
Software Design Issues for Experimentation in Ubiquitous Computing

Thomas Reicher
Technische Universität München

reicher@cs.tum.edu

Timo Kosch
BMW AG

Timo.Kosch@bmw.de

Abstract

Designing smart user interfaces is a key challenge
in making a new appliance useful. This is espe-
cially difficult to achieve when input devices such
as keyboard and mouse which allow a very flexible
way of interaction with the system in a static en-
vironment are not handy in a mobile environment.
Good user interface design is not the application of
magic but an iterative process of engineering. One
technique of interface engineers is experimentation
with users. Most experimentation is done by watch-
ing the user and the system from outside and treat-
ing it as a black box. We see the need for what we
call experimentation-ready software that supports
researchers in data gathering and data processing.
We show that software techniques to realize this are
already available. They are currently used for other
purposes. We show that design patterns and other
techniques can be applied and that the overhead for
enabling experimentation will be small. We present
the experimental setup of an environment for ubiq-
uitous computing in automobiles.

1 Introduction
Designing smart user interfaces is a key challenge in making
a new appliance useful. The need for this is even greater in
mobile settings where the designers of the user interface are
confronted with a dilemma. Input and output devices from
desktop computers such as keyboard, mouse, and high res-
olution display allow a very flexible way of interaction be-
tween the user and the system. They are flexible because the
user input can be semantically rich as with the keyboard and
a shell and the user can select the interaction context as with
the mouse and a windows based user interface. However, for
a mobile user these devices are usually too bulky. Every addi-
tional pound and every additional square centimeter of a de-
vice can be too much. For mobile users the equipment must
be as unobtrusive as possible. Since the adaptation of hu-
mans to technical devices is limited due to the physique of
the human body, designers of user interaction devices cannot
simply shrink the input devices as far as technically possible.
Consequently they have to find a compromise in the number
and size of input components such as keys on a keyboard, the

expressiveness of the output devices such as a LCD, and the
functionality of the device. Moreover, broadth and depth of
the menu structure are limited.
To provide short paths through a menu to the desired func-
tionality the device should be able to find out the user’s in-
tention. It needs to find out the user’s context and apply rules
about what functionality is needed in a certain context. If the
designer of the user interface did a good job, the system be-
haves intelligently from the user’s point of view. But how can
we find out what will be considered as intelligent or annoy-
ing? How can we see whether we gathered the right data in
our context? To figure this out the interface has to be devel-
oped iteratively and in cooperation with the user.
Experimentation to gather user feedback is usually costly and
takes time, especially if prototypes are developed only to
gather user feedback and thrown away afterwards. However,
if the development process is component based and iterative
with growing functionality of the components, experimenta-
tion and user tests can be based on preliminary versions of
the final system. It is possible to set up the overall architec-
ture of the system. Missing functionality of the components
can be substituted by manual input of the person who car-
ries out the experiment. That way, user tests can start early.
Software components should be built for reuse. The effort to
make them experimentation-ready should be done only once
while the component will be used for more than one exper-
iment. Even if components are not reused in other systems
they will be reused most probably in new generations of the
software they are part of.
The remainder of this paper is organized as follows: in sec-
tion 2 we describe an iterative user interface design process
based on experimentation. We present the general setup of
experimentation environments in section 3. In section 4 we
present our model for component based user interfaces that
allows such experimentation. We describe fields in software
engineering that also rely on data gathered from within the
software’s components in section 5. We show that techniques
developed for these purposes can be reused. In section 6 we
give an example of an experimental setup for research in mo-
bile systems. We close with a conclusion in section 7.

2 An Iterative User Interface Design Process
The complexity of systems is increasing while the compre-
hensiveness of the user is not. User interfaces have to be



somewhat intelligent, so that only the actually needed func-
tions are visible to the user. The system has to recognize the
actual context and present the functions the user needs. There
are two problems: first the interface designer does not know
what the user needs in every situation. He cannot model it
into the system so that it seems intelligent. The second prob-
lem is that the user doesn’t know it either.
This is a well-known problem in software engineering when
specifying the needed functionality of a software system. An
approach to this problem is to iteratively develop and evaluate
prototypes that implement more and more functionality.
In this approach, the software is developed in an evolutionary
way starting with requirements elicitation and analysis and
the design of first nonfunctional mock-ups. These mock-ups
are reviewed together with the user, then refined, and func-
tionality is added step by step. With this iterative approach the
software engineer and the user are improving their shared un-
derstanding of the system. The engineer gets to know better
what the user wants, and the user can more accurately specify
what he really needs. There are several software development
processes that describe such an iterative approach. One well
known process is the spiral model[Boehm, 1988].
The same approach can be applied to the field of interface
design, as described in[Maybury, 1999] or [Arndt, 1999].
Figure 1 from[Arndt, 1999] illustrates this process.

Figure 1: The Iterative Process

For the first draft the designer, often a psychologist, makes
user studies about the actual situation and uses his or her
knowledge to come up with a hypothesis for the desired inter-
face. The term interface in this context does not only refer to
the look and feel but also to the user interaction with the sys-
tem. With this first design user studies can be made. Now user
feedback is gathered iteratively and influences refinements of
the interface design. At some time the non-functional proto-
type is becoming a functional one and the user can play with
the device and the experimentors get new user feedback. And
even when the system is delivered there is still the wish to get
user feedback for the development of new generations of the
system.

3 Experimental Setup for User Interface
Studies

In the natural sciences as well as the social sciences re-
searchers use experiments to find out new facts that help them
develop new insights and to proove new theories. An experi-
ment is the setup of a controlled environment where the stud-
ied procedures are running in a controlled manner that help
the researcher to gather reliable and unbiased data. With the
same setup and the same conditions other scientists must be
able to redo the same experiment and to gather the same data.

Figure 2: Wizard of Oz Experiment Setup

User interface designers are also using experiments to find
out wether a new design is useful or not. One exam-
ple of such an experiment is the so called Wizard of Oz
experiment[Dahlb̈acket al., 1993]. Figure 2 shows the setup
of a Wizard of Oz experiment. On the left hand side we see
the Wizard of Oz, a researcher, that watches the scenario but
is invisible for the user. On other side we see the user. Note
that not all of the functionality of the prototype needs to be
implemented since the Wizard of Oz on the left has full ac-
cess to the client system and can simulate system response
(note the wireless connection between the client’s system and
the wizard’s control terminal). There are some minor prob-
lems such as a slower responsiveness to user input by the re-
searcher than by a fully functional system. The most obvious
advantage is that not all of the system’s functions need to be
implemented before it can be figured out together with the
user what is really needed.
For a good evaluation of user studies, interface designers
must set up an experimentation environment that allows them
to gather reliable data. There are different possibilities to set
measuring points to gather data from. The data can be pro-
cessed by the experimentor or by certain tools such as data
mining tools. For data gathering we see a data source that is
often neglected in user interface experiments: the data that is
inside the software components. Usually the system is ob-
served from outside, for example by watching the user inter-
acting with the system. This reminds to black box testing
where only the interfaces and specifications of the tested sys-
tem are known. White box testing allows to see inside the
component. Applied to the problem of interface design this
would mean that the investigator could see the state of the
software components inside the system at a given time.
There are many ways to observe an experiment but it is more
difficult to influence it. For data acquisition during the ex-
periment the scientist has several possibilities: he can take
notes while watching, use a video camera, redirect the user’s
display and record it, let the user fill out questionnaires, inter-
view the user, and many more.



4 User Interfaces seen as Communicating
Components

With the term user interface we refer to the combination of
all input and output devices that can react on user input or
that can catch the user’s attention. We indicated this in figure
2 with the circles that are on or around the user and that can
communicate with each other and with the user. An example
is the field of wearable computing. Another good example is
mobile computing in combination with ubiquitous computing
where the user moves through a very communicative environ-
ment where new components try to connect to the user in an
adhoc manner and change the user’s interface.
These devices either provide user interfaces on their own or
delegate this task to other devices which provide I/O contain-
ers for them, for example a display. Today many devices can-
not yet communicate with each other but we expect this to
change.
A multimodal user interface comprises several distinguish-
able components that together provide the means for input
and output of data from and to the user. These components
want to send and receive user data. In figure 2 we indicate the
bunch of devices that are on the user’s body or in his environ-
ment with circles. They can communicate with each other,
but in any case they also send their data to the wizard in the
background that controls the experiment.

5 Experimentation-ready Software
Architecture

For the development of software and for the monitoring and
control during runtime there is the need to enhance software
components with information that is not needed for the func-
tionality. The techniques used in these cases can be also be
valuable for our purpose. Namely, we present techniques for
augmenting the code, for switching components, for observ-
ing the data channels, for observing the components by re-
flection, and for accessing the platforms the components run
on.

Augmenting the code
A simple example for enhancing code is the usage of compiler
switches for debugging. Compilers can integrate additional
information into the code that can be used by debuggers for
tracking the progress of the program execution or setting trap
points. The debugging interfaces can be accessed by special
tools. Another possiblity to access runtime information is the
use of profilers.
A more advanced solution is the usage of aspects. As-
pect oriented programming is a new paradigm that allows
to weave cross concern aspects into the program. This
could be debugging information but it could as well be any
other code that is temporarily needed for certain purposes.
Tools such as AspectJ weave code for an aspect into the
existing code and thus clearly separate the functionality of
the component from aspects such as debugging or track-
ing. If an aspect is not used any longer in the code, the
aspect can be cleanly removed automatically. For more in-
formation on aspect oriented programming see[Parc, 2001;
Highleyet al., 1999].

Figure 3: Bridge Pattern

Switching components

[Gammaet al., 1995] provide several design patterns that can
be used in our context. Examples are the Factory, Abstract
Factory, Adapter, the Bridge, Decorator, Proxy, Observer,
Strategy, Chain of Responsibility, and Template Method.
Factory and Abstract Factory are construction patterns. They
allow to decide at runtime what instance should be created.
Adapter, Bridge, Decorator, and Proxy are structural pat-
terns. They allow to change the structure of components with-
out changing their interfaces. Observer, Strategy, Template
Method, and Chain of Responsibility are behaviour patterns
that allow to change the behaviour of the system. As a promi-
nent pattern we use the Bridge pattern to explain our ideas.
Figure 3 shows the structure of the pattern. This pattern is of-
ten used to replace components that are not yet implemented
with dummy implementations that don’t provide any func-
tionality at all or only provide reduced functionality. This can
also be used for simulating a device that is not yet available.
So during development, the structure of the system is clear
and does not need to be changed if the bridged component is
ready. In figure 3 we use this pattern to change the compo-
nent that implements the interfaces for experimentation with
the component for the roll out. The overall structure remains
the same, only one component is exchanged, even at runtime.

Observing the data channels

In distributed systems there is another source for getting in-
formation: the communication middleware. We can dif-
ferentiate between asynchronous, event-based systems and
synchronous, method-based systems. In event-based sys-
tems a dedicated service, the event service is the broker that
transports events from event publishers to event subscribers.
[Brueggeet al., 1993] present a framework for dynamic pro-
gram analyzers of distributed programs. Basically, the pro-
gram analyzer connects to the event service as a subscriber
for events he is interested in. But it can also connect as an
event publisher and mimic other components by simply send-
ing events instead of them. For example, in the Wizard of
Oz experiment the Wizard can observe all event channels and
publish events on behalf of a component that is not yet im-
plemented. This can be done with all event based systems
such as OWL, a framework for intelligent buildings[Bruegge
et al., 1999]. There is no runtime overhead if the observer is
running in a separate process.



Reflection
The complexity of distributed systems is significantly higher
than that of stand-alone systems. So it will become more and
more important to be able to monitor the components and
their state and behaviour at runtime or for post-mortem anal-
ysis. The ability for monitoring needs to be built into the sys-
tem from the very beginning. Some information is integrated
into the standard APIs of languages such as Java with the Re-
flection API or the Runtime Type Information (RTTI) in C++.
For distributed systems this information is not enough. Sys-
tems such as Carp@[Breitling et al., 1999] enhance the built
in reflection mechanisms by adding services that gather run-
time data about the active components in the system. This
data can be used for system management. Also experimenta-
tion tools may access them.

Accessing the platform
Modern distributed systems such as CORBA 3[OMG, 2001]
or Enterprise Java Beans[Javasoft, 2001] are platforms that
provide services for the components. Among these services
are persistency, startup, stop, load balancing and more. These
platform services can also be accessed by tools that need to
gather data about the components.

6 Example Setup for Mobile Devices
6.1 In-Car Computing Scenarios
In this section we present an experimental setup for the de-
sign of mobile systems. We describe the application of the
presented component-based user interface design approach to
user studies in experimental car settings. In the near future
cars will be equiped with ever more intelligent driver infor-
mation systems. In addition to information about the current
traffic situation and the state of the car, the driver will have the
possibility to interactively ask for information from Internet
resources. One of the main challenges in this scenario will
be the design of a context-aware and easy-to-use car interface
that prevents the driver from information overload.
The usefulness of in-car multimedia and information system
architectures depends largely on their ability to meet the cus-
tomer’s demands and on their effect on traffic safety. We un-
derstand the Internet-enabled car as the idea of ubiquitous
computing applied to the automobile, supporting the driver
with the information he needs when he needs it. We believe
this is a much more convincing approach than simply to in-
stall a Web browser in the car. The concept of the perceptual
interface[Pentland, 1999], adaptive both to the overall sit-
uation and to the individual user, is a promising concept to
accomplish the goal of the smart car.
While for context-awareness in ubiquitous computing many
mobile systems are additionally equipped with sensors to en-
able them to adapt to situation and user, the automobile al-
ready contains many sensors and is now equipped with pow-
erful computing resources and innovative user interaction de-
vices. A European research project focused on the develop-
ment of an in-car mobile service platform using Java technol-
ogy [Inform, 2001]. Based on this software platform car pas-
sengers can use mobile services while on the road. The ser-
vices can be dynamically downloaded onto the car platform

Figure 4: Car Network Architecture

on demand using wireless communication networks. Among
the services that can be offered are location-based services
like information about nearby gas stations, hotels or restau-
rants, traffic information services such as local danger warn-
ings and dynamic parking information, remote car diagno-
sis, emergency calls or multimedia services such as games or
audio-on-demand.
The developments towards Internet-enabled in-car infor-
mation systems require in-depth user studies to find new
metaphors and design appropriate dialogues. The increasing
complexity requires the support of methods and tools to ef-
fectively and efficiently build new services and applications
and test new user interface components.

6.2 System Design for Driver Interaction

System Architecture

In a car environment the user computer interaction has to be
designed very carefully. The possibilities for input and output
devices such as screen size etc. are better compared to small
handheld computers. Nevertheless, the desktop paradigm
doesn’t work in a mobile driving situation. Special technol-
ogy has been developed for user interaction within the car.
Besides the classic knobs and dials for car control such as the
steering wheel and gas pedal, other devices find their way into
the cockpit allowing driver and passengers to enjoy multime-
dia features and receive useful information while traveling.
The fundamental car network architecture is depicted in
Fig. 4. Different bus technologies are used in modern cars.
The figure shows a part of the vehicle bus system that con-
nects the user interaction devices. A gateway enables this
bus to communicate with the Controller Area Network (CAN)
to which internal electronic control units (ECUs) such as the
motor controller are connected. Input and output components
like the instrument panel or buttons which are integrated in
the steering wheel are directly connected to the bus system
just like the radio or navigation system. Every component
can generate a message which is broadcasted on the bus. The
other components listen for messages on the bus and filter
out the information they’re interested in. To this architecture
we add an observer component which is connected to the bus,
records the events from the distributed components and writes
the information into a database.



Driving safety
It has been shown that the use of mobile phones while driv-
ing increases the risk of accidents[Redelmeier and Tibshi-
rani, 1997]. Few studies have been conducted that examine
the influence of the use of other information and communica-
tion services[Tijerina, 2000]. The experience of the mobile
phone, however, makes us aware of the danger that the us-
age of such services during driving bears. On the other hand,
danger warning and traffic information services may result in
improved traffic safety. The effect may be quite different in
changing driving situations. Different system designs have to
be examined in appropriate test setups. Context-awareness is
a key issue since it is crucial to support the driver with the
right information in the right situation and at precisely the
right time, i.e. not when he is concentrating on a lane change.
While interaction can be rich when the car is parking, during
driving the interaction must be kept to a minimum in order not
to distract the driver from his task. In order to best support
the driver, information needs to be given to him according
to the situation. Context-aware, yet natural input and output
components and system behaviour selection are crucial to a
successful interface design. In order to optimize the use of
the functionality modern cars offer to their owners, the user
interface in a car environment needs special consideration.

Vehicle I/O devices and technologies for user interaction
New input and output devices are included in user design ex-
perimentation. The ErgoCommander is a special input device
which can be turned clockwise and counterclockwise, moved
horizontally and vertically like a joystick and pushed like a
button. The Head-Up Display[Hooey and Gore, 1998] al-
lows the projection of information onto the front window, e.g.
for displaying warning information such as ”accident ahead”
or the allowed maximum speed in case the driver is too fast.
Speech recognition technologies up to date allow for the in-
put of a limited set of distinct voice commands. The noisy
surrounding in the car keeps current systems from acceptable
recognition rates for random voice input. Text to speech en-
gines, though having made great progress, are not yet compet-
itive to natural human voices. Using this technology means
that the driver has to spend too much attention to the speech
information which distracts him from the driving task. In the
following section we view the different I/O devices as com-
ponents. The interaction with the user is handled by software
components which are controlling the device.

6.3 Experimental Setup for Researching Driver
Car System Interaction

Conventional User Study Setup and Dialogue Recording
In current experimental setups, the data is usually collected
by writing it directly to files with commands spread all over
the actual application code. This involves a lot of work in
adding the data collecting functionality to the code and later
remove it. It also makes it hard to later extract relevant data
from the generated files, process the data and produce charts.
The necessary software support is usually added to the sys-
tems in an ad hoc manner. A consistent approach that sup-
ports experimentation, data collection and evaluation is miss-
ing in today’s setups.

Figure 5: Component Architecture

Deploying a Component Based User Study Setup in a
Car Environment
In this paragraph we show the use of the component based ap-
proach in the car environment. In the experimentation setup
the driver is watched by a camera and a person on the rear ob-
serves the behaviour of the test person. User feedback is also
captured through speech recording and videotaping gestures.
The movement of the drivers eyes can be tracked as well as
his behaviour towards different text-to-speech engines with
different voices and volume. Interaction data like the choice
of input channel or the reaction to different output modali-
ties are recorded. Such data about user interaction can be
gained from the software components. We gather and save
this data. The interaction between the driver and the system
is multimodal. While turning the ErgoCommander to choose
a different MP3 song or another radio station the driver might
specify a navigation destination to the navigation system or
initialize a mobile information retrieval agent by voice. The
software component architecture allows the a posteriori an-
alyzation of concurrent or overlapping actions taken by the
user.
We explore the component based design of user interaction
with the navigation system using new user interface compo-
nents, particularly the use of a head-up display. We take this
example for two reasons: Route navigation is a familiar ap-
plication, already in use especially in middle and upper class
vehicles, and it is an application which is used while the car
is moving. The basic structure of the component architecture
is given in Fig. 5 in UML style.
The Head-Up Display is modeled as a container component.
It can contain information display components which are
themselves logical containers. Navigation information can
be presented in a window which is placed into an information
display component. This information display component can
then be projected on the head-up display. For testing, special
experimentation components inherit from the actual system
components and are extended for test purposes. These com-
ponents are controlled by the observer, e.g. instantiated using
the component factory. The configuration of this test setup
can easily be changed during experimentation. Tools with



graphical user interfaces for managing the setup and control-
ling the experiment can be implemented. The relevant infor-
mation that the components generate is collected and stored
by the observer component. Standard evaluation procedures
can be run on the structured test data tables in the database.

7 Conclusion
In this paper we have shown an iterative design process for
user interfaces. By using Wizard of Oz setups user experi-
ments can start in an early development stage. We have pre-
sented a model of user interfaces that is based on a combina-
tion of interface components. Based on this we have shown
that the enabling techniques based on well known principles
are already available. Testing the user interface can start at an
early stage without much more cost as already raise for other
requirements such as management. A setup for user interface
experimentation shows the application of these principles.

Acknowledgements
This work was supported by the Bayerische Forschungsver-
bund Softwaretechnik (Forsoft) and the BMW Group.

References
[Arndt, 1999] Timothy Arndt. The Evolving Role of Soft-

ware Engineering in the Production of Multimedia Appli-
cations. InProceedings of ICMCS’99. IEEE Computer
Society, 1999.

[Boehm, 1988] B. W. Boehm. A Spiral Model of Software
Development and Enhancement.IEEE Computer, 21(5):
61–72, May 1988.

[Breitling et al., 1999] Max Breitling, Michael Fahrmair,
Chris Salzmann, and Maurice Schoenmakers. Carp - Man-
aging Dynamic Distributed Jini Systems. InOOPSLA’99
Workshop on Reflection and Software Engineering, pages
173–184, 1999.

[Brueggeet al., 1993] Bernd Bruegge, Tim Gottschalk, and
Bin Lou. A framework for dynamic program analyzers. In
Proceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages
65–82, September 1993.

[Brueggeet al., 1999] Bernd Bruegge, Thomas Reicher, and
Ralf Pfleghar. OWL: An Object-Oriented Framework for
Intelligent Buildings. InProceedings of the 2nd Intera-
tional Workshop on Cooperative Buildings, 1999.

[Dahlb̈acket al., 1993] N. Dahlb̈ack, A. J̈onsson, and
L. Ahrenberg. Wizard of Oz Studies - Why and How. In
Proceedings of the ACM International Workshop on Intel-
ligent User Interfaces, 1993.

[Gammaet al., 1995] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[Highleyet al., 1999] T. J. Highley, Michael Lack, and Perry
Myers. Aspect Oriented Programming - A Critical Anal-
ysis of a new Programming Paradigm. Technical Report
CS-99-29, University of Virginia, 1999.

[Hooey and Gore, 1998] B. L. Hooey and B. F. Gore. Devel-
opment of human factors guidelines for advanced traveler
information systems and commercial vehicle operations:
Head-up displays and driver attention for navigation infor-
mation. Washington, DC: Federal Highway Administra-
tion (FHWA-RD-96-153), 1998.

[Inform, 2001] Inform. Inform: Information for the Mil-
lions, http://www.inform-eu.org, 2001.

[Javasoft, 2001] Javasoft. Java(TM) 2 Platform, Enterprise
Edition, http://www.javasoft.com/ejb, 2001.

[Maybury, 1999] Mark T. Maybury. Putting Usable Intelli-
gence into Multimedia Applications. InProceedings of
ICMCS’99. IEEE Computer Society, 1999.

[OMG, 2001] OMG. Welcome to the OMG’s CORBA Web-
site, http://www.corba.org, 2001.

[Parc, 2001] Xerox Parc. Aspect-Oriented Programming
Home Page. http://www.parc.xerox.com/aop, 2001.

[Pentland, 1999] Alex Pentland. Perceptual Intelligence.
In Hans-Werner Gellersen (Ed.): Handheld and Ubiqui-
tous Computing, First International Symposium, HUC’99,
Karlsruhe, Germany, September 27-29, 1999. Lecture
Notes in Computer Science, Vol. 1707, Springer, pages 74–
88, 1999.

[Redelmeier and Tibshirani, 1997] Donald A. Redelmeier
and Robert J. Tibshirani. Association between Cellular-
Telephone Calls and Motor Vehicle Collisions.The New
England Journal of Medicine, 336(7), 13 February 1997.

[Tijerina, 2000] L. Tijerina. Issues in the Evaluation of
Driver Distraction Associated with In-Vehicle Informa-
tion and Telecommunications Systems. Internet Forum
on Driver Distraction. Hosted by the US DOT NHTSA.
http://www.driverdistraction.org, 18 May 2000.


