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Abstract. Deep learning techniques are recently being used in fundus
image analysis and diabetic retinopathy detection. Microaneurysms are
an important indicator of diabetic retinopathy progression. We introduce
a two-stage deep learning approach for microaneurysms segmentation
using multiple scales of the input with selective sampling and embed-
ding triplet loss. The model first segments on two scales and then the
segmentations are refined with a classification model. To enhance the
discriminative power of the classification model, we incorporate triplet
embedding loss with a selective sampling routine. The model is evaluated
quantitatively to assess the segmentation performance and qualitatively
to analyze the model predictions. This approach introduces a 30.29%
relative improvement over the fully convolutional neural network.
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1 Introduction

Diabetic retinopathy (DR) is the leading cause of vision impairment and blind-
ness for middle-aged groups [9]. DR early detection is important for the treat-
ment planning. Severity of DR falls into one of five levels (none, mild, moderate,
severe, or proliferative) [1] . Microaneurysms are considered as the first signs
for detecting early stages of DR. Hence, detecting these lesions is important for
Computer Aided Diagnosis systems. Microaneurysms are abnormalities in the
microvascular structure and appear as small red dots in color fundus images.
Screening programs use colored fundus images of the retina for their rich infor-
mation and ease of access. Detecting microaneurysms in colored fundus images
is a challenging task due to the small size of the lesion which makes up less
than 1% of the entire image , and the low contrast between microaneurysms and
background.

Microaneurysms are the strongest determinant for DR since they are the
first lesion that appears during the early stages. Various approaches for microa-
neurysms detection using deep learning are proposed [6], [12], [8]. These methods
are patch-wise approaches and use deep architectures to extract representative
features. These features could be added to a set of hand-crafted features [12]
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and passed to a classification model or used solely in an end-to-end network [6],
[8]. Deep learning techniques in the literature of microaneurysms detection use
random patches selection, hence, they are prone to be biased towards the over-
sampled class. Moreover, no work in the microaneurysms segmentation context
has leveraged the embedding space of the input patches to impose an additional
constraint on the learning process.

Contributions: In this work, a multi-scale patch-wise approach for segmenting
microaneurysms in retinal fundus images is proposed. The main contributions
of this work are 1) fusing segmentation on multiple scales for microaneurysms
detection, and 2) using embedding triplet loss [14] with selective sampling [5]
to increase the descriptiveness of the feature representation while focusing the
training on informative examples. The model is agnostic to other lesions (i.e.
the model differentiates between healthy and microaneurysm patches regardless
of information about other lesions). Being agnostic to other lesions is important
in such cases as it may be difficult to obtain an annotated dataset with all DR
lesions annotated

2 Methodology

Our proposed microaneurysms segmentation framework, depicted in Fig. 1, con-
sists of two stages; the hypothesis generation network (HGN), where multi-scale
fully convolutional networks (FCNs) are employed to propose a region of inter-
est (ROI), and patch-wise refinement network (PRN), where extracted patches
around ROIs are passed to the classifier. In the next sections we introduce the
details of the applied method. First, we go through the fully convolutional hy-
pothesis generation networks, the reasoning behind having multiple scales, and
the details of the loss function used for optimization. The second section is ded-
icated for the PRN. In which, the motive behind this network is explained and
the details of triplet loss and selective sampling are presented.

Hypothesis Generation Network (HGN): High-resolution fundus images where
a microaneurysm covers a very small part of the image are examined to segment
microaneurysm. Using a zoomed-in patch would allow for high spatial accuracy
on account of losing semantic information, whilst a zoomed-out patch would
have a richer semantic representation on the account of losing spatial resolution
[3]. As a trade-off, we use equally sized patches on two scales of the image to
build two HGNs, one for each scale.

HGN is a fully convolutional neural network trained on patches of size 256×
256 extracted from the fundus images. Two HGNs are trained for two different
scales of the fundus image (1x, 0.5x). This allows the extraction of scale-related
features while at the same time preserve full resolution image information. The
architecture used is the full resolution residual network type A [13] for its good
results in segmentation.
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Fig. 1: Pipeline for the multi-scale microaneurysms segmentation framework. Top
part shows the pipeline in the training mode where each model is trained sepa-
rately. Bottom part shows the pipeline at inference time where the image is used
rather than patches for the hypothesis generation networks.

To select the training patches, we define images that contain no signs of DR
as healthy (negative) images and images with microaneurysms as lesion (posi-
tive) images. Healthy pixels are extracted only from healthy patients’ scans and
lesion pixels are extracted from DR patients at the microaneurysms locations. As
a loss function, weighted cross entropy loss is used to compensate for the imbal-
ance negative and positive patches. Moreover, dice loss is optimized to enhance
the spatial overlap between a segmentation map output and the gold standard
segmentation. We use a differentiable approximation of the dice loss as in [10].

Patch-wise Refinement Network PRN is a classification network that is used
as on top of the HGN. The input of the network is an image patch and the
output is the probability of the patch center pixel being a microaneurysm or
healthy. The segmentation maps of the HGN are used as regions of interest for
the PRN. The architecture of classification networks allows for receptive fields
larger than fully convolutional networks that consume more memory because
of the decoder part and skip connections. The larger receptive field allows for
feature maps that incorporate more spatial information about the image which
enriches the extracted features. The architecture employed for this network is an
adopted version of the Resnet-50 [7]. One downsampling step is omitted from
the original architecture because the input image size in our case is smaller than
what is expected in the Resnet-50 scenario. In the training phase, patches are
extracted from images in the same manner of extracting 1x resolution patches
for HGN. The only difference is the size of PRN patches is 129× 129

To make the refinement network features more descriptive we introduce the
To extract discriminative features in PRN we propose the utilization of triplet
loss [14]. Triplet loss is applied on the embedding of a patch around pixel x
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into a d-dimensional feature space. The aim of triplet loss is to make similar
patches closer to each other in the embedding space while pushing dissimilar
patches away from each other in the embedding space using a predefined distance
measure. We found the feature representation of the last convolution layer after
the global average pooling (GAP) as a good representation in the embedding
space due to its high descriptive power while having a compact representation.
The optimization of triplet loss requires three input patches namely the anchor
patch xa, the positive patch xp and the negative patch xn. The goal is to make the
embedding of the positive patch closer to the anchor patch than the embedding
of the negative patch. Patches with Microaneurysms at the center pixels are
used as anchor and positive patches, while healthy patches are used as negative
patches. The loss is defined as

Ltriplet =

N∑
i

[
d(f(xai ), f(xpi ))− d(f(xai ), f(xni )) + a

]
+

(1)

where a is a margin to enforce a distance between positive and negative pairs,
d(., .) ∈ R1 is the distance measure in the embedding space, and N is the number
of all possible triplets. As a distance measure, angular cosine distance is utilized
as it shows better performance on high dimensional representations when train-
ing deep networks [11]. In addition to triplet loss, cross entropy loss for patches
is optimized.

Generating all triplets, in this case, would be computationally prohibitive.
Moreover, the imbalance in the dataset is high. To counter these problems, we use
selective sampling [5]. This approach of training proved to enhance the results in
training scenarios where data from different classes are not balanced. In our use
case, the healthy class is over-represented. In selective sampling, patches with
higher loss have a higher probability of being picked for the next epoch as they
are considered representative samples.

3 Experiments

3.1 Experimental Setup

Dataset For our evaluations of the segmentation pipeline , we use the IDRiD4

publicly available dataset. All images are captured with the same device that has
50-degree field of view and have size of 4288× 2848 pixels. Before patch extrac-
tion, the published train dataset is split into two parts: training, and validation
sets. The validation set is used for monitoring the training. Table 1 shows the
dataset splits.

Implementation details We employ contrast enhancement following the formula
Ipre(x, y) = 4I(x, y)− 4Gσ ∗ I(x, y) + 1024/30. To train HGN, we define a mini-
batch of size 10 and consider each epoch to be 1000 mini-patches. The learning
rate for the full-scale network is 1e− 6 and for the half-scale network is 1e− 5.

4 https://idrid.grand-challenge.org/
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Table 1: IDRiD dataset splits
Healthy Microaneurysms

Images Patches Images Patches

Train set 80 6M 44 ˜500K
Validation set 9 ˜6M 10 ˜132K

Test set 27 - 45 -

PRN is trained with mini-batches of triplets. The size of a mini-batch is 90×3
patches. We sample 90 × 2 patches from the pool of lesion patches randomly
with uniform distribution, and 90 × 1 samples from the healthy patches pool
with selective sampling. This neural network has a Siamese structure [2], this
means that each part of the triplet’s three parts is run through identical versions
of the network and the gradients are combined at the output to update the
weights of the network. In addition to triplet loss, cross entropy loss for pairs is
optimized. To this end, we optimize the cross-entropy loss between the anchor
and the negative pair. Every 1000 mini-batches is considered as an epoch. We run
selective sampling routine every 10 epoch, this is because of the big number of
training patches. which takes a significant amount of time to evaluate. Learning
rate is set to 1e− 5 and decreased by a factor of 10 after 20 epochs.

3.2 Multi-scale effect

In this evaluation, we study the effect of using multiple scalse. To this end, two
HGNs are trained, one for the full resolution image and one for the downsampled
image by a factor of two. The evaluation is done on the publicly published test set
images. We compare results from each scale with the results of combining the two
scales in two different ways . First the output of the half scale is upsampled using
linear interpolation, then the prediction maps of the two scales are combined
either with pixelwise arithmetic or geometric averaging. The results of this
evaluation are presented in Table. 2. FCN 1x, FCN 0.5x represent the evaluation
on the prediction map of the full scale and half scale HGNs, respectively. FCN
geometric and FCN arithmetic refer to the results of combining the two scales
with geometric and arithmetic averaging, respectively. The results show that
combining the two scales gives better performance either way. We notice a higher
recall from the half scale network but lowest precision, this reflects that the
model is very sensitive to microaneurysms and generates a high number of false
positives that drops down the overall performance.

3.3 Patch-wise refinement and triplet loss effect

We evaluate the effect of 1) using a classification network to refine the classifi-
cations of HGNs and 2) using triplet loss in the classification network to refine
HGNs results (i.e PRN). To evaluate the classification network, we utilize patches
from the image in a sliding window fashion and use the classification probabil-
ity of each point to obtain segmentation maps. It is worth noting that sliding
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window does not go over all the image, but only the parts higher than a preset
probability threshold (0.5 in our case) from HGN. Two segmentation maps will
be obtained by sliding over the image masked with two HGNs outputs. Two
prediction maps from two HGNs and two prediction maps from refining HGNs
results with the classification networks combined as shown in Figure 1.

We first demonstrate the effect of incorporating a classification network to
refine the results of HGNs. To this end, we use an edited version of PRN that
uses only cross entropy loss without the triplet embedding optimization. This
network is denoted as cls. Using the classification network on top of the fully
convolutional networks enhances the results of the overall segmentation. The
larger receptive field allows for more descriptive representations which in turn
could suppress false positives that are triggered by HGNs. The effect of utilizing
triplet embedding loss is then evaluated by training a PRN using triplets from
the training set. We set the margin value a from Equation 1 to 0.5. At test time,
this network is utilized in a sliding window fashion similar to cls.

Using triplet loss in a multi-scale approach with geometric averaging has an
overall 30.29% PR AUC improvement over the baseline fully convolutional neural
network trained with weighted cross entropy. The improvement when incorporat-
ing triplet loss could be attributed to the quality of the learned representations
where lesion patches are forced to be close to each other with a certain margin
of difference from healthy ones.

Our results come in 4th place in the IDRiD challenge outdated leaderboard
based on the metric used on the released test set. The challenge submission is
currently closed. iFLYTEK-MIG used Mask-RCNN to segment 3 lesions at the
same time. VRT used a U-net to segment four lesions all together. PATech used
a patch-wise approach with false positives bootstrapping on lesions simultane-
ously. We notice that in all these models, information about lesions other than
microaneurysms is utilized. This makes the disambiguation between lesion types
(e.g. hemorrhages and microaneurysms) learned inherently in the model but has
the drawback of requiring full annotation of multiple lesion types. Out model
does not require information from other lesions to be trained.

3.4 Visual evaluation

We study the misclassifications of the model by visually examining samples of
the results. In Figure. 2 an example of a segmentation is presented. From the
example, we notice that false positives mostly lay in the area around hemor-
rhages or on top of a blood vessel where a higher intensity occur. False negatives
are more difficult to be detected because they sometimes appear very close to
hemorrhage and blend in or the contrast in the image is low enough to lose
the microaneurysm. In the top left example, we see a false negative example
where the microaneurysm is misclassified because of very light edges and irreg-
ular shape that leans towards hemorrhage. In the other false negative examples
(in cyan), the cases are very difficult to be distinguished and variability between
raters may occur in such cases. The bottom right example shows a false pos-
itive example where a darker area around the bright exudates appears similar
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Table 2: Ablation test for emphasizing each part of the pipeline
AUC PR F1-score Precision Recall

HGN 1x - baseline 0.3374 0.3618 0.2970 0.4626
HGN 0.5x 0.3411 0.4001 0.4380 0.3682

HGN geometric 0.3622 0.3866 0.5115 0.3108
HGN arithmetic 0.3701 0.4156 0.4741 0.3701
cls geometric 0.3895 0.4153 0.5402 0.3374
cls arithmetic 0.3905 0.4368 0.4973 0.3895

PRN arithmetic 0.3978 0.4323 0.54051 0.3602
PRN geometric 0.4196 0.38477 0.61128 0.2807

IDRiD iFLYTEK-MIG 0.5017 - - -
IDRiD VRT 0.4951 - - -

IDRiD PATech 0.4740 - - -

Fig. 2: An example of a segmented microaneurysms in a fundus image. Green is
for true positives, red is for false positives, and cyan is for false negatives.

to microaneurysm. The variability in illumination parameters of the capturing
device has also a significant effect on the training and may lead to a bias towards
a certain image appearance. It is important to note that images in the IDRiD
dataset are compressed with a lossy compression which leads to big jumps in
intensity values next to each other.

4 Discussion and Conclusion

We hypothesize that using multiple fully convolutional networks for multiple
scales of the inputs enhances the segmentation of small objects similar to mi-
croaneurysms because it gives a better trade-off between semantic and spatial
accuracy. Embedding loss is employed mainly in learning image descriptors [15].
We use the triplet embedding loss in our model to treat deeper layers of the
classification network as a local descriptor of the keypoint represented by the
healthy or microaneurysm patch. The classification performance increases by
adding this additional constraint on the features created by the network.

The segmentation results could be used in report generation for the doctors
or in future studies to do big data analysis of populations. Microaneurysms
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turnover is also an important factor in the progression analysis of DR [4] and
could be studied better with reliable models for Microaneurysms segmentation.
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