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Abstract. Feature based visual odometry and SLAM methods require
accurate and fast correspondence matching between consecutive image
frames for precise camera pose estimation in real-time. Current fea-
ture matching pipelines either rely solely on the descriptive capabilities
of the feature extractor or need computationally complex optimization
schemes. We present the lightweight pipeline DynaMiTe, which is ag-
nostic to the descriptor input and leverages spatial-temporal cues with
efficient statistical measures. The theoretical backbone of the method lies
within a probabilistic formulation of feature matching and the respective
study of physically motivated constraints. A dynamically adaptable lo-
cal motion model encapsulates groups of features in an efficient data
structure. Temporal constraints transfer information of the local mo-
tion model across time, thus additionally reducing the search space com-
plexity for matching. DynaMiTe achieves superior results both in terms
of matching accuracy and camera pose estimation with high frame rates,
outperforming state-of-the-art matching methods while being computa-
tionally more efficient.

1 Introduction

Visual self-localization from consecutive video frames of a freely moving cam-
era has a long history [1] and is one of the key challenges in 3D computer vision.
SLAM methods have been applied in robotics and UAVs [2] and are a crucial
element in augmented reality pipelines [3] as well as medical applications [4].
Besides well known methods based on direct image alignment [3,5,6,7], different
sparse feature based methods are also well studied [8,9,10,11].

Direct methods incorporate the image information directly from pixel in-
tensities, which can be error-prone due to illumination changes, moving objects
or shutter effects [5]. However, a dense image alignment can help with dense
reconstructions of the scene [16]. Feature based methods rely on distinctive
feature points extracted from the image input, which can account for illumina-
tion changes while reducing the computational complexity. Due to their sparse-
ness, they are more suitable for SLAM methods with loop closures and bundle
adjustment; however reconstructions are not dense [9].

ar
X

iv
:2

00
7.

16
00

5v
1 

 [
cs

.C
V

] 
 3

1 
Ju

l 2
02

0



2 P. Ruhkamp, R. Gong, N. Navab, B. Busam

GMS 

14 FPS [GPU]
  3 FPS [CPU]

ORB

36 FPS [GPU]
25 FPS [CPU]

ORB

36 FPS [GPU]
25 FPS [CPU]

SIFT

 
22 FPS [CPU]

ORB

36 FPS [GPU]
25 FPS [CPU]

OURS

 
63 FPS [CPU]

ORB

36 FPS [GPU]
25 FPS [CPU]

Fig. 1. Comparison of feature matching for consecutive image frames on a challenging
low-textured object of the TUM RGB-D dataset [12]. Features in frame Ii in yellow; Ij
in green; Matches as blue lines. SIFT [13] is texture-sensitive. ORB [14] (2000 extrac-
tions) is efficient but unstable. GMS [15] produces noisy, wrong matches in uniform
regions while our method runs the fastest with minimal incorrect matches.

The first step in feature based visual odometry and SLAM systems is to de-
tect and to match keypoints between consecutive frames. Quality and robustness
of this step is vital for camera pose estimation and all subsequent computations
in the pipeline. Errors in pose estimation are usually treated in a second stage
by pose optimization with local and global bundle adjustment or graph based
optimization schemes [17,18].

Motivation. Natura non facit saltus.1 This principle of natural philosophy
was a crucial element in the formulation of infinitesimal calculus and classical
mechanics [19]. Consequently, as

x (t+∆t) ≈ x (t) + v0∆t+
1

2
a (∆t)

2
, (1)

we assume smooth motion of an object in space, which is also true for its projec-
tion P (x) onto a camera image. Knowledge of the motion at time t thus helps
to approximate the projected location P (x+∆t) in the next frame.

Given a video sequence, extracted feature points around descriptive parts of
the image (e.g. some object in the scene) are grouped into local feature groups
by our novel clustering algorithm. The spatial 2D displacement of corresponding
groups is then propagated from previous frames by a motion proxy to constrain
the search space for new feature matches. Since close features likely belong to the
same scene structure, their motion is similar and inter-frame matches between
corresponding groups can reinforce each other. This is justified by statistical
measures based on a binomial distribution detailed in section 3.2. It follows that
for a certain number of n features in a group, a minimum number of N matches
between the groups is needed to confirm a true positive match (cf. Fig. 2).

Contributions and Outline. DynaMiTe combines two complementary ele-
ments of spatially coherent motion and temporarily smooth inter-frame displace-
ments - analogous to its eponym - in its joint formulation for feature matching
between consecutive image frames. To this end, DynaMiTe contributes:

1 Latin for ”nature does not make jumps”.
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Fig. 2. Matching and reinforcement. Support matches (blue) between groups of feature
points reinforce each other. Areas with little structure or blurry parts can lead to noisy
false matches (orange). The proposed locally adaptive clustering algorithm encapsulates
proximate feature points. All clusters within a defined search space (dashed line) are
potential matching candidates.

1. A dynamic local motion model encapsulating the differentiable spatial
motion prior with temporal coherency constraints through frame-to-
frame information passing.

2. A statistical quality criteria to determine noise-free feature correspon-
dences.

3. An efficient clustering scheme through a light data structure to form
groups of close-by feature points.

4. An efficient and robust feature matching pipeline for camera pose
estimation in image sequences that significantly improves the state-of-the-
art evaluated on the three datasets KITTI [20], TUM RGB-D [12], and
TILDE webcam [21].

To the best of our knowledge, DynaMiTe is the first method that uses a generic
data structure to form clusters of feature points and combines spatial and tem-
poral constraints for feature matching, formulated in a unified probabilistic
model. We motivate our method by analyzing the shortcomings of similar ap-
proaches in Sec. 3. We then give an overview of the general procedure of Dyna-
MiTe, introduce our proposed dynamic local motion model (Sec. 3.1), extend the
probabilistic model of reinforcing support matches between groups of features
(Sec. 3.2, 3.3), and deduce robust statistics from it (Sec. 3.4). In the experiments
we show matching quality, robustness and repeatability on different datasets for
DynaMiTe as well as runtime performance, outperforming SOTA even in chal-
lenging scenes.

2 Related Work

Feature based visual odometry methods have shown to achieve the tight
real-time constraints to compute accurate camera poses and sparse 3D maps
of the scene [8], even for long sequences [9]. Accurate feature matching has
immediate effect on the subsequent tasks of pose estimation and map genera-
tion [22,23,24,25,26,27]. Pose interpolation [28,29] and filtering [30] techniques
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can be utilized to circumvent the real-time constraint for camera pose estima-
tion from video sequences to some extent. To improve feature matching capa-
bilities, multiple feature detectors and descriptors have been developed [13],
also specifically targeting real-time applications [14]. One major area of research
focuses on the development of robust descriptors which are less variant and
more distinctive, thus enabling better matching performance [31]. Different de-
scriptors [32,33] and learning based pipelines [34,35,36,37] enable a variety of
vision applications [38,39,21,40]. Some scholars design descriptor and detector
together [40,41,42,43,44], or additionally learn the matching task [45] and also
including semantic information [46]. Chli and Davison [47] propose to actively
search for features by propagating information from the previous frame. Tar-
geting specifically wide baseline, Yu et al. [48] proposed an efficient end-to-end
pipeline for learning to find correspondences.

Differentiating between true correspondences and mismatches still re-
mains as primary difficulty. Methods like the ratio test [13] improve feature
matching quality by comparing the best and second best potential feature match.
Cross check is an alternative to the ratio test, where the nearest neighbor matches
are checked for consistency. Statistical approaches such as RANSAC [49] and
its modifications [50,51] are effective to remove outliers but may increase runtime
due to their iterative execution, especially for large inputs. FLANN [52] finds
approximate nearest neighbors in large datasets and can improve computation
times.

By grouping joint motion pairs [53] different methods have been proposed
in order to distinguish between true and false matches [54,55]. Despite showing
compelling results, their elaborate formulations result in complex and costly con-
straints. Other methods assume similar motion smoothness by matching patches
between images [56,57], or learn to match patches [58]. Sparse [59] and dense [60]
optical flow algorithms [61] also assume neighboring points in 3D to move co-
herently.

Bian et al. [15] (GMS) were the first to formulate the idea of motion smooth-
ness in space within a probabilistic model utilizing a predefined fixed pixel
grid. Without GPU acceleration, their method is limited by its initial brute
force matching to find potential candidates, many of which are being discarded
as mismatches afterwards. Ma et al. [62] transfer the idea of close-by feature
point matching directly to the Euclidean distance within consecutive frames.
This approximation does not hold true in general and fails in practice for for-
ward/backward translations, where the depth dependent projection scales non-
uniformly. Also [63] employ locality information to filter match outliers and
Zheng et al. [64] compute cluster centers from fixed grid patches to compare be-
tween frames. Wrong matches in the grid cells, however, shift the cluster center
and the method requires initial brute force matching.

We also focus on improving matching quality by using close-by features
for reinforcement, but propose a different clustering scheme, together with an
improved probabilistic model for noise-free robust feature matches in video
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sequences. Unlike matching patches, we match single features where features
around some landmark support each other.

3 Methodology

Problem Statement. Recent feature matching approaches [15,64] for wide-
baseline scenarios have introduced a simple probabilistic model to distinguish
between correct matches and mismatches, where additional matches of proxi-
mate features reinforce each other. They are limited by analyzing those matches
on regular grids or require expensive clustering algorithms. In the former sce-
nario [15], high quantities of uniformly distributed feature points across the
entire image are matched, and supporting matches within a regular grid are an-
alyzed. A high number of feature points and uniform sampling lead to pairs of
many keypoints with poor descriptor quality, resulting in noisy matches and a
heavy computation. Proposed clustering algorithms as in [64] are very restrictive
and show large variation based on their input, caused by unstable feature point
detection between frames. The tight realtime constraint is problematic in both
cases, as extracting and matching around 1E5 keypoints [15] is solely possible
with GPU acceleration. Expensive clustering algorithms [64] aggravate the issue.

DynaMiTe. We take inspiration of supporting neighbouring matches [15]
and extend the approach with our dynamic local clustering method to form
groups of close-by feature points around descriptive landmarks. After feature
computation, our proposed method encapsulates the spatial group displacement
by the cluster representative. The spatial cluster information is passed through-
out the sequence in the temporal domain as motion proxy, resulting in a dynamic
local motion model. Assuming mainly static scenes and smooth camera motion,
only features of clusters within a certain search space around the cluster center

temporaltemporal

spatialspatial spatial

Frame t-1 Frame t+1Frame t

Features [overlay] Neighborhoods

DynaMiTe Feature Matching

Fig. 3. [Left] Schematic illustration of DynaMiTe pipeline: Temporal information is
passed through the image sequence for each group (upper row). The boxes (light grey)
illustrate the enlarged search space around groups between time t− 1 and t. A feature
match is considered true, if enough other matches between the groups can support the
match (green). Groups may disappear (crossed out group at t) and new ones emerge
(orange group at t). [right] Matched features and groups as overlay on the source image.
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in the previous frame need to be considered for matching. Hence, the group mo-
tion is used as prior to restrict the search space for potential matches, which are
finally evaluated with our improved and robust probabilistic model. Algorithm 1
gives a general overview of our proposed pipeline, which is schematically detailed
in Fig. 3.

Algorithm 1: DynaMiTe Pipeline for Feature Matching

1 forall Frame It in video do
2 Extract feature points;
3 Establish feature groups (FG);
4 Calculate intersection of old and new FGs;
5 Match intersected FGs;
6 Compute match score and retrieve inlier;
7 Establish new FGs;
8 Pass FG information to next frame It+1;

We detail the foundation on how to establish a statistical measure for feature
matching between patches with a matching score, and improve the base model
with bi-directional matching to filter low confidence matches. Additionally, we
extend the model with a locally adaptive clustering approach and adapt the un-
derlying statistics for the probabilistic model. We show that the final probabilis-
tic measure for feature matching only depends on the number of neighbouring
feature points within a group and the number of supporting matches.

3.1 Dynamic Local Motion Model

We propose a fast and dynamic feature clustering approach by exploiting the
nature of many feature detection operators to form clusters around descriptive
landmarks in the scene. For this, Union-Find Disjoint Sets (UFDS) [65] is uti-
lized for efficient grouping of close-by feature points. The data structure models
groups in DynaMiTe as collection of disjoint sets.

UFDS is essentially a forest of multi-way trees, where each tree represents a
disjoint subset of elements. A forest of trees can be implemented as an array p
of size N items. p[i] records the index of the parent of item i. If p[i] = i, then
item i is the root of this tree and also the representative item of the subset that
contains item i (cf. Fig. 4).

This allows to determine which set an item belongs to, check if two items
belong to the same set, and merge two disjoint sets into one in nearly constant
time (e.g. O(1)). In our 2 dimensional implementation, items are feature points
and sets are groups. The efficiency of this operation is crucial as identifying the
group of keypoints is a frequent operation and the correctness of every match is
examined by the correlation between two groups.

Our 2D UFDS data structure considers the maximum size of a cluster in
pixels as well as the min. and max. amount of features per group. This is justified
by the probabilistic model derived hereafter (cf. 3.2). The analytic matching
probabilities give the interval [5, 35] as a quality criterion for our group sizes
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which we also use in all our experiments. Cluster centers are initialized at random
over the set of all extracted feature points. Algorithm details can be found in
the suppl. material.

Fig. 4. Overview of UFDS for efficient clustering of feature points.

3.2 Probabilistic Model

Similar to [15] we assume that features within a close vicinity will match with
a high probability to the same area in another image from a different view-
point, matches of close-by features can reinforce each other. After feature points
have been grouped with our proposed clustering algorithm, we analyze all en-
closed features per intersecting groups between video frames. The rate of feature
matches between patches compared to the number of enclosed keypoints gives a
measure of certainty for the match. We can derive a probabilistic model by ex-
amining the matching events between correlated and uncorrelated image patches
and deduce a binomial distribution which is only dependent on the number of
enclosed keypoints in the patch. More specifically, we can define a threshold for
a true positive match as the minimum amount of supporting feature matches
between two groups relative to their enclosed keypoints.

Notation Description

fA
A feature f in A matches correctly;
p(fA) = t

fA
A feature f in A matches incorrectly;

p
(
fA

)
= 1− t

T
Patch A and B view
the identical location

F
Patch A and B view
a different location

fB
A NN of A is in B

fB
A NN of A is NOT in B

p
(
fA, f

B
A

) Probability of f in A matches correctly
AND NN of f is in B

p
(
fA, f

B
A

) Probability of f in A matches wrongly
AND NN of f is in B

p (fA | T )
Probability of f in A matches correctly
GIVEN T

Table 1. Overview of used notation. NN = Nearest
Neighbor in feature space

Fig. 5. Illustration of possible
events during feature match-
ing. See text for description
and Tab. 1 for notation.
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Figure 5 illustrates the possible matching events (see Table 1 for notation).
In case of observing corresponding patches A,B (green case T ) in two images
Ii and Ij , we can observe a feature (green star) in patch A that has its nearest
neighbor (NN) in descriptor space in patch B (fBA ). This feature can either be
correctly matched (fA), or mismatched with some other feature in B while its
true NN lies still in B (fA, f

B
A ). We observe that those mismatches (fA, f

B
A ) still

contribute as ”noisy” support match between the patches. Similar observations
can also be made for the false case F , in which we analyze uncorrelated patches
(e.g. patch A′ and B′ are not identical regions in the scene), where the feature
is mismatched to its NN in B′ (fA′ , fB

′

A′ ). By analyzing the matching events, it
becomes apparent that there is a high probability of finding multiple matches
between correlated patches which support each other.

Mathematical Justification. Let f be one of n features in A, which we
denote to correctly match to some feature out of N features in B as fA with
p(fA) = t. In case that feature f matches wrongly (i.e. fA), its NN can be any
of the other N features in B. Thus, we can write

p
(
fBA | fA

)
=

n

N
. (2)

For correlated patches (case T ), we denote the probability that a feature in
A has its NN in B by pt = p

(
fBA | T

)
. Examining the possible cases for pt as

depicted in Fig. 5, this consists of a correct match p (fA | T ), or a mismatch
while the NN is still in patch B p

(
fA, f

B
A | T

)
. Therefore we can write:

pt = p
(
fBA | T

)
= p (fA | T ) + p

(
fA, f

B
A | T

)
= p (fA | T ) + p

(
fA | T

)
· p
(
fBA | fA, T

)
.

(3)

With the assumption of independence for single feature matches, we are inde-
pendent of T . Using Baye’s rule, the notation from Table 1 and with Eq. 2, we
get:

pt = p (fA) + p
(
fA
)
· p
(
fBA | fA

)
= t+ (1− t) · n

N
. (4)

We assume that each group can be treated equally and that groups have similar
numbers of features N . Analogously for uncorrelated patches A′ and B′ (case
F ) we can derive:

pf = p
(
fB

′

A′ | F
)

= p
(
fA′ , fB

′

A′ | F
)

= p
(
fA′ | F

)
· p
(
fB

′

A′ | fA′ , F
)

= p
(
fA′
)
· p
(
fB

′

A′ | fA′

)
= (1− t) · n

N
.

(5)

3.3 False Positive Reduction

Assuming some feature matches correctly or incorrectly with the same chances,
i.e. t = 0.5, and with n << N , we get a wide separation between pt and pf (see
Eqs. (4) and (5)). However, this is partly due to including noisy false positive
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matches, which is not desirable (compare noise for GMS in Fig. 1). To reduce
noisy false positive matches (e.g. event (fA, f

B
A ) in Fig. 5), we introduce a consis-

tency check via bidirectional matching (compare Fig. 6). However, bidirectional
matching has an influence on the terms in Eq. 4. Details on the derivation below
are given in the suppl. material.

Fig. 6. Cross check matching for improved robustness and reduced noise. For normal
matching (A to B or B to A), false matches between patches would still contribute to
the matching probability pt as false positives (cf. hatched areas). Cross check consis-
tency results in the union pcct . Area size does not depict probability.

True Matches. Given correct patch associations T , cross check cc helps to
reduce noisy matches. Let, similar to Eq. (3), the probability of a feature in A
having its NN in B under cross check be pcct = p

(
fBA | T, cc

)
, then it holds:

pcct = p
(
fBA | T, cc

)
=
(
p (fA | T ) + p

(
fA, f

B
A | T

))
·
(
p (fB | T ) + p

(
fB , f

A
B | T

))
.

(6)

As before (see Eqs. (3) and (4)), with m and M being the equivalent for n and
N and by substitution after the binomial expansion, we can reduce this to:

pcct = t2 + 2 · t · (1− t) n
N

+ (1− t)2 n
N
· m
M

(7)

False Matches. In analogy for uncorrelated patches it holds:

pccf = p
(
fA′ , fB

′

A′ | F
)
· p
(
fB′ , fAB′ | F

)
= (1− t)2 n

N
· m
M

(8)

3.4 Robust Statistics

Naive bidirectional matching between all features is expensive, especially for the
extraction of a large quantity (around 1E5) of uniformly distributed features in
the image as in [15]. Additionally, the fraction of n/N becomes small, as a few
features n in a patch are compared against all features N of the entire image,
which would reduce the separation between pt and pf .

As our proposed model embeds spatial and temporal information and can
serve as a motion proxy of the displacement of encapsulated feature points,
the potential feature matches are restricted to the intersecting clusters within
a certain search space. Thus, not only the computational bottleneck is reduced,
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but also N decreases significantly. With the assumption of small inter-frame
motion, the number of features in A and B are similar (n ≈ N) and the fraction
in Eq. 7 and Eq. 8 reaches 1, yielding again a wide separation between pt and
pf . Additionally, we suppose p (fA) = t to be larger than 0.5 which increases the
wide seperation.

Matching Quality Criterion. Matching of an individual feature is gener-
ally independent of other features. Thus, we can use the derivations from above
similar to [15] to formulate a binomial distribution which describes the proba-
bility of finding additional support matches between correlated or uncorrelated
groups for some feature match mj

i . Our matching quality criterion Qi is depen-
dent of the number on feature points n in a patch:

Qi =

{
B(n, pcct ), if mj

i is true

B(n, pccf ), if mj
i is false

(9)

µt = npcct , σt =
√
npcct (1− pcct ) if mj

i is true (10)

µf = npccf , σf =
√
npccf (1− pccf ) if mj

i is false. (11)

From a statistical viewpoint, this allows us to formulate a reliable criterion
to decide whether or not two groups are correlated and therefore enclose true
matches. The objective is to identify a wide separation between true and false
cases. Such a division is given, if one event is at least k = 2 standard deviations
σf apart from the mean µf (cf. Fig. 7). This reduces the probabilities to a simple
threshold τ .

Fig. 7. Qualitative illustration of the matching quality criterion together with the
support threshold τ . True and False cases have a wide separation dependent on the
number of feature points in the cluster.

As µf is small (see Eqs. (8) and (11)) and σf is mainly dependent on the
number of features n (for σf in Eq. (11), the pccf (1 − pccf ) becomes very small),
we can write the support threshold as:

τ = µf + kσf ≈ k
√
n. (12)

For a given number of features n in a group, we can compute τ and compare with
the number of other supporting matches between the patches. Is the number of
supporting matches higher than τ , the patches are correlated and the feature
matches between them identified as correct.
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4 Experimental Evaluation

We quantitatively compare our method against a number of proposed classi-
cal matching approaches GMS [15], SIFT [13], SURF [32], ORB [14], BD [66],
BF [55], GAIM [67], USC [68] as well as learning based methods DM [69] and
LIFT [40]. We compare on different datasets with small (TUM [12]) and large
(Kitti [20]) baselines as well as scenes with little texture (Cabinet [12]).

Evaluation aspects are based on matching accuracy, robustness and runtime.
To quantify matching accuracy, we evaluate the accuracy of pose estimation
from matched features and follow the evaluation protocol of Bian et al. [15]
and use their results for comparison on the TUM split. Pose success ratio is re-
ported as a measure of correctly recovered poses under a certain error threshold.
The pose is recovered by the estimated essential matrix from feature matches
with a RANSAC scheme. The improved results over the SOTA confirm that
our proposed spatial-temporal probabilistic model is beneficial in a wide range
of textured scenes and different baselines. We observe less convincing results in
scenes with limited texture (”Cabinet”, see Fig. 1 as example) and explain this as
limited ability to form feature groups for such scenes. We justify our assumption
by analyzing the average inlier ratio of feature matches of the RANSAC scheme
during pose estimation. Matching repeatability is analyzed as reprojection error
of feature matches in static scenes. Additional qualitative results are provided
as well as an ablation study by disabling parts of the method, thus examining
the limitations of our approach.

All experiments are conducted on an Intel Core i7 CPU. We use the publicly
available ORB implementation of OpenCV [70]. For more details on the maxi-
mum number of extracted feature points and parametrization of UFDS please
refer to the suppl. material.

Matching Accuracy. Evidently, DynaMiTe outperforms other methods in
textured scenarios [12], as the full potential of our joint formulation of spatial
and temporal constraints can unfold (Fig. 8 [Left]).

Fig. 8. Results on TUM Split [12] with varying scene structure. [Left] Matching
Accuracy as pose success ratio against pose error threshold. [Right] Runtime vs.
Accuracy as pose success ratio in relation to computation time (log time scale).
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Runtime. We have tested runtime performance on Kitti [20] and TUM [12].
Our method outperforms SIFT and optical flow (OF) [59] as baselines and even
GMS [15] with GPU acceleration (compare GMS-GPU [15] in Tab. 2).

OF [59] SIFT [13] GMS [15] GMS-GPU Ours

Kitti 14 18 3 12 44
TUM 48* 22 4 14 63

Table 2. Runtime in frames per second (fps). For OF* we report fastest observed
fps, as it varies extensively depending on the scene structure and camera displacement.

Runtime vs. Accuracy. For better comparison we evaluate accuracy
against runtime (cf. Fig. 8 [Right]). DynaMiTe consistently outperforms other
methods in terms of runtime vs. success ratio.

Low-Texture scene. For the low-texture scene ”Cabinet”, tracking a large
number of group associations throughout the entire sequence is challenging. Only
a small number of groups with enough feature points cluster around well defined
landmarks. DynaMiTe still performs on par with other methods, which also
have difficulties in this scenario and ranks top in terms of runtime vs. accuracy
(compare Fig. 9).

Fig. 9. Results on low-texture scene ”Cabinet” [12], analogous to Fig. 8.

Inlier ratio. To analyze the inferior results on ”Cabinet”, we add the inliers
of RANSAC during camera pose estimation in Tab. 3. The results reflect our
findings, as both pose success and inlier ratio for the textured scenes are superior
with DynaMiTe, whereas the Cabinet scene with little structure is challenging.

OF [59] SIFT [13] SIFT* GMS [15] Ours

TUM Split 0.58 0.16 0.54 0.18 0.32
Cabinet 0.50 0.20 0.61 0.24 0.22
Kitti 0.37 0.11 0.64 0.85 0.87

Table 3. Avg. inlier ratio of RANSAC scheme for pose recovery relative to matches.
SIFT* includes additional filtering of matches with ratio test.
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Matching repeatability. In Tab. 4 the average match reprojection error
for different static scenes from the TILDE webcam dataset [21] are summarized.
For a perfect match, the norm would be assumed to be 0, as the scene and the
camera remain static throughout the video. This metric can be interpreted as a
measure for matching repeatability and the accuracy of the matching scheme as
high errors indicate wrong and noisy matches and the inability to robustly handle
repetitive patterns. DynaMiTe considerably outperforms SIFT as baseline and
reports superior results compared to GMS.

Chamonix Courbevone Frankfurt Mexico Panorama St. Louis

SIFT [13] 196.03 184.70 298.17 175.24 592.85 215.27
GMS [15] 3.48 4.34 7.21 9.47 142.10 8.33
Ours 1.92 2.47 9.45 6.75 2.80 3.97

Table 4. Feature matching repeatability test on TILDE dataset [21] as average L2

reprojection error in pixels.

As an additional measure to the evaluation in Tab. 4, the error relative to
the number of extracted feature points for GMS and our method is analyzed. We
calculate the average L2 error normalized per 1000 features for each sequence
and report the average of those as 2.92 for GMS and 0.67 for DynaMiTe, which
underlines the favourable efficiency and accuracy of our approach.

Qualitative Robustness Evaluation. We present additional qualitative
results on matching robustness in different scenes. Our method filters out noisy,
not meaningful matches of the texture-less background. Furthermore, our pro-
posed cluster grouping and spatial-temporal formulation robustly tracks reliable
features around landmarks with high image information (e.g. edges and corners
of the cabinet, see Fig. 1 and 10 [Left]). DynaMiTe can also handle repetitive
patterns in the Kitti sequence, such as the windows on the white building, due
to its local clustering algorithm, whereas regular grids such as in GMS fail (see
Fig. 10 [Right]).

Ablation Study. The experiments above show applicability on small and
wide baseline scenarios (TUM/Kitti). Here, we specifically force the algorithm
to only keep matches between groups which have been matched throughout the
sequence of 10 consecutive frames and not to establish new group associations
between frames. Due to large inter-frame forward motion, only a few groups in
the center of the image are reliably visible throughout all frames. While our
assumptions hold true for consecutive frames, tracking the complete sequence
from frame at time step t to t+10 is problematic as our constraints are violated in
this particular setting. Fig. 11 illustrates the limitations of our proposed method
in this specific case. DynaMiTe can still be applied in scenarios with very large
baselines, however at the cost of a relaxed constraint for inter-frame motion by
increasing the search space for the temporal motion prior.



14 P. Ruhkamp, R. Gong, N. Navab, B. Busam

Fig. 10. Qualitative robustness comparison on TUM [12] [Left] and Kitti [20] [Right]
dataset. Ours (top) filters noisy and wrong matches in textureless regions and around
repetitive patterns.

Fig. 11. Consecutive frame matching (top) in comparison to limited matching capa-
bilities through multiple frames (bottom) in seq. of [20].

5 Discussion

The reported results clearly show the fundamental trade-off between the abil-
ity to correctly match feature points and comply with the runtime constraint
for different matching methods. DynaMiTe reduces this limitation with its joint
formulation, as it efficiently passes information throughout the sequence, en-
capsulated in the joint spatial-temporal model This enables very robust feature
matching, as well as reduced noise in low-textured scenes, and high framerates
without GPU acceleration. High-confidence noise-free feature matches are ben-
eficial for camera pose estimation, which is what our method focuses on. The
same holds true for reconstruction purposes, one of the various possible applica-
tion scenarios for DynaMiTe. Generally, our proposed pipeline utilizes solely the
information of the feature descriptor and its pixel location in the image, while
being agnostic to the underlying descriptor itself. Our model achieves robust
feature matching even in difficult scenarios and arbitrary inter-frame motion
such as scaling and in-plane rotations, as we rely neither on regular grids nor
restrictive clustering methods.
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A Details on 3.3 False Positive Reduction

Here, we detail the derivation of Eq. (6) from the main paper for better under-
standability.

True Matches. Let the probability of a feature in A having its Nearest
Neighbor in B under cross check be pcct = p

(
fBA | T, cc

)
, then it holds:

pcct = p
(
fBA | T, cc

)
=
(
p (fA | T ) + p

(
fA, f

B
A | T

))
·
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p (fB | T ) + p

(
fB , f

A
B | T

))
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)
· p
(
fBA | fA, T
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·
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as we are independent of T and with p

(
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A | fA

)
= n

N
),

where m and M are equivalent to n and N:

=
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·
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)
with p (fA) = p (fB) = t:

=
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t+ (1− t) · n
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·
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)
after binomial expansion:
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False Matches. In analogy for uncorrelated patches:

pccf = p
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B Runtime Analysis

Our method achieves realtime performance on CPU for the full pipeline from
feature extraction, matching and applying our spatial and temporal constraints,
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without any GPU acceleration. In Fig. 12 the runtime advantage of our method
against GMS is clearly visible. GMS is by a factor of 4 slower with GPU ac-
celeration and for CPU-only even by a factor of 15. The matching step, which
contributes to a majority of the overall time consumption for GMS and other
methods, has now been decreased significantly. The bottleneck for our proposed
method is now solely the feature extraction itself.

Fig. 12. Relative runtime comparison. Primary axis shows the relative time consump-
tion per frame for each step of the feature matching pipeline in percentage (numbers
are also depicted in the respective bar). Secondary axis (log scale) shows the overall
time consumption relative to our proposed method.

C Parameter Discussion

C.1 Features Points

Extraction. We limit the maximum number of extracted feature points in the
image. Speaking purely from the perspective of estimating camera poses, a small
number of feature matches is sufficient. However, for our proposed method we
assume a certain number of feature points to be detected for forming local feature
groups from feature clusters around well defined structures in the image:

Max #Features = 7000 (13)

Descriptor. The FAST threshold of ORB is set to 5 to ensure a high number of
detected feature points while not compromising the feature descriptor quality:

FAST threshold = 5 (14)
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C.2 Local Motion Model

The parameters for our local motion model are justified by our proposed prob-
abilistic model. Chosen parameters have been used throughout our evaluation,
and have therefore been proven to be applicable for different image content and
scenarios.

Group Area. We define a maximum size for a local group in pixels:

Group Size = 30px× 30px (15)

For every feature, the algorithm will find its neighbors within a 30-pixel-by-
30-pixel region centering around the feature. Accompanied with a certain size
limit of groups, it enables more nearby features being grouped into a group
while keeping the group’s size in an appropriate range. This parameter may be
adjusted for HR images.

Group Size. Derived from our probabilistic model, we need a minimum number
of features per group for applying the statistical criteria. A maximum number
of feature points per group should also be considered. The maximum number is
to prevent the group from exceeding expansion, and for very large numbers of
features, the quality criterion reaches a saturation stage.

Min #Features in group = 5 (16)

Max #Features in group = 35 (17)

D Qualitative Results

Figures 13, 14, 15 and 16 illustrate a few more qualitative results on different
datasets. See figure description for more details.
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Fig. 13. Direct comparison of SIFT, GMS, and DynaMiTe (Ours) together with the
corresponding runtime on a driving scene from [20].

Fig. 14. Examples of feature point matches for the TUM-RGBD [12] and Kitti
dataset [20]. Note the challenging scenes with blur (top right) and large rotations
(bottom).
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Fig. 15. Ours (top) reliably tracks only stable feature points as opposed to GMS.

Fig. 16. Generally ours (left) has reduced noise and less false positive matches in
textureless areas compared to GMS.
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E Algorithms

For a better understanding of our proposed method together with the source
code, we provide an overview of the pipeline as pseudo-code. An overview of the
overall pipeline can be found in Algorithm 2. The grouping algorithm for finding
dynamic local feature groups is summarized in Algorithm 3.

Algorithm 2: DynaMiTe Pipeline

Data: Image It; groups Nt−1 from It−1 ; // Nt−1 from temporal constraint

Result: True group Matches ∈ Nt

1 Ft = all feature points in It; // see Algo. 3

2 Nt = GroupingWithUFDS(Ft);
3 Mt = (empty) collection of potentially matched groups;

4 forall N i ∈ Nt do
5 forall N j ∈ Nt−1 do
6 if N i intersects with N j; // Apply temporal constraint

7 then
8 mi

j = (empty) collection of feature matches per group;

9 forall Ft ∈ N i do
10 forall Ft−1 ∈ N j do

11 Perform Cross-Check Matching between all fk
t ∈ Ft and all

f l
t−1 ∈ Ft−1;

12 if is a Match then
13 mi

j += Match;

14 Mt += mi
j ;

/* Apply spatial constraint */

15 forall mi
j ∈Mt do

16 Compute Score S;
17 if S > τ then
18 mi

j = True group Match;

19 Store Score Si
j for group Match N i with N j

20 else
21 Delete mi

j ;

/* Prepare temporal constraint for next frame */

22 forall N i ∈ Nt do
23 forall N j ∈ Nt−1 do
24 Find highest Score S between groups N i and N j ;

25 Enlarge Search Space for N i for next Image It+1
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Algorithm 3: Grouping Function

Data: Set of all Features Ft

Result: Set of all groups Nt

1 Q = an auxiliary queue;
2 while not Ft.empty() do
3 if Q.empty() then

4 Create a new group Nk in Nt;
5 Pick and then remove a feature fi from Ft;

6 Nk.add(fi);
7 roi = an area centering around fi;
8 Center = fi.pt;
9 ptCount = 1;

10 else
11 fi = Q.pop();

/* Find current set for fi */

12 if ptCount < MAX NUM&&Nk.area() < MAX AREA then
13 {ni} = all features collected in roi;
14 forall ni do

15 Nk.add(ni) ; // Add ni to current set of fi
16 F.remove(ni);
17 Q.push(ni);
18 ptCount+ +

19 if Q.empty()&&ptCount >= MIN NUM then

20 Nt.add(Nk);
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