between a (thin) client, Data Center (DC), and Data
Analysis (DA) server is addressed by a hierarchical detection algorithm
that obtains data by progressively transmitting only image regions re-
quired for processing. The client sends a request for a visualization of a
specific landmark. The algorithm obtains a coarse level image from DC
and outputs landmark location candidates. The coarse landmark location
candidates are then used to obtain image neighborhood regions at a finer
resolution level. The final location is computed as the robust mean of the
strongest candidates after refinement at the subsequent resolution levels.
The feedback about candidates detected at a coarser resolution makes it
possible to only transmit image regions surrounding these candidates at
a finer resolution rather then the entire images. Furthermore, the image
regions are lossy compressed with JPEG 2000. Together, these properties
amount to at least 30 times bandwidth reduction while achieving similar
accuracy when compared to an algorithm using the original data.

1 Introduction

In this paper, we propose a system of algorithms for automatic detection of
anatomical landmarks in 3D volumes in the cloud computing environment. The
system, dubbed Detection in a Cloud (DiC), is used by thin-client devices that
request the display of an anatomical part for a specific patient. The patient data
stored in a Data Center are transmitted to a high performance Data Analysis
server that runs the detection algorithm. (In the medical domain and also in this
paper, these servers are referred to as the Picture Archiving and Communication
System (PACS) and Computer Aided Detection (CAD) server, respectively). The
image with the anatomy highlighted is returned back to the client for display
(Figure 1).

Inherent difficulties in designing such system are large image sizes (often hun-
dreds of megabytes) and limited bandwidth between thin client, Data Analysis
server (e.g. CAD server), and Data Center (e.g. PACS server). Depending on the
bandwidth, the transmission of large datasets can take tens of seconds or even
minutes. This complicates the workflow in interactive applications where the



Fig. 1. Detection in a Cloud (DiC) system. The client sends a request for the detection
of an anatomy for a specific patient. The detection algorithm on the CAD server
requests data from the PACS server. The detection results are efficiently visualized by
the client via JPEG 2000 JPIP protocol.

results must be available immediately. Finally, limited memory and insufficient
CPU power of the client necessitates remote data processing.

Since it is not possible to process the data on the client directly, an ob-
vious solution is to efficiently transmit the data from the PACS server to the
CAD server for processing. However, such procedure becomes prohibitive al-
ready when several detection requests are made simultaneously since this would
require bandwidths of tens of GBits / second. This is true even when the data
is compressed with the lossless JPEG 2000 (Section 4).

We propose an efficient hierarchical learning-based detection system to avoid
the problem of transmitting large datasets. The system runs on the CAD server
that obtains portions of the original dataset from the PACS server on demand.
The algorithm starts detection on a downsampled low-resolution image that
has been compressed and transmitted to the CAD server. The coarse landmark
candidate positions define the regions in a finer resolution image, where the
coarse candidates are refined. The refinement steps continue until all levels of
the hierarchy have been processed. The final detection result is obtained by
robustly combining strongest candidates from the finest level.

The amount of transmitted data is significantly reduced in the DiC system.
First, the algorithm only processes candidate regions at finer resolutions rather
than the entire images. Second, all image regions are compressed with a lossy
compression. When combined, these properties result in an overall reduction of
the original data size by a factor of 30 (CT data) and by a factor of 196 (MRI
data). Our experiments show that the lossy compression does not hinder the
final detection accuracy. The experiments also demonstrate the robustness and
accuracy of the hierarchical algorithm and advantages of training on compressed
images.

In summary, the paper makes three main contributions: (1) an overall sys-
tem for landmark detection using remote datasets, (2) hierarchical detection



algorithm with a local refinement, and (3) evaluation of training and detection
on images compressed with lossy 3D JPEG 2000.

2 Background

Previous discriminative approaches [1, 2] detect objects by testing entire images
exhaustively at all locations. Hierarchical modeling has focused on exploiting
multiple feature levels of different resolutions [3–5] and on part-based [6] or
region-based [7] architectures. In our multi-resolution hierarchy, the position
candidate hypotheses are propagated during training and detection. This results
in a more robust detector than when the levels are trained independently [8] and
can be extended to multiple objects.

JPEG 2000 standard [9] also includes client/server Interactive Protocol (JPIP)
for transmitting image regions at desired resolutions using the least bandwidth
required. The JPIP protocol is useful for visualizing large Dicom images remotely
[9] and has a potential to be used in image analysis applications. The quality of
JPEG 2000 images after lossy compression have been previously evaluated for
reading radiology datasets [10]. In this paper, we evaluate the robustness of a
learning-based algorithm using compressed images in training and detection.

Operating under bounded bandwidth and computational power has been
previously addressed in visual surveillance applications [11, 12]. The extracted
information (regions [11] and detected objects [12]) has much smaller size than
the original images and can be transmitted efficiently over a wide-area network.

3 Algorithm

The core of the DiC system (Figure 2) is a hierarchical learning algorithm (Sec-
tion 3.1) with one detector trained for each level (Section 3.2). At each level,
the detector search region is defined by the image neighborhoods surrounding
the highest probability landmark position candidates from the previous level.
The image regions are progressively obtained over the network from the PACS
server. Since they are encoded with a JPEG 2000 image compression, only high
frequency wavelet components need to be transmitted at each subsequent level.

3.1 Discriminative Learning

At each hierarchical level, the input to the algorithm is an image volume V (r, q, R) :
R3 → [0, 1] of resolution r, quality q (such as measured by peak signal-to-noise
ratio, pSNR), and size R. The quality q is lower for images with artifacts caused
by image compression. The pSNR value is determined with respect to the un-
compressed image, which has the highest quality q̃. Each landmark is represented
by its position θ = (px, py, pz). The goal of the system is to automatically es-
timate the set of position parameters θ̂ using a volumetric context surrounding
the landmark position:

θ̂ = arg max
θ

P(θ|V ), (1)
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Fig. 2. Overall DiC system diagram. The hierarchical detection algorithm progressively
obtains image regions required for detection at each level.

where P(θ|V ) is the probability of the parameters given the image volume. Let
us now define a random variable y ∈ {−1, +1}, where y = +1 indicates the
presence and y = −1 absence of the anatomy. We train a Probabilistic Boosting
Tree classifier (PBT) [1] with nodes composed of AdaBoost classifiers trained
to select features that best discriminate between positive and negative examples
of the landmark. We can then evaluate the probability of a landmark being
detected as P(y = +1|θ, V ). Therefore we can rewrite Eq. 1

θ̂ = arg max
θ

P(y = +1|θ, V ). (2)

The robustness of the discriminative AdaBoost framework makes it possi-
ble to use images with compression artifacts in training and detection and still
obtain highly accurate detection results. In Section 4 we will show that we can
train the classifier adapted to different levels of 3D JPEG 2000 compression of
the input images. This is better then training on the uncompressed data since
the classifier can learn the consistent anatomical structures and ignore the com-
pression artifacts.



3.2 Hierarchical Detection

During detection, the landmark position candidate hypotheses are propagated
from the coarser levels to the finer levels as follows. At the coarsest resolution r0,
a classifier D(r0, q) is trained using the volume region V (r0, q, R0) as described
in the previous section. The size R0 of the region is the size of the whole image at
resolution r0. The detector is then used to obtain position candidate hypotheses
at this level. The candidates with the highest probability are bootstrapped to
train a detector D(r1, q) at the next level with resolution r1. The volume region
V (r1, q, R1) is composed of the union of neighborhood regions of size R1 sur-
rounding the position candidates. The bootstrapping procedure continues until
all levels {ri} have been processed. The schematic diagram of the hierarchical
detection is in Figure 3.
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Fig. 3. Schematic diagram showing the robustness of the hierarchical processing. The
search regions are shown with red rectangles. Only two resolution levels are shown to
demonstrate the concept.

The hierarchical processing has several advantages. First, the decreasing con-
text region size helps to avoid local maxima of the probability distribution that
would otherwise cause false positives. This results in a more robust and efficient
algorithm that operates on datasets of reduced size. Second, the search step de-
pends on the resolution at each level and does not need to be chosen to balance
the accuracy of the final result and computational speed.

3.3 Progressive Data Transmission

The hierarchical detection algorithm allows for enormous bandwidth savings
between the CAD and PACS servers. First, since the images are encoded with
a lossy 3D JPEG 2000 compression, only high frequency wavelet components
are transmitted at the higher resolution levels. Second, when we incorporate the
bootstrapping of the candidates across levels, image at the coarsest resolution r0



is transmitted in its entirety and only image regions surrounding the candidates
are used at subsequent levels.

The DiC system must compromise between data bandwidth and the detection
accuracy. Denoting ql image quality used at the level l with resolution rl, the
total size of all image regions for transmission is

Stotal = S(V (r0, q0, R0)) + S(V (r1, q1, R1)) + · · ·+ S(V (rn, qn, Rn)), (3)

where n is the total number of levels used. An algorithm only using the finest
resolution rn without the bootstrap feedback would require size S(V (rn, qn)). If
we fix the quality at all levels, ql = q′, the overall size of all image regions is
bounded as

S(V (r0, q
′)) =

S(V (rn, q′))
(2d)n−1

< Stotal ≤ S(V (rn, q′)) ≤ S(V (rn, qn)), (4)

where d is the image dimension. The final detection score Pfinal ∈ [0, 1] is
computed from the scores at each level

Poverall = P (D(r0, q0)).P (D(r1, q1))...P (D(rn, qn)). (5)

Using these definitions, we can now formulate the following optimization prob-
lems to determine the quality used at each resolution level. First, given a fixed
size budged S′, the goal is to maximize the detection performance by choosing
different quality values (q0, ..., qn) for different resolutions:

(q0, ..., qn) = argmax
S≤S′

Poverall. (6)

Second, given a required detection performance P ′, the goal is to minimize the
total size of all image regions by choosing different quality values (q0, ..., qn) for
different resolutions:

(q0, ..., qn) = argmin
Poverall≥P ′

Stotal. (7)

Solutions to these problems are complicated by the fact that the choice of the
quality at the level l not only directly influences the detection score D(rl, ql),
but also the detection score D(rl+1, ql+1) and the selection of ql+1 at the next
level, l + 1. In this paper, we adopt a simpler approach by setting the quality to
the same pSNR value at each resolution. We study the effect of this selection on
the average detection error and on the total size Stotal of all image regions for
transmission.

4 Experiments

Our experiments start by showing the advantage of training on compressed im-
ages, even though their quality (measured by pSNR) is worse than that of the
original images. We will then show that hierarchical learning improves the ro-
bustness of the algorithm and loosens the bandwidth requirements. Finally, we



will present experiments comparing the full detection pipeline evaluating the
hierarchical learning on compressed and uncompressed images.

Our first set of experiments is on 247 CT volumes (86 for training and 161 for
testing) with average size 97×80×165 voxels after resampling to 4 mm isotropic
resolution. The landmark of interest is the right hip bone landmark (Figure 7
left). Second set of experiments is on 511 MRI volumes (384 for training and 127
for testing) with average size 130 × 130 × 101 voxels after resampling to 2 mm
isotropic resolution In each volume, we detect the crista galli (CG) landmark of
the brain (Figure 7 right). The training and testing datasets are disjoint and the
volumes in each were chosen randomly.

In the first experiment, we test the detection on images compressed at dif-
ferent pSNR levels; see Figure 6 for examples. The detection error statistics
were computed for images of different pSNR levels with classifiers trained on (a)
images with the same pSNR level, and (b) uncompressed images. The plots in
Figure 4 show, that we can obtain better detection performance when training on
compressed images thanks to the classifier’s ability to adapt to the training data
and ignore inconsistencies caused by the compression artifacts (see Section 3).
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Fig. 4. Sorted detection error for different levels of compression in testing when trained
on uncompressed (left) and compressed (right) images. By using compressed images in
training, the classifier is more robust to the compression artifacts during detection.

Our second experiment demonstrates the robustness of the hierarchical de-
tection. A single level classifier trained on CT images with 8 mm resolution
is compared to the hierarchical classifier (Section 3.2 and Figure 3) trained on
images with 16 mm and 8 mm resolution. This experiment is repeated for MR
images with 2 mm resolution and a 4 mm-2 mm hierarchy. In Figure 5, the
median of the 80% smallest errors1 are plotted against the average volume size
computed for each pSNR level. By training on compressed images we can achive
smaller detection errors for a given average volume size than by training on
uncompressed images. The detection errors decrease further when using the hi-
erarchical approach due to the robust search strategy.

The final experiment compares the overall hierarchical detection using un-
compressed images and images compressed at pSNR 70. The hierarchical system

1 The large errors can be easily rejected as outliers based on the detection score.
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Fig. 5. Detection error vs. average volume size for hip bone landmark in CT (left)
and crista galli landmark in brain MRI (right). The images were compressed in train-
ing and testing with the same pSNR level (adaptive) and uncompressed in training
and compressed in testing (nonadaptive). The hierarchical processing results in lowest
detection error through the focused coarse-to-fine search and training on compressed
volumes. The average size of the uncompressed and lossless-compressed volumes is: 404
kB and 189 kB (8 mm CT), 3334 kB and 985 kB (2 mm MRI).

is also compared to a simpler algorithm operating on uncompressed images with
a single resolution. The results summarized in Table 1 show that an algorithm
trained on images compressed with lossy compression achieves data size reduc-
tion by a factor of 3.7 (9.9 for MRI) when compared to a hierarchical training on
lossless-compressed images, by a factor of 12.7 (58.0 for MRI) when compared to
an algorithm operating on a single resolution, and by a factor of 30.0 (196.2 for
MRI) when the original (uncompressed) images are used. The median detection
error is comparable for all three cases.

CT MRI

16-8-4 hier 16-8-4 hier 4 mm 4-2 hier 4-2 hier 2 mm
pSNR 70 lossless lossless pSNR 70 lossless lossless

Error [mm] 3.87 3.54 3.98 2.50 2.37 2.27
Avg. Data Size [kB] 106.22 393.45 1345.96 16.99 168.07 984.76

Table 1. The median detection error of the hierarchical detection on images com-
pressed at pSNR 70 (2nd and 5th column), on uncompressed images (3rd and 6th
column), and on a single resolution losslessly-compressed images (4th and 7th col-
umn). The average size of uncompressed volumes is 3188 kB (4 mm CT) and 3334 kB
(2 mm MRI). The hierarchical algorithm trained with images of pSNR 70 requires the
least amount of data without sacrificing the detection accuracy.

5 Conclusion

We presented Detection in a Cloud (DiC) system for anatomical landmark de-
tection in the cloud computing environment. At the core of the system is a
hierarchical learning algorithm that propagates position candidate hypotheses
across a hierarchy of classifiers during training and detection. The algorithm
only requires image regions surrounding the candidates which results in less
bandwidth for remote data access. Further bandwidth savings (without sacrific-
ing the detection accuracy) are achieved by compressing the images regions with
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Fig. 6. Average compressed volume sizes (in kBs) at different compression levels and
resolutions. The first row also shows sizes after lossless compression (in parentheses).
These statistics are computed over all testing volumes.

lossy JPEG 2000. The total bandwidth savings for retrieving remotely stored
data amount to 30.0 times (CT data) and 196.2 times (MRI data) reduction
when compared to the original data size and 12.7 times (CT) and 58.0 (MRI)
when compared to data size after lossless compression.

The proposed approach makes it possible to shift the integration, mainte-
nance, and software updates from the client to the CAD server. Therefore, when
the classifiers are updated, they are immediately available to all clients. In the
clinical environment, detected anatomical parts can be reviewed on the client
devices remotely. The current system opens many exciting future research direc-
tions both on the algorithmic side as well as on the systems side. We are inter-
ested the most in building more complicated models with several landmarks of
interest trained for different modalities. Such large scale systems will require co-
ordination of multiple CAD servers possibly distributed in a wide-area network.
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