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Abstract. Hybrid imaging systems, consisting of fluoroscopy and
echocardiography, are increasingly selected for intra-operative support
of minimally invasive cardiac interventions. Intracardiac echocardiograpy
(ICE) is an emerging modality with the promise of removing sedation
or general anesthesia associated with transesophageal echocardiography
(TEE).

We introduce a novel 6 degrees of freedom (DoF) pose estimation ap-
proach for catheters (equipped with radiopaque ball markers) in single
X-Ray fluoroscopy projection and investigate the method’s application
to a prototype ICE catheter. Machine learning based catheter detection
is implemented in a Bayesian hypothesis fusion framework, followed by
refinement of ball marker locations through template matching. Marker
correspondence and 3D pose estimation are solved through iterative op-
timization.

The method registers the ICE volume to the C-arm coordinate system.
Experiments are performed on synthetic and porcine in-vivo data. Target
registration error (TRE), defined in the echo cone, is the basis of our
preliminary evaluation. The method reached 8.06±7.2 mm TRE on 703
cases.

Potential uses of our hybrid system include structural heart disease
interventions and electrophysiologycal mapping or catheter ablation pro-
cedures.

1 Introduction

Image guidance is a key facilitator of percutaneous cardiac interventions.
Volume intracardiac echocardiograpy (volume ICE) is an emerging, real-time,
non-ionizing perioperative modality with the promise of removing sedation or
general anesthesia (GA) associated with transesophageal Echocardiography
(TEE) at comparable image quality. High-risk cardiac patients tend to have
a lower tolerance towards GA and intubation, thus avoiding these factors en-
ables earlier hospital discharge. While echocardiography is gaining a foothold in
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therapy due to excellent soft tissue contrast, most interventionalists are trained
on fluoroscopy. Co-registration (fusion) of intra-operative echocardiography and
C-arm X-Ray fluoroscopy (XRF) aims to combine the complementary benefits
of the two imaging systems for use in hybrid operating rooms.

For this reason, we introduce a novel 2D detection approach for catheters
(equipped with radiopaque ball markers) from fluoroscopy and investigate 3D
pose recovery of a prototype ICE catheter using the extracted markers.

2 Background and Previous Works

Catheter detection in XRF is a well researched issue, automatic methods exists
to extract various intruments [6,7] at interactive rates. [11] describes a system for
tracking an IVUS catheter in cine X-Ray to perform image registration. In other
ultrasound-angiography registration scenarios the 3D pose of the transducer is
required, too: the CartoSound [12] system employs electromagnetic tracking built
into the C-arm to localize the ICE catheter. Robotic self-tracking [8] has also
been investigated for echo guidance. Often such external hardware setups are
not feasible, and recently purely image based systems were introduced for regis-
tration [5] [9] of TEE and X-Ray.

During cardiac interventions, multiple catheters, wires and tools are com-
monly visible in XRF. The C-arm may have arbitrary oblique angulations, dye
injection could change contrast conditions. As opposed to TEE that is always
directed down the esophagus, ICE might arrive from different directions to the
target area, unrestricted in 6 degrees of freedom (DoF). In summary, it is ex-
pected that fluoroscopic images will not provide global context to support the
detection task.

The task of finding the 6 DoF pose of a rigid object from perspective projection
of attached ball markers belongs to the Perspective-n-Point (pnp) problem. Even
though closed form solution exists, iterative methods [2,3,4] tend to achieve more
robust matches with noisy 2D marker projections. These methods operate under
the assumption, that 2D-3D point correspondences are known a priori, while [1]
solves the simultaneous pose and correspondence estimation problem. In our
case, point correspondences are not known, and need to be determined.

3 Method

To facilitate our needs, we have developed a prototype ICE catheter and fitted
it with radiopaque ball markers (beads, Fig. 1). Each marker is assigned a
unique virtual identifier (Bi, i ∈ {1, .., 6}), the empirical design of five distal
and single proximal ball markers is shown in Fig. 2 together with the phased
array (PHA) transducer. The 3D catheter pose is parameterized as (x′, y′, z′)
position and rotation: around “long axis” of PHA (αRoll), out-of-plane (βPitch)
and in-plane (γY aw).
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Fig. 1. Illustration of ball
marker sizes in a prototype
ICE catheter for reference

Fig. 2. (a)Typical view of ICE prototype in XRF.
(b)Model used for 2D localization: steerable grid
pattern defined by positions of {Bu1, Bu2}

3.1 Overview

Our automatic 2D catheter detection algorithm (Fig. 3) consists of (i) permissive
ball marker detector and likelihood measure of PHA foreground/background,
(ii) robust hypothesis fusion strategy and (iii) accurate hypothesis refinement.

In the last part, we discuss technical details for registration of ICE and XRF.
Building on the catheter detection method, we use 2D location of ball markers
from a single projection X-Ray for point correspondence determination and 3D
pose estimation of ICE.

Throughout the method, we assume that the tip of the ICE catheter (including
the ball markers and transducer) is rigid.

Fig. 3. (a)Initial ball marker estimates and likelihood measure of Phased Array (PHA)
transducer foreground are integrated for (b)robust, coarse localization of catheter.
(c)Ball marker locations are refined. (d)6 DoF 3D pose is estimated together with
2D-3D point correspondences.

3.2 Approximate 2D Localization

The goal of the first step is to define the region of the XRF image I containing
the catheter. We search for catheter parameters θ∗ maximizing the posterior
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probability:
θ∗ = argmax

θ
p(θ|I) (1)

It is difficult to provide an analytical solution for Eq. (1), as θ is defined in the
space of 2D projections of the 3D catheter/markers. Thus, for coarse localization,
the catheter model is approximated as a line segment (Fig. 3(b)):

θ ≈ θB = {(x, y), γY aw, sx} (2)

where (x, y), γY aw, sx are 2D position, orientation and length of PHA. In con-
trast to TEE [9], the elongated shape of ICE catheter is not distinctive enough
for these parameters to be estimated directly, hence we introduce a natural, parts
based decomposition of θB. The segment is described as a pair of {Bu1, Bu2}
ball markers1 and the likelihood fPHA = f (p (PHA|I) , Bu1, Bu2) of the phased
array located in between them:

{(x, y), γY aw, sx} = g (Bu1, Bu2, fPHA) (3)

with (x, y) = 1
2 (Bu1+Bu2), γY aw = tan

(
δy
δx (Bu2 −Bu1)

)
and sx = ‖Bu2−Bu1‖.

This hierarchical decomposition allows to rewrite the argument of Eq. (1) too:

p(θ|I) ≈ p(Bu1|I) · p(Bu2|I) · f (p (PHA|I) , Bu1, Bu2) (4)

where p(Bi|I) and p(PHA|I) refer to the posterior distribution of ball markers
and the phased array in I, respectively.

Training the Model. The hierarchical decomposition defines the search spaces
in more tractable terms. Our goal is to train two pixel wise classifiers, both
employed in a sliding window approach: one bead detector for p(Bi|I) similar
to [6], and secondly a classifier p(PHA|I) for the likelihood of a pixel belonging
to the phased array transducer. Both detectors are implemented as a cascade of
two levels, where during training the second level is trained on false positives
from the first level as negative examples. Probabilistic boosting trees [10] are
constructed to a depth of three, and include 50 weak learners in each node.
The weak learners are image responses of discrete Haar-like features. p(Bi|I) is
trained on supersampled 0.25 mm resolution images, while subsampled 1 mm
is used for the PHA likelihood measure to smooth out the finer, rotationally
variant structure of the phased array transducer.

Detection Procedure and Hypothesis Fusion. During detection, the goal
is to estimate the segment θB using the trained model on unseen images. Due
to scattered background, both bead and transducer classifiers produce a high

1 At this point Bu1 may be any of the five distal beads (ambiguities in perspective
projection of various ICE poses hinder determination of exact distal marker id), also
Bu1 and Bu2 may be swapped as the segment is invariant to 180◦ rotations).
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rate of false alarms. In order to reliably extract the ICE catheter, we exploit
local context (g (·) in (3)) and fuse pairs of ball markers {Bu1, Bu2}k and PHA
candidates.

The hypothesis fusion consists of the following steps: (i) the top 40 locations
indicated by p(Bi|I) are clustered, (ii) p(PHA|I) is evaluated on the whole im-
age, producing a confidence map for the transducer likelihood and (iii) we select
all possible pairs of marker hypotheses that satisfy the distance constraint2 and
finally (iv) the candidate pairs are scored by fPHA a steerable filter (Fig. 2(b)),
defined on the likelihood map: first taking the maximum response in each “col-
umn” along ←−s , then the 10th percentile of the remaining single row, in order
to penalize hypotheses with low max. response along the {Bu1, Bu2} axis. This
score is used to sort all θB candidates in Eq. (1).

3.3 Search for Fiducials

The approximated coarse location is used to anchor two bounding boxes en-
closing the two tails (Fig. 4) of the phased array: {Vu1, Vu2}. Searching within
these reduced neighbourhoods, we intend to accurately localize and determine
the identity of the visible fiducial beads and decide which end of the catheter is
the distal one. Under various projections, the ball markers start to touch each
other and overlap, making the identification difficult. In order to be able to re-
cover partially overlapping markers, we created a circular template image (with
its diameter dictated by the smallest marker in our images). The template is
overlayed {Vu1, Vu2} in a sliding window manner, the response for each pixel is
calculated as the correlation coefficient of the overlapping regions. Local peaks
are extracted that are further apart than one pixel. The resulting peaks are
treated as marker candidates. The distal end of the catheter and {Bdisti} is in-
dicated by more beads among the two neighborhoods. If more than one marker
is present in the proximal area, we suppress the non maximum responses to keep
the most likely one as Bprox.

Fig. 4. Results of approximate localization (θB, red frame), and predicted search
ranges for fiducial ball markers (Vu1,Vu2; yellow and blue frames)

2 From the C-arm we know the source-table distance that together with allowed
catheter pitches (Fig. 2(a)) limits the 2D span of the proximal and distal markers
visible in the X-Ray projection



6DoF Catheter Detection, Application to ICE 641

3.4 Pose Estimation and Registration

Registration of ICE and XRF is establishing a spatial relationship between ICE
voxels PICE vox(xI , yI , zI) and XRF pixels PFluoro(u, v):

PFluoro(u, v) = TC−arm
→FluoroT

ICE cath
→C−armT ICE vox

→ICE cathPICE vox(xI , yI , zI) (5)

Here, the cone-beam perspective projection, intrinsic parameters (defined in the
pinhole camera model) and C-arm angulation are combined in TC−arm

→Fluoro, and are
considered known from the calibrated C-arm system itself. Also, the geometric
relationship between the ICE image and ICE catheter T ICE vox

→ICE cath is considered
known from calibration, leaving the 3D pose of the ICE catheter in the 3D C-arm
coordinates T ICE cath

→C−arm ≡ T unknown in (5).
The purpose of pose estimation is to infer the rigid transform T consisting

of a rotation R (αRoll, βPitch, γY aw) and translation
←−
t ≡ (x′, y′, z′). For this

we need to determine the correspondence between ball markers on the catheter{
B′

j

}
and the extracted 2D marker projections {Bi}.

We address the correspondence problem within {Bdisti} with an exhaustive
search: for each combinations of markers, we execute a version of POSIT [2] and
iterative optimization of pose. The estimated pose of beads is reprojected to the
X-Ray plane. Using the sum of 2D point-to-point (

∑
P2P) distance, we pick the

marker combination that yields the smallest residual.

4 Experiments and Results

Our learning based models require large amounts of examples to train a classifier.
Manually labeling markers in real X-Ray sequences is a laborious task, and
reliable 3D Ground Truth (GT) location of the markers would require a co-
registered C-arm CT. As such data was not readily available, we synthesised
Digitally Reconstructed Radiographs (DRR) from a 3D image of the catheter and
background angiographs without ICE. DRRs allow the 3D GT to be generated
at the same time. We produced 11 000 (0 ≤ αRoll ≤ 360,−30 ≤ βPitch ≤
30,−180 ≤ γY aw ≤ 180) randomized images for training and 1 000 images
for testing. In addition, we captured 641 XRF frames from an in-vivo porcine
study and manually annotated the beads3. 400 of these frames were used for
training, the remaining 241 for testing. Line segment detection accuracy is shown
in Table 1a. More than 97% of the cases are successfully (‖ (δx, δy) ‖ < 5 mm,
γY aw < 5◦) detected which is comparable to the state of the art [7,6].

For the rest of the evaluation, we have selected those cases, where hypothesis
fusion and template matching was able to localize BProx and ‖{BDisti}‖ = 5
beads. These represent those cases where direct correspondence can be estab-
lished, assuming beads do not overlap. 715 and 193 such cases were detected
for DRR and in-vivo data, respectively. Native resolution of the tested X-Ray
images is in the range of 0.3 to 0.4 mm, sub-pixel accuracy is achieved by our

3 We would like to acknowledge Zhivko Dimitrov for annotation of in-vivo data sets.
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Table 1. (a) 2D catheter θB localization performance, translation error in mm.
(b) Point-to-point 2D marker localization performance, error in mm, displayed as
mean±std. dev. Considered in images where θB succeeded and ‖{BDisti}‖ = 5.

(a)

synthetic in-vivo

No. of Images 1000 241

Success/Rate 979/97.9% 235/97.5%

Avg±Std 1.20±0.55 1.10±0.58

(b)

synthetic in-vivo

No. of Images 715 (71.5%) 193 (80.0%)

Symmetric 0.31±1.55 0.22±0.19

Hausdorff 0.67±3.73 0.36±0.51

marker detection shown in Table 1b. To evaluate the accuracy for the envisioned
image fusion application, we employ the target registration error (TRE). The
target points are defined as the four corners of the sound cone at the depth of
50 mm. The effective value of TRE (ETRE) is computed by keeping only the
TRE components which are parallel to the detector plane. Due to lacking 3D
GT, we could only evaluate the 6 DoF pose estimation on the 715 DRR images
for which all markers could be detected. 12 cases were excluded, where the sum
of 2D point-to-point distance was above 1 mm. In the remaining 703 images
the correspondence and 3D pose estimation performed well, yielding an average
TRE of 8.06± 7.2 mm and ETRE of 2.81± 1.5 mm (Table 2).

Table 2. 3D pose estimation accuracy on DRR cases where ‖{BDisti}‖ = 5. From
715, we excluded 12 cases where

∑
P2P reprojection error is above 1 mm.

Roll ◦ Pitch ◦ Yaw ◦ Depth mm TRE mm ETRE mm

Avg.±Std. 2.03±1.5 2.07±1.6 0.13±0.2 7.28±7.8 8.06±7.2 2.81±1.5

Median/P90 1.76/4.21 1.68/4.37 0.10/0.25 4.74/17.93 5.54/17.58 2.59/4.84

5 Discussion

The overall 2D marker detection error is lower for in-vivo data compared to
synthetic. This is due to the fact, that the X-Ray sequences used as background
for DRR generation are from actual cardiac interventions, and contain various
other wires and tools that appear similar to the ICE catheter, while the porcine
data featured less clutter.

The 3D TRE is non-isotropic: the depth direction contributes the major part
of the error, as small inaccuracies of detected beads in the X-Ray detector plane
are magnified along its normal. When targets are displayed as overlays on the
2D XRF images, the depth error “disappears”. To reflect this clinical scenario,
we introduced the ETRE. The 2.81± 1.5 mm ETRE is comparable to the 5 mm
range envisaged by our interventional collaborators as clinically useful.
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Future work should be aimed at techniques to recover pose from only 3 or
4 visible distal markers, and to exclude extraneous marker candidate outliers.
Moreover, we plan on investigation of temporal information to increase detection
rate in challenging backgrounds.

6 Conclusions

To the best of our knowledge, this is the first published method to automatically
extract and register an ICE catheter with XRF. The extraction method is ag-
nostic to catheters as long as both ends are beads marked, and connected with a
visible part in between, hence, general enough to be used for other devices. We
provided quantitative evaluation on a number of real and synthetic images and
arrived at convincing preliminary results.
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