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Zusammenfassung

Optisches Tracking ist eine Technologie, um Objekte mit Hilfe von optischen Kameras im
Raum fortlaufend zu lokalisieren. Dabei kann sowohl die Position als auch die räumliche
Lage bestimmt werden. Optisches Tracking ist eine Basistechnologie, welche in vielen Ein-
satzgebieten zur Anwendung kommt. So wird optisches Tracking in der Augmented Reality
benutzt, um reale Objekte mit virtueller Information zu erweitern (engl.: to augment). Damit
diese Erweiterungen an den richtigen Stellen platziert werden können, müssen Position und
Blickrichtung des Beobachters und von den zu erweiternden Objekten bestimmt werden.

Um nun eine genaue Verbindung zwischen realen und virtuellen Objekten herzustellen,
ist es nötig die Messungen so präzise wie möglich durchzuführen, aber leider tritt selbst bei
grösster Sorgfalt und Präzision immer Rauschen in den Messungen auf. Dieses Rauschen
in der Kamera kann zu beträchtlichen Fehlern in der Lokalisierung von Objekten führen. In
bestimmten Anwendungen ist es nötig diese Fehler im Voraus und zur Laufzeit zu kennen
und zu minimieren. Als Beispiel sei hier die Medizintechnik genannt.

Das Rauschen in den Messungen kann durch ein gaußsches Fehlermodell beschrieben
werden. Zusammen mit dem Fehlerfortpflanzungsgesetz erlaubt es beispielsweise aus dem
Rauschen auf der Bildebene der Kamera auf die Positionsungenauigkeit schliessen.

Mit Hilfe des gaußschen Fehlermodells und des Fehlerfortpflanzungsgesetzes wurden
mehrere mathematische Modelle entwickelt, die es erlauben ausgehend von Rauschfehlern
in einzelnen Messungen auf die zu erwartende Gesamtungenauigkeit zu schliessen. Das
Fehlerfortpflanzungsgesetz wird in dieser Arbeit sehr häufig benutzt, unter anderem auch
für die zwei entwickelten Anwendungen, welche die Genauigkeiten eines Trackingsystems
mit mehr als zwei Kameras quantitativ schätzen können.



Abstract

Optical tracking is a technology to localize the position and rotation of objects continuously
with the help of optical cameras. Optical tracking is a basic technology used in many applica-
tions. In augmented reality tracking is used to augment real objects with virtual informations.
To place the informations at the right position, the position and viewing direction of the
observer and that of the objects to be augmented have to be determined.

To determine an accurate relationship between real and virtual object it is necessary to
take the measurements as precise as possible, but even with great diligence and precision
noisy errors will be inevitable. The noise on the image plane of the camera can lead to
considerable errors in the localization of the objects. In certain applications for instance in
the medical domain it is necessary to know and minimize these errors a priori and at runtime

The noise in measurements can be described with a gaussian error model. Together with
the error propagation rules it is for instance possible to predict the localization error.

With the help of the gaussian error model and the error propagation rules several math-
ematical models are developed which allow to predict the expected uncertainty based on
noise errors. The error propagation is widely used in this thesis eg. for the two developed
applications which can quantitatively predict the accuracy of an optical tracking system with
more than two cameras.
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1 Introduction

In this chapter a short overview over the context and the goals of this diploma thesis will be
given.

1.1 Optical Tracking

Optical tracking is a technology to localize the position and rotation, also called pose, of
objects continuously with the help of optical cameras. Therefore optical tracking systems
are taking pictures and extracting features from the pictures which allow the determination
of the pose. Without placing artificial markers on the object this is a challenging task, so
most optical tracking system use distinctive markers to ease the feature extraction from the
image.

As the extraction of the features and the measurements in the camera can only be done
with errors, the estimated pose will also be erroneous. There are several causes for errors for
instance when the camera produces distorted pictures. Some kinds of errors can be reduced
or event eliminated but others are inevitable. The noise occurring on the sensor of the camera
is an example for such an inevitable source of error.

The user of an optical tracking system desires accurate results and so the errors affecting
the estimation of the pose have to be reduced. In some applications, for instance in the
medical domain it is necessary to know these errors a priori and at runtime.

1.2 Augmented Reality

Augmented Reality is a technique which combines the real world and the virtual world. The
user of an augmented reality system can see the real world with virtual objects superimposed
upon or composited with the real world. This can be achieved by using head-mounted
displays (HMDs) which allow the user to see the real world and to add additional computer
generated visual informations. A more general definition is given by Azuma [5, 6] where a
augmented reality system has to fulfill the following criteria:

1. Combines real and virtual

2. Interactive in real time

3. Registers (aligns) real and virtual objects

1



1 Introduction

The first point emphasizes that the real and the virtual world have to be combined, which
excludes pure virtual applications. The second criterion claims that the system has to be in-
teractive for the user. The third criterion demands that the virtual objects have to be aligned
with the real world. As the third criterion is not easy to understand for those people who
never heard of augmented reality an example will be given. Caudell et al. are describing
an example for augmented reality in fabrication of an airplane [11]. An user has to drill a
hole in a workpiece and a HMD is used to visualize the location. So the user looks at the
workpiece and sees the exact 3D location indicated by a green arrow along with the drill
size and depth of the hole specified in a text window next to the arrow. As the user walks
around the workpiece the arrow will be kept aligned with the desired drill location. This
example fulfills Azuma’s criteria. First the reality is augmented with virtual objects, the
user can interact with the system and the virtual objects are aligned with real objects. The
alignment of the virtual objects with real objects on the HMD requires several informations.
First the pose of the HMD and second the pose of the real world object to which the virtual
object should be aligned have to be known. This relationship is called the registration and
the process of keeping this registration up to date is termed tracking. With help of the pose
data determined from the tracking system the system can add the virtual object at the right
position and orientation, even if the user moves his head or is walking around.

More about augmented reality can be found in a comprehensive survey by Azuma et
al. [6].

1.3 Goals of this Thesis

The goal of this thesis is the development of a mathematical framework, which allows to
predict the expected accuracy of an optical tracking system based on errors caused by noise.

The noise error can be described with a gaussian error model. With the help of error
propagation rules it is possible to predict the expected error based on the noise in the mea-
surements. For example the features of the tracked object are measured with noise on the
sensor of the camera in two dimensions. When using multiple cameras, all affected by noise,
the estimated spatial position of the object is also noisy. Knowledge of the noise in estimating
the 2D position on the sensor can the be used to predict the noise of the spatial position.

The users of optical tracking systems want to know how accurate their specific tracking
system is in the working volume which is crucial for eg. in medical applications. Manufac-
turers of optical tracking systems want to predict the accuracy of the tracking system without
assessing real setups. Designers or users want to optimize the setup with respect to accuracy
and costs. For example the accuracy of an optical tracking system can be increased merely by
adding more cameras, but this would also increase the monetary costs of the system. With
help the of developed framework different tracking setups can be assessed by changing the
basic features of the system as there are the positions, the kind and the quantity of cameras
used.

Therefore a framework was developed for providing mathematical procedures to predict
the expected accuracy of different types of optical tracking systems, as there are n-ocular and
monocular tracking systems. The framework was developed in a computer algebra system

2



1 Introduction

allowing to adjust the methods for new purposes easily.

Based upon this mathematical framework two small applications were developed to vi-
sualize the predicted accuracy. The first tool visualizes the positional accuracy of tracking a
position with multiple cameras and the second tool visualizes the positional and rotational
accuracy of optical marker targets.

There are other possible uses for this framework. For instance is it possible to predict
the tracking accuracy at online during the tracking process runs. So users of safety-crucial
application can be warned if the accuracy is getting beyond a lower bound.

1.4 Related Work

In this section an overview of the research done on the accuracy of optical tracking systems
will be given. The first part is focused on the accuracy tracking single features with n-ocular
systems. The second part addresses the accuracy of estimating the pose of optical marker
targets with n-ocular and monocular systems.

1.4.1 Accuracy of n-ocular Tracking Systems

Chen et al. presented in [13] a quality metric for multi-camera setups. The uncertainty in
estimating the 3D position of a feature is computed geometrically based on the uncertainty in
estimating the 2D position on the image planes of the used cameras. The metric for positional
uncertainty is combined with a metric considering occlusions to a overall metric. With the
help of this overall metric the accuracy of the tracking setup can be determined based on the
placement of the cameras and the 2D uncertainty of the cameras.

In [2] Allen et al. are presenting a technique for estimating the accuracy of measuring the
feature positions with a tracking system. Therefore a steady-state model was used, which
propagates the measurement uncertainty in the sensors back into the working volume. The
approach of Allen et al. is also considering the errors caused by motion of the tracked object.
An other aim of this work is to visualize the expected accuracies within the working volume
graphically.

In [12] Cerfontaine et al. presents a method for automated optimal camera alignment for
a n-ocular optical tracking system. The alignment of the cameras is optimized in respect to
two goals, one is the widest possible working volume, the other is the maximum camera vis-
ibility. It is also possible to define constraints for the camera positions concerning restrictions
of the local environment.

The volume of interest is defined by a set of positions pk, which allows to define an ar-
bitrary volume in a discrete way. Emphasizing certain regions is done by duplicating the
corresponding points.

The cameras used for tracking are parameterized by the position, the orientation and a
view frustum, which describes which volume can be seen by a camera. Such a view frustum

3



1 Introduction

can be seen in figure 1.1(a). The parameters describing the frustum are fixed for each camera,
but the position and the orientation will be varied for optimizing the working volume and
visibility.

Camera

View frustum

(a)

Seen by 
one camera

Seen by 
two cameras

Seen by 
three cameras

(b)

Figure 1.1: The view frustums of cameras are used for visibility determination; (a) shows
the view frustum of a single camera; (b) shows the intersected frustums of three
cameras

For a certain camera setup each position pk will be tested for visibility of the different
cameras. The results are stored in a n ×m matrix, where n is the number of camera and m
the number of positions. This matrix is then evaluated with a score, which indicates how
close or far the result is from the final optimization goal. Cerfontaine et al. are using an
approach minimizing the difference between the maximum score and the current score by
using a discrete, gradient-based steepest descent method. The gradient vector is determined
by finite differences for all variable parameters.

This technique is useful to place the cameras around the working volume while assuring
the maximal visibility. Unfortunately the tracking accuracy is not only depending on the
visibility, but also on the distance from the targets to the several cameras and the accuracy
of locating features on the image plane, which are not covered by this approach.

1.4.2 Accuracy of Marker Targets

In [24] Hoff et al. presented a technique for predicting the 6 degree of freedom (DoF) pose
accuracy of marker based targets. Based upon the accuracy of estimating the spatial position
of markers, the pose accuracy is determined by using the covariance forward propagation
with a first order approximation. Hoff is excluding errors in the target geometry, so it is
assumed that the model of the target is known exactly. Another assumption is that only
noise errors are occurring. Static errors are covered by this work.

As this method is described deeply in chapter 6, only a short overview will be given here.

The benefit of Hoff’s approach is the use of covariance matrices for describing the po-
sitional and pose accuracy which allows to use un-isotropic and jointly distributed noise
errors, but this technique does not consider static (biased) errors in contrast to the approach

4
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of Davis et al. [15]. The approach of Hoff et al. is also assuming that the target topology is
known exactly, which is in general not the case, but the error can be kept small by diligent
calibration of the target geometry.

Hoff is also presenting a method for transforming covariance matrices from one coordi-
nate frame to another and for combining the covariance matrices of two pose estimations.
Another achievement of this work is the presentation of methods for interpretation and vi-
sualization of positional and rotational errors represented by covariance matrices which will
be used in section 3.3 and section 6.6. Examples for the visualization of errors represented
by covariance matrices are given in section 7.3.

Davis et al. presented in [15] methods for predicting the expected error of tracking a
marker target based upon a first-order propagation of the errors associated with the mark-
ers of the target. By applying an error term to each marker location this error is propagated
through the pose estimation within a first-order approximation. The theoretical prediction
of pose error presented is valid for any target topology with at least three non-collinear
markers, with given marker coordinations xk in local target coordinate frame and measured
positions ykin global coordinate frame.

Both positions xk and yk can be affected with errors ∆xk and ∆yk which are assumed to
be isotropic The errors in the targets marker model ∆xk is either obtained from the manufac-
turer of the target, when using a commercial marker target, or from the target design process.
The position estimating error ∆yk of a single marker can be estimated by measuring the root
mean square error (see section 4.2.2) of detecting the position of a single marker.

The relationship between the true positions xk and yk can be expressed as

yk = Rxk + t , (1.1)

where R ∈ R3×3 is a rotation matrix and t ∈ R3 a translation vector. Davis et al. used a pose
estimation algorithm that determines R and t by minimization of least squares error.

To propagate errors, the positions are tainted with errors ∆xk and ∆yk, which can be
written as

xk → xk + ∆xk

yk → yk + ∆yk .
(1.2)

The error in pose estimation is then

Rerr ≈ ∆RR

terr ≈ t + ∆t ,
(1.3)

where ∆t and ∆R are the differential translation and rotation. Davis et al. developed
a method to determine these differential variables ∆t and ∆R by propagating the error
through the pose estimation algorithm.

5
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The developed method then was tested with a Monte Carlo simulation, by evaluating the
average pose error

E =
1
N

N∑
k=1

‖yk −Rerrxk − terr‖ , (1.4)

where N is the amount of markers in the target and yk and xk are true marker positions.

This average pose error function fuses the rotational and positional error into a one-
dimensional value which does not allow to distinguish between the rotational and positional
error. For example Davis examined the relationship between the size of the target and the
resulting avg. pose error. It is claimed that the avg. pose error is decreasing with increasing
marker size, which is only true for the avg. total pose error. The rotational error is influenced
by the size of the target, but the positional part of the pose error depends only on the amount
of feature points. This correlation is discussed more deeply in chapter 6.

An advantage of this error predicting model is that it takes care of errors in the target
topology, where other models like [24] do not consider this kind of errors.

Vogt et al. presented in [53] a system for monocular optical tracking with planar and non-
planar arrangement of the features. The pose estimation accuracy of the tracking system
was analyzed with a Monte Carlo simulation and afterwards the results of the Monte Carlo
simulation were experimentally verified.

Vogt et al. are assuming an unbiased error (cf.4.1), because the parameters affecting the
biased error can be pre-calibrated off-line with high degrees of accuracy. So they are assum-
ing zero-mean and some standard deviation in estimating a 2D position on the image plane.
The unbiased error is also called jitter.

As a first step the 2D jitter detecting a single marker on the image plane was experimen-
tally estimated. Therefore a single marker was tracked with a ARTtrack1 camera which uses
infrared light to detect retro-reflective markers. The 2D position of the marker was estimated
by calculating the center of gravity of the grey pixels on the image plane. The standard de-
viation σ of the measured center of gravity was consistently varying from 0.013 (≈ 1

77) to
0.010 (= 1

100) pixel.

Then several target configurations were analyzed with a Monte Carlo simulation. In the
tested configurations, the disc shaped retro-reflective markers are arranged on the perimeter
of a circle in various heights relative to the plane of the circle. An example for such a target
can be seen in figure 1.2(a). The simulation process starts with a synthesized target model
consisting of 3D points pi, which are then projected with a modeled camera to 2D positions
qi on the image plane. The qi are then affected with the previous estimated noise σ of detect-
ing a single marker, which leads to error affected measurements q̃i. With Tsai’s calibration
technique [50] the pose p of the target can be calculated from the noise affected points q̃i.
The last two steps were repeated several times to determine the standard deviation of the
pose estimation. A diagram showing the Monte Carlo simulation in principle can be seen in
figure 1.2(b).

Vogt et al. are summarizing that accuracy is increasing, as the size of the target, the number
of markers, and the variation in markers heights increase. The comparison between coplanar
and non-coplanar target configurations showed that a non-coplanar target delivers a much

6



1 Introduction

more consistent error distribution that is comparable with the best case scenario of a coplanar
target.

The presented method for analyzing the pose accuracy with Monte Carlo simulation can
also be used for n-ocular tracking system. In section 6.4 the accuracy of a marker target was
analyzed in the same way.

Retro-reflective markers

Height

(a)

Synthesized 
3D model

Projection
with Pinhole 

Camera
Calculate
6D jitter

Adding 2D 
noise on 

image plane
Calibration 
with Tsai 6D pose

multiple times

Monte Carlo simulation

(b)

Figure 1.2: Monte Carlo analysis of a target using monocular tracking; (a) shows the ana-
lyzed target; (b) shows how the Monte Carlo simulation was done

Abawi et al. developed in [1] an accuracy function for monocular optical tracking with the
ARToolKit tracking system [31]. The accuracy function assesses the accuracy of ARToolKit
measurements depending from distance to target and from the orientation of the target.

To determine the accuracy function a specific ARToolKit setup was studied with respect
to accuracy. Therefore Abawi et al. used a standard commercial web cam and the ARToolKit
pattern sample1. The camera was fixed mounted on a mechanical jig and the pose of the
marker was varied in distance and orientation, where the center of the marker is kept on the
principal axis of the camera. The resulting accuracy function is regarding both systematic
(biased) error and the noise (jitter) error.

A drawback of the presented method is the lack of portability, because it uses the errors
from one specific setup, which consists of camera, kind of target, light conditions and others,
to determine the accuracy of other setups. However, the user of the ARToolKit tracking
system can gain an idea of the expected errors.
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2 Tracking Systems

This chapter gives an overview which criteria can be used to classify the performance of
tracking systems and which common types of tracking technology are existing.

2.1 Criteria for Tracking Performance

The following criteria [8] can be used to classify a tracking system, so the right system can
be chosen for a specific application.

Resolution The smallest change of position and orientation of the tracked object which can
be measured by the tracking system is termed resolution.

Accuracy The error in position and orientation of the tracked object. This error is in general
smaller than the resolution [42]. Because of the non-linear nature of optical projections
the errors are not homogeneous in the tracking volume

Update Rate This is the rate at which the system delivers tracking information.

Lag If t1 is the time at which the pose of the tracked object is changing and t2 the time at
which the new pose is reported by the system, then ∆t = t2− t1 is called lag or latency.

Working Volume The working volume is the volume within the tracking can be used with
the specified resolution and accuracy

Costs Of course the costs of a system play an big role in the choice of which system should
be used.

There is no perfect tracking system for an application, so balance between the different
criteria has to be found.

2.2 Optical Trackers

Optical Trackers usually use vision based systems to estimate the position and orientation.
This can be done by taking pictures with optical cameras and identifying features on the
image plane. In general the projected features will result in points on the image plane.

Optical tracking systems can be categorized into two common groups [35]. Marker-based
tracking systems use artificial visual features to help recognition in the taken image. The
Marker-less natural features-based approach relies on features naturally present in the images
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without any supplementary features; natural features can be edges of buildings, a set of
planar parts or the outline of the pupil against the iris for eye-tracking [28]. Marker-less
tracking is still a challenging task which many researchers try to improve eg. [40]. The details
of marker-less tracking are not covered by this thesis.

Marker-based tracking systems can be again classified in two common main groups. One
uses special lighting conditions to improve the recognizability of the features, the other
group tries to use the existing light conditions.

Tracking systems of the first group use infrared light to ease finding the features in the
taken image. This can be achieved by illuminating the scene with infrared light and using
retro-reflective markers, which are called passive markers. Or alternatively by using infrared
emitting LEDs, which are termed active markers. The cameras used for tracking have an
infrared filter mounted in front of the lens, so only the infrared spectrum can pass the filter
and can get on the image plane. As the infrared intensity of the natural or artificial light of
the environment is low against the emitted infrared light of the tracking system, the markers
can be obtained more easily on the image plane because the contrast from the features to the
rest of the scene is high. This can be seen in figure 2.1. When the image is taken, the contrast
will be increased by thresholding the image, so unnecessary details of the image are widely
eliminated, then the markers have to be found and identified which allows to calculate the
2D position of the markers on the image plane.

Camera

Infrared
flash

Infrared Filter

Retro-Reflective
Feature

Infrared Light Beam

Non-infrared light 
is blocked

Figure 2.1: Principle design of an infrared tracking system

The second group of tracking systems is using natural lightning conditions to find the
feature points of the target on the image plane. A target for such a system could be a black
square on a white background providing a high contrast, so it can be more easily distin-
guished from the background. With methods from computer vision the edges of the square
can be found and as the edges are intersecting in four points, so four feature points have been
found. Images for such a target can be seen in the figures 1.2(a) and 5.9. The marker targets
of monocular systems are designed in an almost flat manner because this reduces the possi-
bility that a feature is hidden by another. More details for tracking accuracy of monocular
systems using marker targets can be read in section 5.2.

A tracking system using n cameras is called a n-ocular tracking system. Assuming the po-
sitions, orientations and internal parameters of all n cameras are known, then the n 2D po-
sitions of a feature on the image planes can be used to triangulate the spatial position of
the feature. So it is possible to track the 3D positions of single markers in the working vol-
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ume. To obtain the orientation of the tracked object at least three feature points are necessary.
These features have to be rigidly mounted on the object, because the geometrical relation of
the features has to be known by the tracking system. This set of rigidly mounted features is
termed a marker target or shortly a target and can be seen in figure 2.2(a). Once the positions
of the single features are estimated, the position and the orientation of the whole target can
be calculated by a 3D-to-3D pose estimation algorithm such as Horn [27]. In section 5.1 this
topic will be discussed more deeply.

Marker Target

Feature Point

Rigid Object

(a)

lab-mounted markers lab-mounted camera

target-mounted camera target-mounted markers

Inside-Out Tracking Outside-In Tracking

(b)

Figure 2.2: (a) shows marker targets consisting of several single feature points; (b) shows
Inside-Out and Outside-In tracking configuration

If the tracking system uses only one camera it is called a monocular tracking system. With a
monocular system it is not possible to estimate the spatial position of a single feature, there
has to be a set of rigidly mounted features with well known geometry which then allows
also to estimate the complete pose. In figure 1.2(a) such a target can be seen.

Two system configurations can be distinguished. When tracking inside-out the cameras
are mounted on the rigid object and the markers are fixed mounted in the laboratory. In the
corresponding outside-in tracking configuration the cameras are mounted fixed in the labora-
tory and the markers on the target object. The inside-out configuration has some drawbacks,
as it is for example not possible to mount heavy weighted cameras on the rigid object.

2.3 Inertial Trackers

Inertial systems are using accelerometers for measuring positional acceleration and gyro-
scopes for rotational accelerations. The two devices have to be mounted on the target object
and the accelerations have to be transmitted to a tracking system. Unfortunately this tech-
nique allows only to measure changes of the pose, so the target object should have a well
known pose at the beginning of the tracking process. Measuring relative changes of the pose
leads to cumulative errors, because errors in estimating pose changes over time are sum-
marized. So the estimated pose is drifting away from the real pose over time. More details
like technical basics of this tracking technique and its appliance in augmented reality can be
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found in [42, 9, 61, 34].

An example for inertial tracking is the InertiaCube2 system from InterSense1.

Advantages Inertial sensors are independent from any infrastructure. The tracking volume
has no constraint, because not fixed devices are needed; so inertial systems do allow
an wide-area use. Modern inertial sensors are small, light of weight and inexpensive.
No external influence is affecting the measurement except changes in gravity.

Disadvantages The measurement will drift over time because only relative changes are
detected. So some kind of ground truth has to be used. This could be a combination
with another tracking system [61] or a well defined mechanical determined pose.

2.4 Magnetic Trackers

Magnetic tracker technology uses magnetic fields to estimate the position and orientation,
therefore an emitter and a detector is needed. The sender is at a fixed and well known
position and the receiver is mounted on the tracked object. Two types of magnetic trackers
can be distinguished. The alternate current or short A.C. emits three mutually perpendicular
electromagnetic coils. When an A.C. signal is applied to the sender a rotating magnetic
field will be emitted which induces currents in the receiver. Similar to the A.C. technology
the direct current or short D.C. sender emits three perpendicular coils but short pulses are
supplied to the sender. The advantage of D.C. is that the measurements are only distorted
by ferromagnetic materials. In contrast the A.C. trackers are distorted by any kind of metal
material [8, 9].

An example for a product which uses magnetic tracking technology is the Aurora System
from Northern Digital (NDI)2.

Advantages The sensors are light and small and therefore comfortably to wear or easily
mounted on objects. Magnetic trackers are not affected by obstructed line-of-sights. So
there can be objects between the sender and the receiver, except these object contain
ferromagnetic or metal materials.

Disadvantages As mentioned before, the magnetic tracking technology can be distorted
by metal or ferromagnetic things, even earth’s magnetic field is affecting the measure-
ment. The negative effect of static magnetic fields can be avoided by measuring the
static field and subtracting it from the following measurements. The influence of non-
static electromagnetic fields like CRT monitors can not be eliminated easily.

2.5 Acoustic Trackers

Acoustic trackers use ultrasonic waves to estimate the position of the target object. As the
time, a sound signal travels from a sender to a receiver, is determined only by speed of

1Intersense: http://www.isense.com/
2Northern Digital (NDI): http://www.ndigital.com
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sound in air, the distance of receiver and sender can be estimated by measuring the time-of-
flight. For tracking a 3D position it is necessary to determine the distance from the target
object to three different well known positions. Usually the sender of the ultrasonic waves is
mounted on the target object and the three receivers are mounted at fixed known positions.
Considering the relative low speed of sound in the air the update rate is limited. For example
let the distance be d = 10m and the sound speed c = 343m

s then the update rate can not be
greater than f =

(
d
c

)−1 ≈ 34.3Hz.

An example for acoustic tracking is the IS-600/900 system from Intersense.

Advantages The sender and receiver for acoustic tracking are small and light in weight,
so it is comfortable for the users. The hardware is inexpensive and the tracking envi-
ronment has not to be designed specially. The acoustic tracking is not influenced by
external effects like magnetism or metal materials.

Disadvantages The acoustic energy diminishes with the square of the distance, so large
working volumes are hardly to realize. The distance from target and sender is also
limiting the update rate. As the speed of sound varies with the temperature of air and
with some other physical conditions, the sound speed can not be treated constantly.
This can be adjusted by measuring the speed of sound by a separate sender and re-
ceiver pair with fixed and well known distance. Another drawback is the constraint
of unobstructed line-of-sight. If there is an object between the sender/receiver pair the
signals are traveling not directly to the receiver but with reflection. The time-of-flight
is then longer which leads to a wrong distance estimation. The acoustic tracking allows
only the tracking of positions and does not provide rotational informations, therefore
the IS-600/900 system from Intersense includes also an inertial tracking system, which
measures the orientation of the target object.

2.6 Mechanical Trackers

Mechanical tracking is using a movable mechanical arm to measure the position and the
orientation of the target object. The arm is fixed mounted to a well known position and
it is sectioned in several parts. The joints are applied with potentiometers to register the
movements, which allows to calculate the angles between the sections and therefore the
position and orientation of the arm’s tip.

The mechanical tracking technology is not common in augmented reality applications, be-
cause the disadvantages below outbalance the advantages. In some applications like finger
tracking, mechanical tracking is still popular. An example for commercially produced me-
chanical tracker is the Shooting Star ADL-1, used in [60] for head tracking purposes. More
details for mechanical tracking can be read in [8] or in [9].

Advantages Mechanical tracking delivers measurements with high accuracy, high resolu-
tion, low latency and high update rate.

Disadvantages The movement of the rigid object is constrained by the mechanical arm and
has not full freedom. The mechanical arm is also limiting the working volume and a
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bigger volume would cause a new arm. In addition the arm suffers from mechanical
wear.

2.7 Global Navigation Satellite Trackers

A global navigation satellite system uses satellites for tracking 3D positions. With at least four
satellites the position can be estimated by measuring the time-of-flight of radio-magnetic
signals from the satellites to a receiver. As the receiver needs an unobstructed line-of-sight
to at least four satellites it can not be used indoors or in some urban areas with high buildings
which are hiding the satellites. Further details can be found in [26].

Examples for global navigation satellite systems are the Global Positioning System (GPS)
and the Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS).

Advantages The system is available globally and its use is free of charge. No special hard-
ware environment is needed. The receiver is small and inexpensive.

Disadvantages The resolution of the GPS system is low and the accuracy without techni-
cal improvements is about 4m up to 20m. The accuracy can be enhanced over short
distances up to 1cm, but this improvement needs a technical infrastructure.
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In this chapter an overview of the mathematical instruments used in this thesis will be given.

3.1 Rotations

In many applications it is necessary to track not only the position but also the rotation of
an object. The combination of position and orientation is called a pose. Unfortunately there
are many representations of rotation which are all leading to a different representation of
the pose. The most common representations of rotation are rotation matrices, euler angles and
quaternions which will be now introduced.

3.1.1 Matrices

Describing rotations as matrices is common in computer graphics. When operating in 3
dimensional euclidian space rotation matrices are in the special orthogonal group SO(3) [18].
If a matrix R is element of SO(3) then it has the following properties:

1. There is a matrix R−1 ∈ SO(3) with R−1R = I

2. Rt = R−1

3. det(R) = 1

So inverting a rotation matrix can be easily done by transposing the matrix, which saves
much computation time.

By extending a rotation matrix R to a homogeneous matrix R̃ ∈ GL(4) translation, rotation
can be done with R̃. Rotating and then translating a point can be written as a affine map x 7→
Rx + b where R ∈ SO(3) and b ∈ R3. This affine map can also be written as a homogeneous
matrix

(
R b
0 1

) (
x
1

)
=

(
Rx + b

1

)
.

It can be shown that R̃ is invertible if and only if the rotational part R is invertible. The
inversion of a homogeneous matrix can be done by the next formula

(
R b
0 1

)−1

=
(

R−1 −b
0 1

)
=

(
Rt −b
0 1

)
.
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A drawback of matrices is, when two matrices of floating points are multiplied in a com-
puter system, the result will not necessarily be an orthogonal matrix due to numerical errors.
So the result has to be tested for orthogonality and if necessary has to be made orthogonal.

3.1.2 Euler Angles

Another way to represent rotation are Euler Angles, which are describing the rotation
around the coordinate axes. There are several conventions of Euler Angles, representing
different axes which are used for the rotation. They can be devided into two commonly
used groups. In the first group the rotation axes are not affected by the previous rotations so
they are fixed, in the other the axes are also rotated. In this thesis only fixed Z-Y-X angle set-
ting will be used, but many other ways of euler angles would be possible. A comprehensive
overview is given by Craig [14].

The fixed Z-Y-X angle setting rotates first around the x axis by the angle α, then around
the y axis by the at angle β and at last around the z axis by the angle γ.

The rotations around the three axes written as matrices are

Rx =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 Ry =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 Rz =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


Combining Rx Ry and Rz leads to

R = RxRyRz = cos(β) cos(γ) − (cos(β) sin(γ)) sin(β)
cos(γ) sin(α) sin(β) + cos(α) sin(γ) cos(α) cos(γ)− sin(α) sin(β) sin(γ) − cos(β) sin(α)
cos(α) cos(γ) sin(β) + sin(α) sin(γ) cos(γ) sin(α) + cos(α) sin(β) sin sin sin(γ) cos(α) cos(β)

 .

(3.1)

3.1.3 Quaternions

The quaternions were first described by Hamilton in the year 1847 [20]. A Hamilton quater-
nion q can be thought as a complex number with three different imaginary parts. Thus it can
be written

q = iqx + jqy + kqz + q0 , (3.2)

where qx, qy and qz are the imaginary parts and q0 the real part. These four values can also
be written as a vector q̃ = (q0, qx, qy, qz)t ∈ R3.

The norm of quaternions is defined like the euclidean norm

‖q‖2 = q2
x + q2

y + q2
z + q2

0 . (3.3)
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A quaternion with norm ‖q‖ = 1 is called a unit quaternion.

To avoid scaling while rotation, quaternions have to be unit quaternions, which also allows
to drop one value of the quaternion without loss of information. So a rotation using unit
quaternion representation can be described with only three variables.

Further details for instance how to use quaternions for rotation can be read in for example
in [27, 57] and many others.

3.2 Statistics

For describing errors in tracking some statistical methods are needed, which are introduced
in the next sections. It is assumed that the reader is familiar with the basic statistical terms
and definitions; if not, the reader can get more information about statistics in [17] and [32].

3.2.1 Errors

When tracking objects the measured poses will be always tainted with errors. In the fol-
lowing the basic statistical principles are introduced to describe the errors in a mathematical
way.

A pose can be represented in many ways, which mainly differ in the representation of
rotation. For example if taking fixed Z-Y-X Euler angles the pose p can be written as

p = (x, y, z, α, β, γ)t ∈ R6 , (3.4)

where x, y, z is the true position and α, β, γ the true rotation. Assuming a tracking system
delivers a measured pose p̃ = (x̃, ỹ, z̃, α̃, β̃, γ̃)t ∈ R3, then this measurement will be tainted
with the error

∆p = (∆x,∆y, ∆z,∆α, ∆β, ∆γ)t . (3.5)

This error vector can be treated as multi-dimensional random variable.

3.2.2 Multi-Dimensional Random Variable

It would be possible to model the error as a set of scalar random variables, but then all
random variables would be independent from each other, which meets not the reality. So
the errors have to be modeled as a multi-dimensional random variable.

3.2.3 Probability Density Functions

A probability density function is a function assigning probability to certain events.

Let X be a n-dimensional random variable and A a set of events. Then P(X ∈ A) is the
probability that the random variable X reaches values in A. A probability density function
f describes that coherence between events and probability of occurrence of that events.
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3.2.4 Expectation

The expectation is the mean of a random variable. Let X = (X1, X2, . . . , Xn) be a random
variable and

µi = E(Xi) =
∫ +∞

−∞
xif(xi)dxi (3.6)

the scalar mean of the several random variables Xi. Then the expectation of the n-
dimensional random variable X is

µ = E(X) = (µ1, . . . , µn)t . (3.7)

3.2.5 Variance and Covariance

The variance is a statistical measure for dispersion, indicating how far the values of the scalar
random variable are away from the expected value. It is defined only for scalar random
variables. If µ = E(X) is the mean of the random variable X, then the variance is

Var(X) := E((X − µ)2) . (3.8)

Another formula for calculating the variance of a random variable is

Var(X) = E(X2)− (E(X))2 . (3.9)

The root of the variance is called the standard deviation σ

σ :=
√

Var(X) =
√

E(X − µ) . (3.10)

The advantage of the standard deviation over the variance is that it is measured in the
same units as the original data, which is more intuitive for the user.

The variance is invariant under addition and linear under multiplication with scalars

Var(aX + b) = aVar(X) . (3.11)

For two scalar random variables the covariance ((X, Y ) 7→ Cov(X, Y ) ∈ R) is a statistical
measure how much the X and Y are varying together. For example the Cov(X, Y ) becomes
more positive for each pair X and Y which differ from their mean in the same direction
and more negative with each pair which differ from their mean in opposite directions. If
the covariance of X and Y is zero then these two random variables are called uncorrelated
which are not necessarily be independent.

Let X and Y be to scalar random variables and µX = E(X) and µY = E(Y ) their expected
values. Then the covariance of X and Y is

Cov(X, Y ) = E((X − µX)(Y − µY )) . (3.12)
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It is easy to see that the variance of X is the same as Cov(X, X)

Cov(X, X) = E((X − µX)(X − µX))

= E((X − µX)2) = Var(X) .
(3.13)

Also easy to see is that the covariance is symmetric

Cov(X, Y ) = E((X − µX)(Y − µY ))
= E((Y − µY )(X − µX)) = Cov(Y, X) .

(3.14)

For two multi-dimensional random variables X and Y with dimensions n and m there are
n×m single covariances. These can be combined to one single matrix where Cov(X, Y )i,j =
Cov(Xi, Yj). If X = Y with dimension n then Cov(X) is called covariance matrix and can be
written as

Cov(X) =


Var(X1) Cov(X1, X1) · · · Cov(X1, Xn)

Cov(X1, X2) Var(X2) · · · Cov(Xn, X2)
...

...
. . .

...
Cov(X1, Xn) Cov(X, X) · · · Var(Xn)

 . (3.15)

The diagonal entries of the covariance matrix are the variances of Xi. It is also easy to
be seen that the covariance matrix is symmetric because of the symmetry of the covariance
function:

Cov(X) = Cov(X)t (3.16)

It can be proved that a covariance matrix is also always positive semi-definite, which
means that all eigenvalues of Cov(X) are positive or zero [18].

3.2.6 Probability Density Functions

There are several probability density functions as there are normal distribution, Student’s t-
distribution and many more. Because only the normal distribution is needed in the following
chapters the other distributions are not explained.

Normal Distribution

The most important distribution is the normal distribution, also called gaussian distribution. A
scalar random variable can be called normally distributed with parameters µ and σ2 if it has
the density function

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 , (3.17)
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where the standard deviation is σ and the expected value is µ. If X is normally distributed,
it can be shortly written as X ∼ N(µ, σ2).

The normal distribution is symmetric around µ, which can be written as

f(µ− x) = f(µ + x) ∀x ∈ R . (3.18)

Multivariate Normal Distribution

There is also a standard deviation for multi-dimensional random variables. Let X be a
multi-dimensional random variable with dimension n, Σ ∈ Rn×n a symmetric, positive
semi-definite matrix and µ ∈ Rn then the multivariate normal distribution is given by

f(x) =
1

√
2π|Σ|

1
2

e−
1
2
(x−µ)tΣ−1(x−µ) . (3.19)

It can be shown that µ is the expected value of X and Σ its covariance matrix.

If X is multivariate normally distributed it can be written X ∼ Nn(µ,Σ). Similar to the
scalar case.

If the covariance matrix Σ has only one n-fold eigenvalue the distribution is called an
isotropic distribution because the standard deviations in each of the n dimensions are equal.

3.3 Interpretation of Covariance

In this section a method will be shown, how a multi dimensional normally distribution and
the corresponding covariance matrix can be interpreted in a geometric manner. It will be
shown that the set of points (X ∼ Nn(µ,Σ)) with the same probability will form an ellipsoid.

3.3.1 Quadratic Forms

A quadratic form or shortly quadric is a special polynomial function, which can describe
curves, planes and second order hyperplanes.

Let A ∈ Rn×n be a symmetric matrix then

q : Rn → R, x 7→ q(x) = xtAx (3.20)

is called a quadratic form.

In the next, without loss of generality the dimension is restricted to n = 3, because it is
easier for the reader to follow. The principles can be easily extended to the n-dimensional
case.

Thus A ∈ R3×3 is a symmetric matrix q(x) it depends only on six parameters. So q(x) can
be written as a polynom of degree two.
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q(x) = q(x1, x2, x3) = a11x
2
1 + 2a12x1x2 + a22x

2
2 + 2a13x1x3 + 2a23x2x3 + a33x

2
3 (3.21)

An ellipsoid is defined by

x2
1

a
+

x2
2

b
+

x2
3

c
= 1 where a, b, c > 0 . (3.22)

With A = diag( 1
a , 1

b ,
1
c ) the equation (3.22) can also be written as

x2
1

a
+

x2
2

b
+

x2
3

c
= xt

 1
a

1
b

1
c

 x = xtAx . (3.23)

So the ellipsoid fulfills the definition of quadrics. The principal axis of such an ellipsoid
are the three coordinate axes x1, x2 and x3 and the length of these axes are

√
a,
√

b and
√

c.
Usually the principal axes of the ellipsoid do not coincide with the coordinate axes but are
somehow rotated. This can be achieved by rotation of the coordinate system for instance
with a rotation matrix R. This leads to

y = Rx ⇒ ytAy = (Rx)tA(Rx) = xt(RtAR)x . (3.24)

Lanczos shows that the principal axes are now along the rows of R with the same length
as before [33]. So with help of a rotation and a diagonal matrix it is possible to define an
arbitrary ellipsoid in space.

If an arbitrary symmetric and positive definite matrix B, for example a covariance matrix,
is given, B can be decomposed with eigenvalue decomposition into a rotation matrix V with
the eigenvectors as columns and a diagonal matrix D consisting of the eigenvalues. This is
called the principal axis theorem [47]

B = V DV t . (3.25)

Thus B is a symmetric matrix eq. (3.25) can also be written as

B = Bt = (V DV t)t = V tDV . (3.26)

Using eq. (3.26) in eq. (3.24) it is clear that B is defining an ellipsoid. So each positive sym-
metric matrix defines an ellipsoid with the eigenvectors as the principal axes. The length of
the principal axes are 1√

λ1
, 1√

λ2
and 1√

λ3
, where λi are the eigenvalues.

In the one dimensional case n = 1 the quadric leads to two points, if n = 2 an ellipse and
for an arbitrary n a n-dimensional ellipsoid is defined.
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3.3.2 Surface of Constant Probability

In the following section it will be shown that normal distributed events occurring with the
same probability are lying on a quadric, which is termed the surface of constant probability.

Let X ∼ Nn(0,Σ) be a n-dimensional random variable with zero-mean, so the density
function of X can be written with eq. (3.19)

f(x) =
1

√
2π|Σ|

1
2

e−
1
2
xtΣ−1x . (3.27)

To get all events which have the same probability p, the eq. (3.27) has to be solved for x

xtΣ−1x = −2 ln(p
√

2π|Σ|
1
2 ) = z2 . (3.28)

Because the multi variate distribution N(Σ, µ) is not defined for singular covariance matrix
Σ, it can be assumed without loss of generality that Σ is not singular, so the covariance matrix
is positive definite. It is not hard to see that eq. (3.28) describes an n-dimensional ellipsoid
(cf. section 3.3.1), so all events with the same probability are located on an ellipsoid in n
dimensions.

To calculate the principal axes of the ellipsoid eq. (3.28) has to be rearranged

∆xtΣ−1∆x = z2 ⇔ ∆xt 1
z2

Σ−1∆x = 1 . (3.29)

Because Σ is positive definite and symmetric it can be decomposed to Σ = RDRt, where
R is the matrix of eigenvectors and D the diagonal matrix of the corresponding eigenvalues.
This leads to

∆xt 1
z2 Σ−1∆x = 1 (3.30)

⇔ ∆xt 1
z2 (RDRt)−1∆x = 1 (3.31)

⇔ ∆xt 1
z2 (RtD−1R)∆x = 1 (3.32)

⇔ ∆xt(Rt


1

λ1z2

1
λ2z2

1
λ3z2

 R)∆x = 1. (3.33)

So the principal axes are along the columns of R and have the length li = z
√

λi (i = 1, 2, 3)
(cf. section 3.3.1).

In most applications it makes more sense to deal with a cumulative probability P , which is
the probability of an event being inside the ellipsoid given by the covariance matrix Σ and
the magnification factor z.

Let n be the dimension and P the wanted cumulative probability then the formula for
cumulative probability is given by
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1− P =
n

2n/2 Γ(n
2 + 1)

∫ ∞

z
xn−1ex2/2dx [51]. (3.34)

The cumulative probability can also be interpreted as a confidence level. For example it is
75% confident that events occur within the given ellipsoid.

For n = 3 dimensions, the ellipsoid defined by z = 3 corresponds to a confidence level
of ≈ 97%. More confidence levels can be seen in table 3.1 and plot of the relationship of
magnification and confidence level can be seen in figure 3.1.

Confidence Level
Dimension 25% 50% 75% 95% 97% 99%

n = 1 0.10153 0.45494 1.3233 3.84146 4.70929 6.6349
n = 2 0.57536 1.38629 2.77259 5.99146 7.01312 9.2103
n = 3 1.21253 2.36597 4.10834 7.81473 8.94729 11.3449

Table 3.1: Magnification factor resulting from given dimension and confidence level
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Figure 3.1: Relation between magnification factor z2 and the confidence level; (a) shows the
cumulative probability in two dimensions and (b) in three dimensions

3.4 Error Propagation

This section is about transforming random vectors. This kind of task is common in aug-
mented reality. For example the error vector distribution of a pointing device is known in
the centroid of the marker target, but it is desired at the tip of the pointing device. So the
error vector has to be transformed with some kind of mapping, which is also affecting the
distribution of the error vector. Therefore the covariance and the mean of the distribution
have also to be transformed, which can be done with covariance forward propagation and co-
variance backward propagation.
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3.4.1 Forward Propagation

The forward propagation of covariance is rule for affine function f as defined in [23]: Let
v ∼ NM (v̄,Σ) be a random vector with mean v̄ and covariance matrix Σ. Let f be an affine
mapping defined by f : RM → RN , v 7→ f(v) = f(v̄) + A(v − v̄). Then f(v) is again a random
variable with mean f(v̄) and a covariance matrix Σf

Σf = AΣAt (3.35)

Often the mapping f is not linear, but the covariance forward propagation in eq. (3.35) is
only defined for linear mappings. This Problem can be solved by a linear approximation at
a certain point.

Let f be function differentiable in point v0. Then the Taylor Series delivers a linearization

f(v) = f(v0 + ∆v) = f(v0) +
∂ f
∂x

|v=v0 ∆v + · · · (3.36)

where ∂ f
∂x |v=v0 is the Jacobian matrix evaluated at the point v0.

The Jacobian matrix is a matrix of all first-order partial derivatives of a function f : Rn →
Rm and it is of the following shape

Jf(v1, . . . , vn) =


∂ f1
∂v1

· · · ∂ f1
∂vn

...
. . .

...
∂ fm
∂v1

· · · ∂ fm
∂vn

 . (3.37)

With the help of the Jacobian matrix f(v) can linearized around point v0

f(v) = f(v0 + ∆v) ≈ f(v0) + J∆v (3.38)

The covariance matrix for the random variable f(v) in v0 can be determined with the lin-
earization for f and the linear forward propagation eq. (3.35)

Cov(f(v)) ≈ Cov(f(v0) + J∆v) = Cov(J∆v) = J Cov(v)J t . (3.39)

3.4.2 Backward Propagation

Sometimes the distribution of the random variable f(V ) is known as f(V ) ∼ Nn(µ,Σ), but
the distribution of V is of interest. This problem could be solved by doing the forward
propagation (3.39) of the inverse f−1, but unfortunately it is often hard or even not possible
to calculate such an inverse.

So instead of calculating the forward propagation Jf−1ΣJ t
f−1 with the inverse, it can be

shown that is equal to compute [23]:

Σf−1 = (J t
f Σ

−1Jf)−1 (3.40)
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Beside the advantage to calculate the new covariance matrix straightforward without the
inverse of f , it provides also a solution of overparametrized cases [23].

Using the pseudoinverse M ‡ :=
(
M tM

)−1M t [57] leads to

Σf−1 = (J t
f Σ

−1Jf)‡ . (3.41)

To determine the complete distribution of f−1(V ), also the mean of f has to be calculated.
Unfortunately there is no such easy way as for the covariance matrix, but in this thesis only
distributions with zero-mean are used.

3.5 Camera Model

A camera model is a simplification of a real world camera which maps from 3D world to the
2D image plane. The mapping can be divided into two parts:

1. Transforming the points from the world coordinate frame into the coordinate frame of
the camera.

2. Projecting the transformed points onto the image plane.

In this section the pinhole camera model, which is used widely in this theses, and some
photogrammetric enhancements will be described.

3.5.1 Pinhole Camera Model

The basic pinhole camera model [23] is a projection of a point ~x = (x, y, z) t in space onto a point
~u = (u, v) t on the image plane, where the center of projection is at the origin of a Euclidean
coordinate system and the image plane is assumed as the plane z = f . The mapping of
a point is then done by intersecting the line connecting the origin ~0 and ~x with the image
plane. The line perpendicular to the image plane is called the principal axis and the point
where the principal axis intersects the image plane is called principal point (cf. figure 3.2).

p : R3 → R2, ~x 7→ u = pf (~x) =
1
z

(
fx
fy

)
(3.42)

This mapping can also be written with homogeneous coordinates and a matrix P

pf (~x) =
1
z
Px =

1
z

f 0 0 0
0 f 0 0
0 0 1 0




x
y
z
1

 , (3.43)

where P is called the camera projection matrix. In the later the matrix P is extended by more
parameters than just the focal length to get a more capable camera model. The parameters
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can be divided into two groups where one is describing the spatial position and orientation
of the camera and the other the camera itself. This kind of separation is also used for the
projection matrix P = KT, where the matrix T represents the extrinsic position and orienta-
tion of the camera and the matrix K the intrinsic parameters of the camera like focal length
and others.

Image Plane Principal AxisCamera Center

x

p

y
x

C

Y

X

Z

u

(a)

f

f Y / Z

C

Y

Z

Image Plane Principal AxisCamera Center

u

x

(b)

Figure 3.2: Pinhole camera geometry. C is the center of the camera and p the principal point.
The camera is headed towards the positive z-axis. [23]; (a) shows the projection
of x to the point u on the image plane; (b) shows the relationship between focal
length f and the projected point u

Extrinsic Camera Matrix

In general the cameras are not heading in the same direction as defined in the basic pin-
hole camera model. So before the projection can be done, the general 3D points have to be
transformed from the world coordinate frame to the camera coordinate frame.

A coordinate frame consists of translation t and rotation R, which are in general combined
in a single homogeneous matrix T

T =
(
R t
0 1

)
. (3.44)

This matrix is called the extrinsic camera matrix or exterior camera parameters. The mapping
from the world to the camera coordinate frame can then be done by

xcam = Txworld , (3.45)

where xcam and xworld are homogeneous vectors.

The extrinsic camera parameter matrix is completely independent from the camera speci-
fications, as it only describes the position and orientation of the camera in space.
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Intrinsic Camera Matrix

The intrinsic camera parameters are describing the internal parameters of a camera as for ex-
ample the focal length f , the principal point offset, the skew and the pixel aspect ratio for elec-
tronic sensors in cameras. The intrinsic camera matrix is filled with these parameters. The
full calibration matrix can be seen in photogrammetric and computer vision books like [36]
and [23].

To show how the calibration matrix is built with the parameters, the principal point offset
will be introduced as an example. The principal point offset describes the offset between the
principal point and the center of the image plane [4, 23] (cf. figure 3.3) which is occurring due
to imperfections during the production of the camera. Equation eq. 3.46 shows the intrinsic
camera matrix K with focal length f and the principle point offset.

pf (~x) =
1
z
Px =

1
z
KTx =

1
z

f 0 xoff 0
0 f yoff 0
0 0 1 0

T~x (3.46)

p

y

x

yoff

xoff

Image Plane

Principal Point

Principal Point Offset

Figure 3.3: Principal point offset (xoff, yoff) on the image plane

Lens Distortion Model

Lens distortion models are supposed to eliminate imperfections of the lenses in a photogram-
metric systems. The models which are presented here are based on the polynomial descrip-
tion of the distortion developed by Brown [10].

Radial-Symmetric Distortion If the image of a target is either too close to the principal
point or too far away from the principal point it has been radially distorted. This error is also
called barrel or pin cushion.

This aberration is generally the biggest error of the optical mapping. The balanced radial
distortion is a correction of the distortion. It is commonly written as a power series (Seidel
series) [10]:
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∆rrad = A1r
3 + A2r

5 + A3r
7 + . . . (3.47)

Where Ai are the correction parameters. In general only the first two or three terms are
needed, only for complex lenses like fish-eyes some more terms are needed [4].

An alternative the Seidel series (6.5) can be written polynomial:

∆rrad = A1r(r2 + r2
0) + A2r(r4 + r4

0) + A3r(r6 + r6
0) (3.48)

The value of r0 depends on the parameters Ai. Normally r0 is about 2
3 of the maximal

radius of the image plane [37].

Radial-Asymetric and Tangential Distortion The radial-asymetric and tangential distor-
tions occur if the center of the lenses do not coincide with the principal axes. This distortion
can be described by

∆xtan = B1(r2 + 2x2) + 2B2xy

∆ytan = B2(r2 + 2y2) + 2B1xy
. (3.49)

The radial-asymetric and tangential distortion of the most high quality lenses is small
compared to the radial-symetric distortion and is needed only for high quality demands.
According to Luhmann [37] this corrections must be estimated for off-the-shelf lenses like in
video cameras and comparable.

Affinity und Skew Affinity and skew describing the deviation of the image coordinate sys-
tem from orthogonality and the uniformity of the coordinate axes. This distortions can be
caused by non-uniform placing of the sensor-elements. To correct this aberrations the fol-
lowing equations can be used [37]:

∆xaff = C1x + C2y

∆yaff = 0
(3.50)

Entire Distortion The combined common distortions in photogrammetric systems can be
written as:

∆x = ∆xrad + ∆xtan + ∆xaff

∆y = ∆yrad + ∆ytan + ∆yaff
(3.51)

Experiments with lens distortion parameters provided by a manufacturer showed that
the lens distortion can be neglected when using high quality tracking hardware. Further
research has to be done on this topic, especially as some tracking systems are using low
quality off-the-shelf cameras.
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In this chapter the errors occurring while tracking rigid objects will be classified and de-
scribed. Also an error model will be introduced which allows to describe the non systematic
errors.

4.1 Kinds Of Errors

The sources of error in tracking can generally be divided into two primary classes: static and
dynamic errors. The first class covers all errors related to static measurement, which includes
errors during calibrating the system and errors occurring while using the tracking system
in a static way. So all parts involved in the tracking process are not moving. In contrast
to static erros, dynamic errors are caused by end-to-end system delays when parts of the
tracking system are moving eg. the cameras or the tracked object [7, 56]. Dynamic errors are
not covered by this thesis although these errors can be more significant than the static errors
for some setups. However, there are many applications where the dynamic errors can be
neglected. In video see-through systems, the lag can be compensated by delaying the video
stream for a certain amount of time [45].

The class of static errors can again be split into two different groups of errors: systematic
and noise. The two classes will be introduced in the next sections.

4.1.1 Systematic Errors

Systematic errors, also called biased errors, are repeatable which means when doing the same
measurement several times the error will remain the same. In the next the most common
error sources are described in detail.

Occlusions

When projecting feature points onto the image plane it can happen that one or more features
are hidden by other objects, see figure 4.1 for some examples. In general this is no problem
for detecting the whole target if there are still enough other features visible or other cameras
can see the hidden features. If there are less than three features visible by at least two cameras
the pose cannot be estimated anymore, which can easily be detected by the software and so
the user of the tracking system can solve the problem by installing more cameras [12] or by
building better targets [16].

If using a tracking system with retro-reflective marker balls as feature points it can happen
that these markers are hidden partly by another marker ball or by another object. If the
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(a) Marker partly hid-
den by other marker

(b) Marker fully hid-
den behind another
marker

(c) One marker partly
hidden by other object

Figure 4.1: Different Types of Occlusions

marker ball is still detected the estimation of the position will be erroneous, caused by the
sub-pixel algorithms (cf. section 4.1.1). An example of this effect can be seen in the left
illustration of figure 4.1(a). The position of the marker in front should be estimated, but the
partly hidden marker will not be identified as a separate marker and so the position of the
marker in front will be estimated slightly left of the real position.

Hidden or partly hidden markers change the geometry of the whole target, which leads
to wrong estimated positions. So only visible markers and undisturbed markers should be
used to determine the position of the target. Presumably the manufacturers of commercial
tracking systems are using some quality metrics of the tracked markers to increase the track-
ing accuracy.

As the probability of occlusions is strongly depending on the placement of the cameras,
a setup has to be found which increases the visibility of the markers and therefore mini-
mizes the appearance of occluded markers and increases the accuracy. Chen et al. presented
in [13] a quality metric for multi-camera configurations that includes a probabilistic occlu-
sion model to address this kind of problem.

In this thesis errors caused by occlusion will not be analyzed.

Thermal Drift

The thermal drift arises if the camera is getting warmer than at the calibration time, due
to some cameras that are using infrared flashes to illuminate the tracking scene. The elec-
tronic device needed for flashing is producing heat and also the power supply unit is getting
warmer over the time.

The warming-up of the camera case changes the intrinsic parameters of the camera and is
therefore affecting the accuracy. If the tracking system does not take care of this effect, the
user should calibrate the cameras when the cameras are warmed up, otherwise the accuracy
of the tracking results will get worse over the time. In [49] Trübswetter showed that in the
first half an hour the drift is high. So the cameras should warm-up for at least half an hour.
Trübswetter measured that drift for tracking a single feature with a stereo system is up to
0.7mm at a distance of 3m compared to the tracking accuracy of less than 0.5mm.

Even after half an hour warm-up phase a drift can be measured. Figure 4.2 shows the
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distance of two feature points over a period of 320 seconds measured with three ARTtrack1
cameras.
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Figure 4.2: The thermal drift measured over 320 seconds after half an hour warm- up (ART-
track1); (a) shows the measured distance of two rigidly connected features; (b)
shows the mean of the measured distances

In the mathematical model developed later in this chapter the thermal drift will not be
considered. First because the error can be avoided by warming-up the system, second be-
cause the system could be constantly recalibrated on-line while using the tracking system.
Some researcher have done work on this real-time recalibration topic. Wang presented in [54]
and [55] a technique to recalibrating the extrinsic parameters of a n-ocular tracking system,
but as the thermal problem matters mainly in the intrinsic parameters a real-time recalibra-
tion for the intrinsic parameters should be found.

Wrong Poses of the Cameras

When using more than one camera a single feature point can be tracked by triangulating, but
for the triangulation the position and orientation of all involved cameras have to be known.
This estimation of the poses of cameras, also termed room calibration or extrinsic parameter
calibration, has to be done every time the setup is changing.

For the room calibration 2D point correspondences on the image plane are needed which
are erroneous due to noise, so the poses of the cameras will be estimated with errors which
result in additional errors in the triangulation. Furthermore the cameras will never stay still,
because of vibrations caused by users walking in the laboratory, by opening or closing doors
or by other mechanical influences.

So three main error sources for bad extrinsic parameter calibration can be distinguished.
The first error is caused if the initial calibration of the system has not be done carefully, the
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next error is produced by moved or rotated cameras after the initial calibration and the third
source of error comes from short or periodical changes in the position or orientation of the
cameras, caused by external physical influences. The three sources could also be eliminated
by using a real-time recalibration algorithms, like presented by [54, 55]. Is has to be analyzed
if these algorithms are also capable to eliminate the negative effects of vibrations.

Scaling of Room

When measuring the distance of two rigidly connected features with a multi-camera setup,
the distance of these two features will be estimated with errors. The error in distance es-
timation is caused mainly by systematic errors. When moving the two features through
the working volume the error in distance will change, as the static error in estimating the
position of a single feature is varying within the working volume.

In section 5.1.3 an experiment is introduced where a two-feature target is rotated around
its centroid and the distance between the two features is measured (cf. fig. 5.7(a)). Fig-
ure 5.7(b) shows the measured length estimation; the horizontal axis shows the angle of
the two-feature target and the vertical axis the respective measured distance.

The plot shows an oscillation with period π in the measured distances. This systematic
error presumably comes from a wrong scaling of the three room axes during the calibration
of the used A.R.T.( cf. sec.5.1.1) tracking system.

Subpixel Accuracy

When tracking feature points the features have to be segmented and identified in the taken
picture to estimate the 2D position of the feature on the image plane. In figure 4.3(b) a picture
of a 12mm retro-reflective marker ball taken by tracking camera can be seen. The problem in
estimating the position is that features projected on the chip are covering only a few pixels
on the image plane. Table 4.1.1 shows the geometrical relationship between marker ball
diameter, distance to the camera and the resulting pixel-sized diameter on the image plane
when using a ARTrack1 camera. To increase the number of covered pixels the focus of most
cameras are slightly defocused. If the tracking system uses passive retro-reflective or active
LED markers the blooming on the image plane is also increasing the amount of covered
pixels.

Distance from Camera to Marker
Size 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

12mm 5.67 2.84 1.89 1.42 1.14 0.95 0.81 0.71 0.63 0.57
14mm 6.62 3.31 2.20 1.66 1.32 1.10 0.95 0.83 0.74 0.66
20mm 9.46 4.73 3.15 2.36 1.89 1.58 1.35 1.18 1.05 0.95
30mm 14.19 7.09 4.73 3.55 2.83 2.36 2.02 1.77 1.58 1.42

Table 4.1: Relationship between marker ball diameter and distance to the camera and the
resulting pixel-size diameter on the image plane. (The focal-length is 3.5mm and
chip-size is 4.87mm× 3.67mm)
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The estimation of 2D position is not restricted to the discrete pixel coordinates on the
image plane (cf. 4.3(a)). In experiments presented later in this thesis, a subpixel accuracy of
about 1

115 was measured.

There are several subpixel algorithms. Shortis et al. [48] gives a survey over common
techniques and their expected accuracy. As an example a simple algorithm is shown to gain
an idea how location estimation with subpixel accuracy works.

Wong et al. [59] introduced the “Weighted-Centroid Algorithm”. It is assumed that the
features are already segmented. Let tup the upper and tlow the lower threshold bound. The
segmented image dimension are n and m and the weight wij is representing the grey value
at the image position (i, j). Then the position of the feature can be calculated by the next
formulae:

gij =

{
1 if tlow ≤ wij ≤ tup

0 if other cases
(4.1)

M =
n∑

i=1

m∑
j=1

gijwij

x =
1
M

n∑
i=1

m∑
j=1

jgijwij

y =
1
M

n∑
i=1

m∑
j=1

igijwij

(4.2)

With this technique only these pixel are considered which are within the threshold bounds
and the brighter pixels, which are usually at the center of the feature, are counting more then
darker pixels.

CCD sensor Raster 

Estimated Centroid 
with Subpixel Accuracy

Image of the fiducial 
on image plane

(a) (b)

Figure 4.3: Subpixel Accuracy of optical markers; (a) shows the estimation of a feature with
subpixel accuracy; (b) shows the picture of a 12mm retro-reflective marker taken
with a ARTrack1 Camera

The algorithm used for locating the markers 2D-position is crucial for error produced by
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occluded markers. The problem of occluded markers is discussed in section 4.1.1.

Which algorithms are implemented in commercial tracking systems is the decision of the
manufacturer and can not be influenced by the user. Some tracking systems offer different
options for location the markers, eg. in A.R.T.’s DTrack tracking software (cf. section 5.1.1)
there is an accurate and a fast tracking mode. When tracking in accurate mode less markers
can be tracked than in fast mode. Presumably two different segmentation and subpixel
algorithms are used for the two different modes.

The subpixel accuracy will be considered in the error model derived later in this chapter.

Quantization

After digitalizing the image on the camera sensor, the continuous gray values have to be
mapped to discrete gray values. Assuming there are N different gray values possible the
mapping is done by

Q : [0,∞[ 7→ {g0, g1, . . . , gN−1} (4.3)

In
te
ns
ity

Figure 4.4: Quantization of Grey Values

This leads to an error because the real value q will be replaced by an discrete value gq.
If the steps of quantization are all equal and all gray values occurring with the same the
probability then the variance due to quantization is [29]

σ2
q =

1
∆g

∫ gq+∆q/2

gq−∆q/2
(g − gq)2dg =

1
12

(∆g)2 (4.4)

So the standard deviation of quantization σq for a single measurement is about 0.3 of the
quantization steps ∆g

By taking more than one measurement the mean of σq can be calculated. According to the
statistical error propagation the mean σmean can be calculated with

σmean ≈
1√
N

σ (4.5)
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Where N is the amount of measurements and σ is the standard deviation of a single mea-
surement. In a perfect system multiple measurements would result in the same value, so σ
would be zero. Unfortunately there is noises so make the same measurements multiple time
will not deliver equal results. If assuming the noise is the difference of two quantization
steps ∆g then the standard deviation of a single measurement would be three times bigger
than the standard deviation resulting from the quantization; but when taking 100 measure-
ments the resulting σmean is only a tenth part of σ and only 1/3 of the standard deviation
resulting from the quantization.

However, the accuracy of quantization is also limited by some other systematic errors. The
most significant is caused by unequal quantization steps. Because analog digital converters
which do the quantization in cameras, produce in general such unequal quantization steps, a
carefully analysis has to be done what the limiting factor is for the accuracy of quantization.

In the tracking domain, this error plays only a small role, because it is influencing only
the gray values but not the shape of the projected feature points on the image plane; and the
shape is the most important factor for calculation the 2D position on the image plane.

Uncertainty in Target Geometry

Tracking a pose of a marker target needs corresponding points of the target model for solving
the 3D-to-3D pose estimation problem in the n-ocular case and the 2D-to-3D pose estimation
problem in the monocular case. For a correct pose estimation the positions of the model
points should be exact to avoid additional errors in pose estimation.

Getting an exact model of the target is not possible. When designing the target virtually
and then building the target physically according to the model even with high accuracy,
errors are inevitable. Another way to get the geometric model is to build the target and
then measure the 3D points with a tracking system or other measurement tools. It is easy to
consider that the model obtained with this method is also tainted with errors, concerning the
errors described in this section and that every measurement is tainted with noise. By taking
multiple measurements this error can be reduced.

It is also possible that the target geometry is changing over longer periods of time, for
example by rough treatment of the users.

So the model of the target will always be tainted with errors. The accuracy prediction
technique presented by Davis et al. [15] takes care of the uncertainty in the model, whereas
the accuracy prediction methods shown in this thesis are assuming that the model is known
exactly.

Intrinsic Camera Parameters

The intrinsic camera parameters referred in section 3.5.1 are estimated with photogrammet-
ric calibrations methods. In general the manufacturers of high precision cameras do a cal-
ibration in their factory, but the parameters are varying during usage [4]. And especially
when using off-the-shelf cameras the calibration becomes a major issue, as the lenses of such
cameras are usually of poor quality.
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If the calibration of the intrinsic camera parameters is not done exactly, the projection of
the feature points will be tainted with errors. When for example the focal length is calibrated
falsely, positions on the image plane will be treated with a false scaling and so the distance
of a rigid object tracked with a monocular system will be estimated falsely. This can be seen
in figure 4.5(a), which shows the distance estimation with a false focal length.
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Errors in 3D 
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Figure 4.5: In 4.5(a) the wrong depth estimation caused by false focal length can be seen.
The abscissae address the object’s size on the image plane and the ordinate cor-
responds to the estimated distance. The middle black curve shows the depth
estimation with the correct focal length of f = 3.5mm, the upper green curve
shows the estimation with f = 4.0mm and the lower red curve corresponds to a
focal length of f = 3.0mm; In 4.5(b) shows the negative effect of the noise on the
image plane which causes errors in triangulation [46]

As the calibration of the intrinsic parameters has not to be done often, it is recommended
to do the calibration with high precision.

4.1.2 Random Noise

In contrast to systematic errors the errors caused by random noise, also called jitter, are not
repeatable, which means that when taking multiple measurements the results will differ in
each measurement. Noise in sensor input is inevitable with any measurement system [9]. In
sense of tracking this will cause randomly changing gray values on the image plane, which
then causes errors in estimation of the 2D position of feature which then again causes errors
when solving the 3D-to-3D or the 2D-to-3D pose estimation problem. Figure 4.5(b) shows
this effect of wrong 2D positions when triangulating a feature point, it can also be seen
that the triangulation error gets greater with growing distance between the feature and the
image plane. The intersecting noisy lines-of-sight are forming a deltoid and restricting the
estimated 3D position within the deltoid boundaries. With growing distance also the deltoid
grows, which results in a greater error of the triangulated position [46]. This model can also
explain the negative effect of small baselines in depth estimation. If the baseline gets smaller
the deltoid grows in length which results in a greater uncertainty.

Noise can not be corrected for example with calibration or other techniques. It would be
possible to filter out noise but this would lead to delays in the tracking process and therefore
to greater dynamic errors when objects are moving.
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4 Errors And Accuracy

4.2 Representation of Accuracy

As stated earlier, pose accuracy describes how accurate a object can be tracked with posi-
tion and orientation. To quantify the accuracy a mathematical description has to be found,
which has to consider the biased and jitter errors. The following approach is based on the
error description of Davis et al. in [15]. Let Terr be the translational part of the pose p ∈ R6

including all kind of errors and Rerr the rotational part represented by a matrix. T and R are
describing the “true” position and rotation and ∆T and ∆R are describing the errors. So it
can be written

Terr = ∆T + T

Rerr = ∆RR ,
(4.6)

The errors of the pose ∆T and ∆R, which can be divided into the two classes, biased and
jitter errors, so the complete pose including both errors can be written as

Terr = ∆Tjitter +

Tbias︷ ︸︸ ︷
∆Tbiased + T

Rerr = ∆Rjitter ∆RbiasedR︸ ︷︷ ︸
Rbias

.
(4.7)

Now the errors are formally separately described, but this allows only to describe an error
of a single measurement.

4.2.1 Multi Dimensional Normal Distribution

When repeating a measurement, the biased errors will remain the same, just as defined, but
the jitter errors will differ in each measurement. By taking many measurements the results
would be spreading around the true pose including the biased error. The true pose tainted
with the biased error is also also called the biased pose.

By interpreting the error in pose measurement as a six-dimensional normally distributed
random variable, the mean µp ∈ R6 would represent the biased error and a covariance matrix
Σp ∈ R6×6 would describe the jitter errors. Because it not easy to illustrate this in all six
dimensions, the problem has been restricted to two dimensions for illustration purposes,
so let X a two dimensional random variable normally distributed with X ∼ N(µ,Σ). In
Figure 4.6(a) a probability density of X can be seen. The peak in the plot represents the
biased pose, which is equivalently to the mean. In figure 4.6(b) a set of 1000 sample events
of X is plotted. The origin, representing the true pose, is plotted as a red cross, the green
cross is representing the biased pose, the difference vector represents the biased error and
the difference vectors from the plotted points to the biased pose are standing for the jitter
errors.

Back to the real six-dimensional case, it can be stated that error variable P representing
the error in pose measurement is normally distributed as follows
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(a)

True position

Biased Error

Biased Position

Jitter Error

(b)

Figure 4.6: Two dimensional normal distribution with mean µ and covariance matrix Σ; In
figure 4.6(a) the plot of density function, which describes the probability for ap-
pearance of a specific point can be seen. The peak represents the biased position;
Figure 4.6(b) shows the plot of normal distributed points, which are arranged
around the biased position.

p ∼ N(µp,Σp) . (4.8)

This model is not restricted for only pose accuracy, but it can also be used for position and
rotation separately or for any kind of measurements.

The advantage of this accuracy representation is mainly the possibility of describing un-
isotropic jointly distributed errors, which is generally the case, and the possibility to use the
covariance propagation rules. So this kind of accuracy representation is used in this thesis.

4.2.2 Root Mean Square

This section is about root-mean-square, or shortly rms. It will be shown how the rms is defined
and how it can be used to represent the accuracy in the sense of tracking. The relationship
between the rms and the representation of errors with a multidimensional normal distribu-
tion will be derived.

Definition

The rms is a statistical measure of the magnitude of a varying quantity. In (4.9) the definition
of the RMS can be seen.
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xrms =

√√√√ 1
N

N∑
i=1

x2
i =

√
x2

1 + x2
2 + · · ·+ x2

N

N
. (4.9)

If the standard deviation σx and the mean x̄ of the measured values xi are known, the rms
can be calculated with

x2
rms = x̄2 + σ2

x . (4.10)

The following proof shows the correctness of (4.10):

x̄2 + σ2
x = x̄2 +

1
N

N∑
i=1

(xi − x̄)2

= x̄2 +
1
N

N∑
i=1

(x2
i + x̄2 − 2xix̄)

= 2x̄2 +
1
N

N∑
i=1

x2
i −

2
N

x̄

N∑
i=1

xi

= 2x̄2 + x2
rms − 2x̄2

= x2
rms

(4.11)

Representing the error with the root mean square is a simple and intuitive and therefore a
common way.

Relation between Rms and Normal Distribution

The rms of a multi dimensional random variable with known distribution X ∼ N(µ,Σ) can
be calculated from the distribution parameters.

As known, the variances Var(Xi) along the principal axes of a covariance matrix are iden-
tical with the eigenvalues of the covariance matrix Σ. The formula for calculating the rms
with mean µ and standard deviation σ can also be written with variance

rms2
i = µ2

i + σ2
i = µ2

i + Var(Xi) . (4.12)

As mentioned before, the sum of eigenvalues of a matrix Σ is the same as the trace tr(Σ),
so it can be written
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rms2 =
n∑

i=1

rms2
i =

n∑
i=1

(σ2
i + µ2

i ) =
n∑

i=1

σ2
i + ‖µ‖2

=
n∑

i=1

Var(Xi) + ‖µ‖2

= tr(Σ) + ‖µ2‖ [30].

(4.13)

Sometimes it is also possible interpreting a given rms as a multidimensional random vari-
able, but in general the rms error includes both mean and standard deviation in a single
scalar value and thus it is not possible to separate these two statistical moments. By assum-
ing that the rms error is not biased, µ = 0, the sum of the standard deviations along the
principal axes is known. By knowing only the sum of σi it is again impossible to distinguish
the single deviations, and so it is assumed that all standard deviations σi are of the same size

rms2
µ=0 =

n∑
i=1

σ2
i =

n∑
i=1

σ2 = nσ2

⇔ σ2 =
1
n

rms2
µ=0 .

. (4.14)

This leads to a isotropic independent normal distributed random variable X ∼ N(µ,Σ)
with Σ = diag(σ2, σ2, . . . , σ2︸ ︷︷ ︸

n times

):

X ∼ N(0,
1
n

rms2
µ=0 0

. . .
0 rms2

µ=0

) (4.15)

Calculation of rms in n dimensions

There is no clear definition how to determine the rms of a given data set. A simple approach
would be to calculate the arithmetic mean µ ∈ Rn and the standard deviations σ1, . . . , σn

along the axes of the coordinate frame, which corresponds to an independent distribution
X ∼ Nn(µ,Σ) with Σ = diag(σ1, . . . , σn). The total rms can then be calculated with

rms2 =
n∑

i=1

rms2
i =

n∑
i=1

(σ2
i + µ2

i ) =
n∑

i=1

σ2
i + ‖µ‖2

⇔ rms =

√√√√ n∑
i=1

σ2
i + ‖µ‖2 .

(4.16)

The two methods of rms determination lead to different rms values. The simple approach
estimates the rms too big because it does not consider the joint distribution of the data. An
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Figure 4.7: Difference of rms calculated along the coordinate axes and along the principal
axes

example for the difference between the simple method and the one considering the principal
components can be seen in figure 4.7, where the red lines showing the simple approach
and the green line the advanced. So the second approach, which uses covariance matrix, is
more precise but the calculation of the covariance matrix needs more complexity than just
calculating the standard deviations along the coordinate axes.

Using the rms for representing errors is much more intuitive for the users, because it is
measured in the same unit as the measured data and there is only one value to take care
of. Reducing the error to one single number implies that errors are represented as an in-
dependent isotropic distribution and that the mean and the standard deviation can not be
separated. Representing errors with a normal distribution in n dimension is describing the
errors more precisely, but a covariance matrix is harder to be interpreted by the user.

Another way to calculate the rms error considers the principal components of the dataset
in n dimensions. This can be achieved by computing the covariance matrix and the mean of
the data set, then a normal distribution in n dimensions is given, which allows to determine
the rms with eq. (4.13).
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5 Accuracy of Optical Tracking Systems

In this chapter the theoretical accuracy of optical tracking systems will be discovered.

The chapter is divided into two sections which address the two main classes of tracking
systems. The first part is about a mathematical framework for predicting the accuracy of n-
ocular tracking systems which use more than one camera to track spatial positions. This kind
of system is most common in eg. augmented reality and photogrammetric measurement
systems as it is providing higher accuracy and a greater working volume than a monocular
system. The accuracy framework for n-ocular tracking systems considers errors caused by
noise while other types of errors such as biased or dynamic errors are not regarded. Some
systematic errors like subpixel accuracy (cf. 4.1.1) are highly influenced by random noise, so
these kind of errors can also be considered.

In the second part a framework for predicting the pose estimation accuracy of monocular
systems is presented which can predict the pose accuracy of a target consisting of multiple
features. As this model uses the same mathematical methods as the framework for n-ocular
systems, also only noise errors are considered.

5.1 N-Ocular System Detecting Single Feature Point

N-ocular tracking systems use multiple cameras for tracking. They locate the projections of
the features on the image plane and then determine the 3D position by triangulation.

As mentioned in section 2.2 optical trackers use usually artificial spherical markers or
LEDs to ease the process of finding and estimating the position of the features in the taken
picture. But other kinds of features and even natural features can also provide feature points;
for instance two edges are intersecting in one single point; then this feature point could be
triangulated to get a spatial position of the point.

When the picture is taken by the camera, the features have to be segmented, identified and
their positions on the image plane have to be determined. As the measurements will always
be tainted with noise the rays used for triangulation will in general not meet each other
(cf. fig. 5.1), this happens of course also if using more then two cameras for the triangulation
where the triangulation problem is over determined. The triangulation problem of 3D spatial
positions with noisy 2D positions can be formulated as a least-square minimization problem.
Solutions for this problem can be found in [22, 23]. It is easy to consider that the triangulation
is getting the more precisely the more cameras are used. The distances of two cameras is
termed baseline. The baseline is also strongly influencing the accuracy triangulating a feature
point; with increasing baseline the accuracy is also increasing [25].

By rigidly combining multiple features to a marker target the full six-degree-of-freedom
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Centroid of Marker

Positional Error

Figure 5.1: Triangulation and Resulting Errors

(DoF) pose of the target can be determined, when the geometric relation of the single fea-
tures is known. This 3D-to-3D pose estimation – also called absolute orientation problem – can
be done if there are at least three point correspondences. Let {pi} ∈ R3 be the known posi-
tions of the marker target and {qi} ∈ R3 the measure positions. The goal is to find the pose
of the target with respect to the sensor or another fixed coordinate system. Because the mea-
surement and the topology of the marker target are always tainted with noise there will be
in general no exact mapping found that brings the two sets qi and pi in a exact relationship,
so some kind of least-square solution has to be found. There are many algorithms to solve
that problem. Horn presented in [27] a solution which delivers the positional offset, a scaling
factor and an orientation in quaternion form. Other solutions are developed for instance by
Haralick et al. in [21] and by Zhengyan et al. in [64]. Figure 5.2 is showing the function of a
n-ocular tracking in principle.

Beside the higher accuracy [24] of n-ocular tracking systems there are more advantages, for
example the possibility of occlusions is decreasing with increasing amount of cameras [13].
Occlusions are happening if the user or other objects are obstructing the line-of-sight of one
ore more cameras. Another advantage is that the working volume can be increased by com-
bining more cameras [12].

The drawbacks of an n-ocular system for instance are that the poses of the cameras have
to be carefully determined via room calibration, because the poses are needed for a precise
triangulation. And as most commercially available n-ocular tracking systems using infrared
light conditions to locate the features on the image plane, the technical effort is greater in
contrast to a monocular system. Each camera needs to illuminate the working volume with
its own flash. As only one flash should illuminate the scene at the same time the cameras
and flashes have to be synchronized; if more than one flash is active, the accuracy detecting
the markers on the image plane is decreasing as subpixel algorithms assuming the brightest
spot in the middle of the retro-reflective feature.
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Figure 5.2: N-ocular optical tracking
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Sensor elements 640× 480
Chip size 4.87mm ×3.67 mm
Pixel size 7.401µm× 7.399µm
Focal length 3.5 mm

Table 5.1: Specification of ARTrack1 Camera from A.R.T. Germany

5.1.1 Survey of N-Ocular Tracking Systems

There are several commercial n-ocular tracking systems available. Most of them using op-
tical artificial features which are also called optical landmarks, optical beacons or markers [8].
Passive markers are illuminated with an infrared light source in contrast to active markers
which are emitting infrared light by itself. The usage of the infrared spectrum makes the
markers stand out against the background.

A comprehensive overview of available commercial tracking systems is presented in [44].
The most common products will be introduced now.

Advanced Realtime Tracking GmbH The A.R.T.1 System consists of up to six precision
cameras working in the near infrared light spectrum and the tracking software DTack.
The system uses passive retro-reflective or active LED markers to provide 3DoF for
single feature points and 6DoF for rigid bodies. The maximum frame rate is 60Hz and
up to 20 rigid bodies can be tracked. Table 5.1 shows the specifications of an ARTtrack1
tracking camera manufactured by A.R.T..

Northern Digital Inc. Northern Digital2 produces two popular tracking systems: Optotrak
and Polaris.

The Optotrak system uses synchronized infrared LED markers which are tracked by
three infrared cameras mounted on a rigid base. The tracking software delivers spatial
position, angles, moments and rotation. The update rate for tracking spatial positions
of three markers is up to 750Hz and for tracking the poses of three markers up to
145Hz.

The Polaris tracking system is available in a passive and a passive/active configura-
tion. Both systems use a stereo rig with frame rate up to 60 Hz. The hybrid system can
track up to 12 targets and the passive system up to 9 targets simultaneously.

NaturalPoint NaturalPoint3 provides Optitrack FLEX3 cameras. The cameras are working
in the near infrared spectrum with a frame rate of 120Hz and a resolution of 355× 288
pixels. For developers NaturalPoint provides a software development kit (SDK).

5.1.2 Derivation of Covariance Formulas

In the following the 3D covariance Σ~p of the detection of a single marker ball at position ~p in
a given setup will be estimated. It is assumed for now that the intrinsic and extrinsic camera

1Advanced Realtime Tracking GmbH (A.R.T.): http://www.ar-tracking.de/
2Northern Digital: http://www.ndigital.com
3NaturalPoint: http://www.naturalpoint.com
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parameters are known exactly and no other systematic errors are occurring, so only noisy
errors are present. Further it is assumed that the covariance matrix Σ~u ∈ R2×2 for estimating
the 2D position ~u on the image plane is known. The covariance matrix Σ~u can be different
for each camera.

The camera projection function assuming a pinhole camera model is in homogeneous co-
ordinates

ρ

 u
v
1

 = KT~x

where ρ is the normalization factor, i.e. the inverse of the third row of the camera matrix
equation and K are the intrinsic and T the extrinsic camera parameters.

When using an n-ocular stereo system detecting the same point, the triangulation is given
by a set of nonlinear camera equations p:

p : R3 → R2n, ~x 7→ p(~x) =

 ~u1
...

~un

 =


1
ρ1

K1T1~x
...

1
ρn

KnTn~x

 (5.1)

as the projection function, with Ki and Ti being the respective parameters of the i-th camera.
So the 3D position is projected onto the image plane of all n involved cameras.

The position estimation covariance from each camera is known and the covariance of the
3D position ~x is desired, so the backward propagation formula has to be applied. Therefore
the Jacobian of p with respect to ~x is needed

Jp =
∂ p
∂x

|~x ∈ R2n×3 . (5.2)

The Jacobian Jp then is applied to the backward propagation formula (3.41)

Σx =

Jp
t

Σu1 0
. . .

0 Σun


−1

Jp

 ‡ . (5.3)

With this formulas the 3D position estimation covariance Σx can be calculated for an arbi-
trary position in the working volume.

The resulting equations are analytically computed using a computer algebra system and
are then evaluated for each position in space.

Figure 5.3 shows a visualization of the error covariances in a two-camera setup. For this
calculation an isotropic standard deviation of 1

115 pixel on the image plane in each direction
is assumed; the cameras have a 50cm baseline and a focal length of 3.5mm. In section 5.1.3
the estimation of this covariance will be shown.

For real world setups like the one presented here, the field of view of the cameras is con-
sidered and only that cameras are used, which can see the point for the error estimation [12].
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Figure 5.3: Error Covariances for tracking a single marker ball in a two-camera setup (Mag-
nified by factor 100 for visualization)

5.1.3 Experimental Estimation of Errors

In this section a series of experiments will be presented, that were conducted to validate
the model and to experimentally get an estimate of the covariance on the image plane of a
specific optical tracking system.

The error on the image plane has mainly two sources, image noise and artefacts from the
subpixel algorithms used for the detection of the marker balls in the camera image.

Image Noise

To estimate the error realistically from image noise, retro-reflective marker balls are placed as
features in a regular grid on a table in the tracking volume. Both the cameras and the markers
on the table are fixed throughout the experiment. The measured locations of the features in
space are captured for several minutes at 60 Hz resulting in a total of 71553 sample points for
each feature. A small baseline of about 20 cm is used to emphasize the effects in the images,
see figure 5.4 (error for visualization exaggerated by a factor 50)

The covariance for each single feature point is calculated from this dataset as seen in fig-
ure 5.5. The covariance is displayed as an ellipse at confidence level 75% around the centroid.
The particular regular pattern in the 3D reconstruction of the point results from discretiza-
tion in the camera coordinate system. However, the general shape of the measurements in
space is in fact approximated by the covariance ellipsoid.

Now the actual error covariance on the image plane is estimated using the experimental
measurements for a single feature point and apply the model to predict the parameters for
the other fifteen points; the prediction is then compared with the measurements of these
points.

To estimate the parameters, the model with symbolic parameters for the covariances on
the image plane is evaluated and use Newton’s method to fit the parameters to the mea-
surements. Figure 5.6 shows the measured errors in red together with the computed errors
in black first horizontally on the grid (x-z-plane) and then parallel to the image plane (y-
z-plane, projected onto the grid). The parameter estimation was done for the lower most
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Figure 5.4: Error in position estimation for a regular grid (side & top view of the setup)
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Figure 5.5: Error in position estimation together with estimated covariance for a single
marker from figure 5.4

left point and then applied to all other points. The predicted values fit the measured values
quite well. In the experiment, a standard deviation of 1

115 pixel on the image plane for the
detection of the center of the features was estimated.

Image Noise and Subpixel Algorithm Noise

To estimate the accuracy of optical coordinate measurement systems, VDI/VDE 2634/1 [52]
recommends to measure differences between single features in several directions. This mea-
surement is extended with a rotating two-ball target (cf. figure 5.7(a)) for which the distance
between the balls is measured.

Applying the theoretical error prediction model to this kind of test, it is necessary to build
the Jacobian Jd from the distance function,

Jd =
∂

∂(~x1, ~x2)

√
(~x1 − ~x2)t(~x1 − ~x2)

which is used to propagate the two 3D covariances Σ~x1
and Σ~x2

to a one-dimensional vari-
ance σd of the distance with
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Figure 5.6: Measured errors (red dotted line) vs. computed errors (black line)

σd = Jd
t

(
Σp1 0
0 Σp2

)
Jd

The variance σd is then compared with the measurements, as shown in figure 5.7(b). The
horizontal axis shows the angle of the two balls and the vertical axis the respective measured
distance.

In the errors first a large sinusoidal error in the angular data is denoted. This error comes
from a wrong scaling of the three room axes (cf. section 4.1.1). For the analysis that error was
removed manually from the data by assuming independent scaling on the three axes.

The remaining error consists of a random part coming from system noise as analyzed
above, and an additional irregular error coming from subpixel effects in the 2D detection
algorithms. Although these errors are in fact systematic, it is assumed for now that they
can be approximated with a Gaussian distribution and they can be modeled as a zero-mean
noise on the image plane.

Figure 5.8 shows a plot of the predicted one-dimensional standard deviation of the error
covariance for the respective angle in green together with the distance measurements, al-
ready corrected for the wrong room calibration. While the corrected error obviously is not
gaussian, the prediction fits the measurements still well.

5.2 Monocular Tracking Systems

Monocular tracking systems are operating with only one sensor. Due to the lack of the
second camera it is not possible to track a single spatial point because no triangulation is
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d
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Figure 5.7: Measuring the distance of a rotating two-ball target of rotating balls which are
rigidly connected. Figure (a) shows the setup of this experiment; Figure (b) shows
the error in length estimation for a rotating two-ball target, the blue line shows
assumed room calibration error

possible. By combining more than one feature point rigidly to a marker target the pose of
the marker target can be determined if the model of the tracked target is known.

There are two common approaches for monocular tracking, which differ only in the way
how the point feature points on the image plane are estimated. The first group of tracking
systems using planar targets, which are in general flat squares with identifiable corners and
cameras which operate with visible light. By knowing the geometrical model it is possible to
obtain all six spatial constraints, by the correspondences of the four points (Mi ↔ mi) [35].
The other common approach is to use an optical tracking system operating with infrared
light and active or passive markers, like described in section 2.2. The presented model for
theoretical accuracy of monocular tracking systems does not depend on a special system, if
the system can estimate 2D positions of the projected feature points.

Some example of tracking systems using planar targets are:

• ArToolKit marker system [31].

• Institut Graphische Datenverarbeitung marker system4

• Siemens Corporate Research (SCR) marker system [63]

• Hoffman marker system used by SCR and Framatome ANP [3]

• Sony Computer Science Laboratory [43]

The pose estimation of planar targets can be done as described in [35]: First the image
taken from the camera is thresholded, then regions of connected black pixels are searched.

4ARVIKA: http://www.arvika.de/www/
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Figure 5.8: Measured errors corrected for room scaling (blue dots) vs. predicted error stan-
dard deviation (green line)

Figure 5.9: Examples for ARToolKit markers

That regions which have the shape of a square are assumed to be a target. By intersecting
the estimated edges, the positions of the corners on the image plane can be calculated with
subpixel accuracy. The position of the edges can then be treated as four feature points, which
is the same situation as when tracking four retro-reflective markers for example with an
ARTtrack1 camera. The four feature points allow the pose estimation of the target as shown
in [23].

Tracking systems using natural lightning conditions are vulnerable to bad influences like
direct sunlight. For example it can happen that the maker target is in the field of view of the
camera but it can not be detected in the image. From now on it is assumed that a target can
always be recognized.

Zhang et al. [62] did a comparative study of tracking systems using planar targets. Rep-
resentatively for the other tracking systems the specific features of the ARToolKit will be
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shown. It’s target consists of a thick black border on a white background (cf. fig. 5.9). This
increases the contrast and makes it easier to identify the edges, which are used to determine
the feature points of the marker. For using more than one target in one tracking volume it
is necessary to place a unique symbol or pattern on the target (see fig. 5.9). Owen et al. [41]
presented a design for planar arranged feature points, based on a black square, using an
image constructed from the discrete cosine transform (DCT) basis function as the identifica-
tion patten. The resulting targets are optimized to be easy identified and to provide a high
and balanced accuracy. For example Malzebin et al. measured in their paper [38] that the
position estimation depends strongly upon the orientation of the marker. The approach of
Owen tries to minimize that kind of tracking error.

5.2.1 Theoretical Accuracy

By looking at the theoretical accuracy the systematic (biased) errors shown in section 4.1.1
will not be considered, because they can be minimized by improving the environment con-
ditions, the underlying algorithms and by diligent calibration.

In the model it is assumed that all the feature points or the target can be well recognized
and that the 2D position estimation is unbiased but not noise free. So the 2D errors in posi-
tion estimation can be interpreted as a two dimensional jointly gaussian distributed variable
with zero-mean. A covariance matrix in two dimensions then describes the un-isotropic
jointly normal distribution. Furthermore it is assumed that the topology of the target is
known exactly and that the target is fixed in position and orientation and just the camera
is moving on a hemisphere heading towards the centroid of the target. This approach is
common for analyzing the accuracy of monocular tracking system; it is used for instance by
Malzebin et al. [38] and Abawi et al. [1].
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Figure 5.10: Setup for analyzing the theoretical accuracy of a planar target such as an AR-
ToolKit marker (cf. fig (a)) and of a marker based target (cf. fig (b))

Let the Cα,β,t be the extrinsic camera parameter matrix
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Cα,β,r =


0

Rα,β r
0

0 1

 , (5.4)

where Rα,β ∈ R3×3 describes the orientation of the camera depending on the rotation
angles α,β and the distance r. So the target is fixed and the camera is moving on a sphere
with diameter r always looking towards the target (cf. fig. 5.10).

If u ∈ R3 is a spatial point in the world coordinate frame then the multiplication of u
with the inverse of Cα,β,r results in the corresponding point v ∈ R3 in the camera coordinate
frame (cf. eq. (5.5)).

xcam = C−1
α,β,rxworld (5.5)

To project the feature points onto the image plane the pinhole camera model is used. The
projection pf(v) is shown in equation (5.6) where f represents the focal length of the camera.

pf : R3 → R2, xcam 7→ pf (v) =
f

vy
(vx, vz)t (5.6)

The complete projection g : R3 → R2 can then be written as

g(u) := (pf ◦C−1
α,β,r)(u) . (5.7)

Assuming the target consists of n feature points (u1, . . . , un) where the centroid coincides
with the origin of the world coordinate frame then these features are projected to the points
(w1, . . . , wn) on the image plane by the function f : R3n → R2n

fα,β,r(u1, . . . , un) := (gx(v1), gy(v1), . . . , gx(vn), gy(vn)) (5.8)

The covariance for estimating the position of projected feature points on the image plane
is assumed to be known and the covariance of the target pose is desired, so the backward
propagation formula has to be applied (cf. section 3.4.2). Estimating the covariance for de-
tecting a feature point on the image plane can be experimentally determined [53]. Because f
is not linear, the Jacobian of f has to be calculated and evaluated at the centroid of the target.

Jf |ū=
∂ fα,β,r

∂(α, β, f)
∈ R3×2n (5.9)

If Σwi ∈ R2×2 is the covariance for detecting the position of a feature point on the image
plane then the covariance for estimating the distance r and the angles α and β is given by

Σα,β,r = (J t
f

Σw1

. . .
Σwn


−1

Jf)−1 ∈ R3×3 (5.10)
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Now the covariance of the angles α, β and the distance r can be predicted for any position
of the camera.

5.2.2 Visualization of Uncertainty

In this section three different targets are analyzed with the presented model. The first target
is a coplanar target with four feature points (cf. fig. 5.11(a)), comparable to an ARToolKit
marker, the second target is like the first but with an additional feature point in the centroid
(cf. fig. 5.11(b)) and the third target is a non-coplanar target where the base coincides with
the first target.

Camera moving along a Path

To visualize the accuracy the camera is moving on a path only changing the angle β ∈ [−π
2 , π

2 ]
leaving α fixed to zero. The distance from the camera to the centroid of the target is set to
r = 60cm. Figure 5.10 is illustrating the chosen path. Along this path the uncertainties for
detecting the three parameters α, β and r are estimated. The uncertainty for detecting a
feature point on the image plane is set to the covariance matrix shown in eq. (5.11). These
values are estimated with a two-camera setup with retro-reflective markers therefore the
prediction of accuracy will be far too optimistic. So the uncertainties presented here can
not be taken literally. For quantitative predictions realistic covariances have to be estimated
experimentally.

Σwi =
(

4.14 ∗ 10−15m2 0
0 4.14 ∗ 10−15m2

)
(5.11)

5cm

5cm

(a)

5cm

5cm

(b)

5 cm

5cm

5cm

(c)

Figure 5.11: Figure (a) shows a coplanar target with four feature points which corresponds to
an ARToolKit marker (target1), figure (b) shows a coplanar target with five fea-
ture points (target2) and figure (c) shows a non-coplanar target with five feature
points (target3)

The plots in figure 5.12 are showing the rotational uncertainty and figure 5.13 the uncer-
tainty for estimating the distance.
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Rotational Uncertainty The accuracy for detecting the orientation is worst for all three tar-
gets if the camera is heading perpendicular to the target; this is caused by minimal
changes in the projected geometry. The accuracy grows for all three targets as the cam-
era views more angular to the target. Similar results are reported in [53, 1].

The non-coplanar design of target3 results in a significant greater accuracy
(cf. fig. 5.12(c)) for detecting the orientation as the coplanar designs. The greater ac-
curacy is presumably caused by the different distance between the feature at the apex
of the pyramid and the camera against the distances between the coplanar features
and the camera. As the camera is rotating this projected feature at the apex changes
position on the image plane differently as the other features which leads to a better
orientation estimation.

The better rotational accuracy of target3 is canceled out if the camera is viewing with
about 90 degree to the target, but at this angle a real target would not be recognized
anymore by the tracking system.

Vogt et al. [53] are also reporting the better performance of non-coplanar against copla-
nar targets in a monocular tracking system.
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Figure 5.12: The figures (a), (b) and (c) showing the rotational uncertainty of target1, target2
and target3; the abscissae address the angle β and the ordinates correspond to
the rotational rms error

Distance Uncertainty The accuracy is best if the principal axis of the camera is perpen-
dicular to the target for all three analyzed targets. In contrast to n-occular systems
an additional feature point in the centrois is not increasing the positional accuracy
(cf. fig.5.13(a) and fig. 5.13(b)). But as the plots are showing the errors in distance esti-
mation, it is easy to accept that the additional feature in the centroid does not change
geometrical attributes, as the distance between this feature and the camera is constant.

Vogt et al. are also reporting in [53] that the distance estimation accuracy is increased
significantly when using non-coplanar targets.
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Figure 5.13: The figures (a), (b) and (c) showing the uncertainty in detecting the distance to
target1, target2 and target3; the abscissae address the angle β and the ordinates
correspond to the standard deviation of errors in distance estimation
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Figure 5.14: 3D plots showing qualitative uncertainties with respect to the angles α, β at fixed
distance r; figure (a) is visualizing the rms error of estimating the distance to the
target and figure (b) shows the rms error of estimating the orientation

55



5 Accuracy of Optical Tracking Systems

Camera moving on Hemisphere

The next experiment is showing the rms errors of detecting the distance and the orienta-
tion from several sample positions on the hemisphere with radius r = 0.6m. Figure 5.14 is
showing the predicted accuracies for target1.

Rotational Uncertainty The rotational uncertainty in both angles is maximal if the camera
is viewing perpendicular to the target (cf. fig. 5.14(b)). The symmetry of the rotational
errors is caused by the symmetry of the target.

Distance Uncertainty The distance uncertainty of target1 can be seen in 5.14(a) which is
showing an unexpected plot. In the origin – the camera is looking then perpendicularly
to the target – the uncertainty is minimal which is equal to the previous results. The
plot shows also that the uncertainty in distance is greater when the camera is viewing
perpendicularly to the edges of the target as when viewing angularly to the target. This
is again caused by the different projection of the feature points on the image plane.
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6 Accuracy of Marker Targets

In this chapter it will be shown how to predict the pose accuracy of optical marker targets
based on the accuracy of detecting the spatial position of a single marker ball.

6.1 Basics

A marker target consists of at least three [27] feature points which are combined rigidly
(cf. figure 2.2(a)). With help of a n-ocular optical tracking system the spatial positions of
these marker balls can be measured and if the geometrical model of the target is given, the
pose of the whole target can be calculated. The process of finding this relationship is called
3D-to-3D pose estimation or absolute orientation problem. Solutions for this problem can be
found in eg. [27] and [64]

But as the spatial position measurement is always erroneous, the pose estimation will
also be erroneous. The idea is now to predict the pose accuracy of the whole target based
upon the geometrical model and the known spatial position accuracy of the single feature
points. Therefore a model is developed which takes the covariance matrices representing the
accuracy of each spatial position measurement and delivers a covariance matrix representing
the accuracy of the pose of the whole target. Other accuracy prediction models like [19]
and [15] are only using one single rms for uncertainty in spatial position estimation, which
corresponds to a isotropic error distribution.

Furthermore the covariance forward propagation is used to calculate the accuracy at spe-
cial points of interest instead of in the centroid which is necessary for many applications.

Without loss of generality it is considered that the marker target consists of feature points
{qk} in a local coordinate system with the origin in the centroid of the feature points, and
their respective counterparts {pk} in the tracker coordinate system, which are additively
disturbed by zero-mean uncorrelated errors {∆pk} per coordinate.

6.2 Uncertainty in the Centroid

From the points {qk} and {pk} the pose of the target is estimated by solving the 3D-3D Pose
Estimation problem using any kind of algorithm.

This estimation leads to a homogeneous transformation H which maps

pk + ∆pk = Hqk
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with some error ∆pk for every k. From the error function f(p, q) = Hq − p the Jacobian is
calculated

Jf(q) =
∂ f(p, q)

∂~x

∣∣∣∣
~x=~0

(6.1)

with respect to the 6D pose ~x = (x, y, z, α, β, γ)t. For the representation of rotation fixed
Z-Y-X euler angles are used (cf. section 3.1.2).

Without loss of generality it can be assumed that the estimated pose H is the identity,
i.e. zero translation and rotation — the coordinate system can be transformed in such way
that all coordinates pi and the covariances Σpi are given in the target coordinate system —
then the Jacobian is evaluated at the pose ~0,

Jf (q) =


1 0 0 0 qz −qy

0 1 0 −qz 0 qx

0 0 1 qy −qx 0
0 0 0 0 0 0


This Jacobian maps the 6D pose error ∆x of the target to the respective 3D feature errors

∆P =

 ∆p1
...

∆pn

 =

 Jf (q1)
...

Jf (qn)

∆x = M∆x

As this system of equations is over determined it can not be solved directly and so the pseu-
doinverse (cf. section 3.4.2) is used to get a least square solution for ∆x

∆x = M ‡∆P . (6.2)

Using the linear forward propagation formula 3.35 leads to

Σ~c = E(∆x∆xt) = E((M ‡∆P )(M ‡∆p)t)

= E((M ‡∆P )(∆P tM ‡t))

= M ‡ E(∆P∆P t)M ‡t

= M ‡

Σp1

. . .
Σpn

 M ‡t ∈ R6×6

(6.3)

for the covariance Σ~c in the centroid of the marker target, where Σpi are the covariance
matrices in the target coordinate system. The upper-left 3×3 matrix represents the positional
uncertainty and the lower-right 3 × 3 matrix the rotational uncertainty. The upper-right
and lower-left 3× 3 matrices represent the correlation between the positional and rotational
uncertainty which is in general small and negligible.
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6.3 Point Of Interest

The equation (6.3) can only predict the accuracy in the centroid of the target, but in most
applications it is insufficient to know the target uncertainty in the centroid. A surgeon for
example uses a point device to mark a point on the patient’s body, then the uncertainty
is desired at the tip of device. Figure 6.1(a) showing the accuracy of such a point device
superimposed with an image of the device and figure 6.1(a) shows a drawing of a point
device where the features are aligned in a row, which is only providing two DoF in rotation.

(a) (b)

Figure 6.1: Figure (a) shows a pointing device with rotational uncertainty; Figure (b) shows
the visualization of predicted positional and rotational uncertainty of a pointing
device

From this 6D covariance in the centroid the 3D error covariance Σ~p can be computed at a
point other than the centroid by applying the forward propagation formula ((3.39)). Again
the Jacobian equation 6.1 evaluated at the point of interest ~p is used.

The target registration error at the point of interest is then given by

Σ~p = JfΣ~cJf
T (6.4)

Assuming that the rotational part of the error in the centroid is independent from the
positional part, it is then easy to see that the positional error at the point of interest is equal
to the positional error at the centroid plus an positional error coming from the rotational
error [19]. As the negative influence of the rotational error on the positional error grows with
the distance to the centroid, the target should be placed as close as possible to the object to
minimize the error [24]. In the centroid the target location error is minimal [58].

6.4 Validation of the Pose Accuracy

In this section the prediction of accuracy of marker targets is validated with a Monte Carlo
simulation. Monte Carlo simulations are a common way to proof a model, for example Vogt
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et al. [53] and Hoff et al. [24] used Monte Carlo simulations to validate their models.

For the validation a spatial position detection uncertainty given by a covariance matrix
Σpos (cf. fig 6.2) is assumed equal for each marker. Then the pose accuracy Σpose of the target
consisting of the marker at positions {qi} is calculated with the formulas presented in this
chapter. Since the used computer algebra system could not create random numbers with a
realistic covariance matrix the uncertainty Σpos for detecting a single feature point had to be
scaled by a factor 1 103.

Σ =

 4.73 10−7 1.15 10−7 6.71 10−7

1.15 10−7 1.97 10−6 2.41 10−6

6.71 10−7 2.41 10−6 4.56 10−6


Figure 6.2: Assumed spatial position estimation uncertainty for a single marker

For the simulation the set of marker positions {qi} is tainted with normal distributed zero-
mean errors (∼ N(0,Σpos)) which leads to a simulated set of measurements {pi}. Then the
absolute orientation of this noisy target {pi} is calculated with the closed-form solution of
Horn [24]. The step of creating erroneous and calculating the pose is repeated several times.
Then the covariance matrix can be calculated from the set of poses gained from the simula-
tion process. The positional and rotational parts of the simulated and predicted covariance
matrices for a regular tetrahedron with edge length 10cm can be seen in figure 6.4.

 2.821 10−4 −2.720 10−6 −3.279 10−5

−2.720 10−6 2.345 10−4 −9.270 10−5

−3.279 10−5 −9.270 10−5 1.012 10−4


(a)

 2.941 10−4 −3.376 10−6 −3.365 10−5

−3.376 10−6 2.389 10−4 −9.685 10−5

−3.365 10−5 −9.685 10−5 1.028 10−4


(b)1.183 10−7 2.875 10−8 1.678 10−7

2.875 10−8 4.925 10−7 6.025 10−7

1.678 10−7 6.025 10−7 1.140 10−6


(c)

1.182 10−7 3.073 10−8 1.703 10−7

3.073 10−8 4.898 10−7 6.044 10−7

1.703 10−7 6.044 10−7 1.148 10−6


(d)

Figure 6.3: Rotational and positional uncertainty covariance matrices of a tetrahedron with
edge length of 10cm; Figure (a) and (c) showing the predicted rotational and po-
sitional accuracy; Figure (b) and (d) showing the corresponding accuracies deter-
mined with Monte Carlo simulation (100000 samples)

To validate the prediction of the target accuracy regarding to geometric layout and the
number of markers, the validation is now done for different target configurations.

6.4.1 Rotational Uncertainy

For the validation of rotational uncertainty a target with a shape of a regular tetrahedron
with feature points are mounted on the vertices and variable edge length is chosen (cf. fig-
ure 6.4(a)). This allows to validate the predicted rotational uncertainty of a target at different
sizes. As the rotational uncertainty is independent from the number of feature point [58],
the amount of feature points will not be varied.
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The plot in figure 6.4(b) shows the root mean square of the rotational uncertainty calcu-
lated with the forward propagation formula (black line) and with Monte Carlo method (red
line). Figure 6.4.1 shows the positional rms errors for some target configurations. The aver-
age difference between these two root mean square errors is ≈ 0.74%.

(a)
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Figure 6.4: Validation of the rotational accuracy is done with a target with the shape of a
regular tetrahedron with variable edge length (see fig.6.4(a)); Figure 6.4(b) shows
the plot of the rotational rms at different edge lengths. The red line represents
the rotational rms determined by Monte Carlo simulation and the black line the
predicted rms.

Edge length of regular tetrahedron
0.1 0.125 0.15 0.175 0.2 0.225 0.25

predicted rms 0.02486 0.01989 0.01657 0.0142 0.01243 0.01105 0.009943
simulated rms 0.02489 0.01987 0.01649 0.01418 0.01238 0.01102 0.009933

Table 6.1: The rms of the predicted and simulated rotational uncertainty in degrees

6.4.2 Positional Uncertainty

The positional uncertainty of a marker target is only depending on the amount of feature
points used but not on their geometrical distribution [58]. For the validation of the predicted
positional part a target is chosen where the amount of feature points can be varied. The
feature points of the target are arranged equidistant in a row, which allows to add new
feature points by and by (cf. 6.5(a)).

The plot in figure 6.5(b) shows the dependency of positional uncertainty and the amount
of features. The red line in the plot shows the rms of positional uncertainty simulated with

61



6 Accuracy of Marker Targets

Monte Carlo and the black line shows the rms of positional uncertainty predicted with the
forward propagation. Table 6.2 is showing the predicted and simulated positional rms er-
rors.

The average difference between these two errors is ≈ 0.43%, so it can be stated that there
is only a minimal difference between the simulation and the prediction.
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Figure 6.5: For the validation of the positional uncertainty a target is chosen where the mark-
ers are arranged in a row (cf. fig. 6.5(a)); The rms of the predicted positional un-
certainty (black line) and the rms of the simulated uncertainty (red line) can be
seen in figure6.5(b). This figure is showing also the decrease of uncertainty with
the increasing number of feature points.

Number of markers
1 2 3 4 5

rms predicted 1.53 10−3 1.32 10−3 1.18 10−3 1.08 10−3 1.00 10−3

rms simulated 1.54 10−3 1.31 10−3 1.19 10−3 1.07 10−3 9.92 10−4

Table 6.2: The rms of the predicted and simulated rotational uncertainty in meters

6.5 One Uncertainty for all Features

In this section the assumption that all features are detected with the same accuracy is ana-
lyzed with respect to the prediction of target accuracy.

When predicting the accuracy of a marker target the uncertainty for estimating the spatial
positions of the feature points is needed for each feature separately. Because the spatial po-
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sition estimation uncertainty is changing over the working volume all features points will
be located with different accuracy and so the spatial position estimation covariance matrix
has to be known for each feature separately. The covariance matrices can be predicted with
methods presented in section 5.1.2. As the difference of spatial position estimation uncer-
tainties is small within the radius of a typical marker target, it is valid taking the uncertainty
of one position eg. the centroid and assuming the same uncertainty for all other features. For
predicting the accuracy of a target in real time during the tracking process this simplification
is not necessary because predicting the spatial uncertainty for each marker can be done fast,
but when assessing tracking setups offline this assumption can save much computational
time.

To show that this assumption does only create only small errors, the rms of the positional
and rotational uncertainties calculated with both methods will be compared. Therefore a
setup with three cameras is chosen and the target is moving on a circular path in the middle
of the working volume (cf. 6.6(a)). Again a regular tetrahedron with edge length 10cm and
feature points at the vertices is used as target.
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Figure 6.6: The setup for validating the assumption of section 6.5 can be seen in figure (a).
The target will be moved along the path in the middle of the tracking volume; The
plot in figure (a) shows the rms of the positional uncertainty detecting a single
feature along the circular path

The plot in figure 6.6(b) shows how the rms of positional uncertainty for detecting the
position of single feature points is varying along the circular path.

In figure 6.7(a) and 6.7(c) plots of the rms errors of the positional and rotational uncertainty
can be seen, because the differences between the two estimation methods are so small, the
figures 6.7(b) and 6.7(d) are showing the plots only in the range from 290◦ to 360◦. The
two positional rms errors are nearly identical, the difference between the two rotational rms
errors is visible but still small. The mean difference of the two positional rms errors is only
about −7.28 10−9m where the mean of rms errors is about 2.34 10−5m, and the mean of the
rotational rms errors is 9.48 10−7◦ where the mean of both rotational rms errors is about
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4.67 10−4◦. So the differences between these two error estimation methods can be ignored
using a usual target.
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Figure 6.7: The rms of the positional and rotational uncertainty of a target along a circular
path. Figure (b) and (b) is showing the positional errors. Figure (c) and (d) show-
ing the rotational errors. The red dashed lines represent the rms when assuming
the same 3D accuracy for all feature points, the black lines show the rms with
separate accuracies for each feature.

6.6 Visualization of the Pose Uncertainty

As shown above, a covariance matrix can be interpreted as quadric, but as the covariance
matrix of a pose is ∈ R6×6 this would yield a quadric in six-dimensional space which is
impossible to visualize. So the covariance matrix Σp has to split up into two submatrices
∈ R3×3; One for the positional and the other for the rotational uncertainty. Equation eq. (6.5)
shows the separation.
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Σp =
(

Σpos ∗
∗ Σrot

)
(6.5)

6.6.1 Positional Uncertainty

The positional uncertainty Σpos can be visualized with a ellipsoid, as described in section 3.3.

6.6.2 Rotational Uncertainty

Visualizing the rotational uncertainty with an ellipsoid would be technically possible but it
would not be intuitive for the user at all.

One idea for visualizing the rotational uncertainty is to view how the rotational error is
affecting a single point. Let be e = (ex, ey, ez)t a point in the target coordinate frame and
Rerr depending on the euler angles (α, β, γ) an error in rotation then ẽ = Rerre would be the
point e affected by a rotational error. As the rotational error given by a covariance is nor-
mally distributed with zero-mean the forward propagation rule can be applied. Therefore
the Jacobian of mapping Rerre is needed which can be calculated as

JRerre|α,β,γ=0 =
∂Rerre

∂(α, β, γ)

∣∣∣∣
α,β,γ=0

=

 0 ez −ey

−ez 0 ex

ey −ex 0

 . (6.6)

Now the covariance forward propagation can be applied:

Σe = JRerreΣrotJ
t
Rerre (6.7)

The resulting covariance matrix Σe is of rank two. Decomposing the covariance matrix
with eigenvalue decomposition leads to a rotation matrix and a diagonal matrix of the eigen-
values λi >= 0. One and only one of these eigenvalues is then zero, because the matrix is of
rank 2. So there are two principal axes which represent an ellipse. With help of the rotation
matrix the ellipse can be rotated into the right orientation.

To enhance this visualization the ellipse could be substituted with a elliptical cone, where
the cone’s axis coincides with the vector e and the base coincides with the ellipse represented
by the covariance matrix Σe. The position of the cone is arbitrary, because the rotational error
is invariant under translational operations.

Hoff et al. suggest in [24] to visualize the rotational error along the three coordinate axes.
The visualization along three axes is useful for a non interactive presentation of the errors.
By the usage of an interactive system one single cone would be sufficient as the cone could
be rotated and therefore all errors could be visualized.
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6.6.3 Covariance along a Path

In several applications, typical movements can be identified for which the uncertainty is de-
sired at some point. To achieve this, the path of the target for the desired typical action can
be recorded with a tracking system. Then the covariances along this path can be analyzed
offline similar to the tool presented in section 7.3. Figure 6.8 shows an example of a pre-
recorded path (black) of the target centroid together with predicted covariances at discrete
locations, as well as the respective propagated covariances at the path of the point of interest
(dotted blue).

Figure 6.8: Example track of the covariance along a recorded path (black) and propagated to
the point of interest (dotted blue)

It is easy to see that the propagated covariance is quite different for poses where the ori-
entation of the target is different. While covariances in the centroid are quite similar along
the whole path, the resulting covariance at the point of interest differs substantially along
over time. This is due to the fact that the already unisotropic covariances at the centroid
get propagated again in an unisotropic way. For unfavorable constellations then the already
larger error in one direction gets augmented above average.

In the four-camera setup this happens when the line from the centroid to the tip of the
tool is vertical, i.e. orthogonal to the plane of the four cameras; in a stereocamerasystem this
would be the case with the line oriented along the optical axes of the cameras.
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7 Tools

In this chapter the developed tools will be described. The most basic tools are the methods
developed for the used computer algebra system. It provides a set of general methods to
calculate accuracies of optical tracking systems. It will be described in section 7.1.

A tool for visualizing the accuracy of a tracking volume, depending on the type of cameras
and their spatial position and orientation, is discussed in section 7.2.

In section 7.3 a tool will be presented for designing an optical marker target consisting of
multiple features. With help of this tool it is possible to study the different kinds of positional
and rotational uncertainties at design time.

7.1 Mathematica Toolbox

Mathematica is a product of the Wolfram Research, Inc. First released in 1988 it allows to
describe and solve mathematical problems in a symbol manner, in contrast to numerical
tools.

By formulating the problems of forward, backward propagation and others in a symbolic
way, allow to export the solutions to programming languages like Java, C, C++ or to numer-
ical tools. For the development of the Covariance Field Viewer (cf. sec. 7.2) this approach was
chosen.

In the next the most useful methods will be described.

Absolute Orientation Problem In this method Horn3d3d Horn’s closed-form solution for
the absolute orientation problem using quaternions [27] is implemented. It calculates
a coordinate frame transformation from a set of measured 3D positions to a given set
of model points in a least square manner.

This method can be used to calculate the rotational and positional uncertainty of a
marker target with a Monte Carlo simulation. Assuming the 3D position estimation
accuracy is known in form of a covariance matrix Σ ∈ R3×3 then the true positions pi

of the model will be tainted with errors {∆pi} (∼ N3(0,Σ)) which leads to simulated
measured positions {qi}. Using Hoff’s solution a quaternion and a translations for
mapping {qi} onto {pi} can be calculated.

Positional uncertainty of tracking a single feature The method CalcCovariance cal-
culates the accuracy of estimating a 3D position of a feature point with a n-ocular
tracking system. The accuracy is depending on the position and orientation of the
participating cameras, their focal lengths and the 2D position estimation accuracies on
the image plane. The implementation is based on the covariance backward formulas
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shown in chapter 5.1. Figure 7.1 shows a setup with three cameras; the positional un-
certainties calculated with the CalcCovariance module are plotted as ellipses. For
visualization purposes the ellipses are magnified.

Figure 7.1: 3-ocular tracking setup; the ellipses representing the spatial uncertainty of detect-
ing a single feature point.

Pose Covariance of a Marker Target The module Hoff can be used to predict the full
6DoF pose covariance matrix of a marker target consisting of multiple features with
given spatial position uncertainty. The prediction is based on the formulas presented
in chapter 6.
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7.2 Covariance Field Viewer

With the help of the Covariance Field Viewer it is possible to visualize the positional accuracy
of a n-ocular optical tracking setup.

The tracking setup is defined by the poses of the cameras, their focal length, the view
frustums and the 2D position estimation accuracies on the image plane. The spatial posi-
tion accuracy of a feature point is then calculated with the formulas presented eq. (3.41) and
chapter 5. Each point of the defined working volume is tested for the visibility of all partici-
pating cameras, so only that cameras are used for the accuracy calculation which can see the
feature.

4m

(a)

4m

4m

(b)

Figure 7.2: Camera setups used for visualizing the error for tracking a single feature point

The tool is implemented in the programing language Java and Abstract Window Toolkit
(AWK) for Java was used to build the user interface. The formulas for calculating the ac-
curacy of one, two, three or four cameras were derived in Mathematica and exported with
help of a third party Mathematica package1. The maximal amount of four cameras is not a
constraint of the design and can be extended to more cameras by exporting a new formulas
from Mathematica.

To visualize the 3×3 positional covariance it is necessary to find a suitable mapping which
maps the covariance matrix Σ to a single scalar value (f : R3×3 7→ R). Several mappings were
examined and visualized with two camera configurations which can be seen in figure 7.2.

Using the rms error for visualizing the accuracy in the working volume is fast and useful
for most applications. The other mappings are either nearly equal to the rms (volume) or
only suitable for special purposes (maximum).

RMS The root mean square is a common measurement for errors and the calculation for
covariance matrices can be done in a fast and easy way by taking the square root of the

1Mark Sofroniou: C, FORTRAN77, Maple and TeX Code Generation Package; http://library.wolfram.com/
infocenter/MathSource/60/
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trace of covariance matrix (cf. eq. 4.13). The figure 7.3 shows the resulting plots using
rms with a two and three camera setup.

(a) (b)

Figure 7.3: Rms error for tracking a single feature point in a two-camera (a) and three-
camera (a) setup

Maximum The square root of the maximal eigenvalue of the covariance matrix corresponds
to the maximal standard deviation along the principal axes. By using the maximum of
the three standard deviations only the greatest uncertainty is visualized, so this map-
ping is usefully if an application demands an upper bound for uncertainty. The plots
resulting from this mapping (cf. figure 7.4) are showing smaller uncertainties as with
other mappings because only one of three uncertainties is used for visualization.

(a) (b)

Figure 7.4: The greatest standard deviation along the principal axes is used to visualize the
error for tracking a single feature point in a two-camera (a) and three-camera (a)
setup

A simplification of this mapping would be to use just the biggest value of the covari-
ance matrix and not of the eigenvalues. The differences between these two visualiza-
tions are in general not visible.

Volume Another idea for mapping the covariance matrix onto a single scalar number is
using the volume of the ellipsoid which corresponds to the covariance matrix. The
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volume of an ellipsoid is defined as V = 4
3πabc, where a, b, c are the radii of the ellip-

soid. As the radii of the covariance ellipsoid are the square roots of the eigenvalues of
Σ the volume of the ellipsoid can be written with the eigenvalues λi as

VΣ =
4
3
π
√

λ1λ2λ3 (7.1)

(a) (b)

Figure 7.5: The volume of the covariance ellipsoid is used to visualize the error for tracking
a single feature point in a two-camera (a) and three-camera (a) setup

Instead of calculating the eigenvalues of the matrix, the volume can be calculated with
help of the matrix determinant. The determinant of a covariance matrix is only deter-
mined by the eigenvalues of the matrix Σ:

√
|Σ| =

√
|RDRt| =

√
|R||D||Rt| =

√
|D| =

√
λ1λ2λ3 (7.2)

It is easy to see that the volume of the ellipsoid can then calculated by

V =
4
3
π
√
|Σ| . (7.3)

But since the volume of the ellipsoid is a cubic measure, the cube root of the volume
has to be used to get comparable results as eg. with rms. The rms and the cube root of
the volume are only differing in a constant factor if the error is isotropically distributed.
With an isotropic error the corresponding uncertainty ellipsoid is a sphere with radius
r, then the rms is r and the cube root of the volume is (4

3π)
1
3 r. So the cube root of the

volume and the rms are only differing in a constant factor.

The mapping for using the volume to visualize the tracking accuracy can be written as

f(Σ) = (
4
3
π
√
|Σ|)

1
3 (7.4)

and the resulting images for two and three cameras can be seen in figure 7.5.

The speed of the computation was analyzed to evaluate the usability of the prediction al-
gorithms for real-time applications. For a two-camera setup, the estimation of the covariance
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of a single feature needs about 250 multiplications and 125 additions, running in about 1µs
on a standard PC; computation for a three-camera setup needs about twice as long, for a
four camera setup about four times as long. So the algorithms are fast enough to be used for
real-time applications.

7.3 Pose Uncertainty Visualizer

The Pose Error Visualizer can be used to analyze the predicted accuracy of an optical marker
targets consisting of several feature points.

The developed application does not attempt to optimize the target geometry in respect of
accuracy automatically. It gives the user an instrument to view the accuracy while designing
or changing an existing target. In contrast to this approach, Davis et al [16] developed a
technique for optimizing a target with respect to the visibility of the features.

For assessing an existing marker target the geometrical model retrieved from the tracking
system can be imported into the tool. With a given 3D tracking uncertainty covariance for
each feature the 6D pose uncertainty of the whole target will be computed with the formulas
from Hoff et al. [24] which are explained in detail in section 6. Based on the accuracy detect-
ing the feature points the uncertainty for position and rotation is calculated in the centroid
of the target. The user can define a point of interest which is then used for the prediction and
visualization. The accuracy prediction at a point of interest is done by applying the forward
propagation rules presented in section 6.3.

The visualization is implemented as shown in section 6.6; so the positional uncertainty is
shown as a semi-see-through ellipsoid placed at origin or the point of interest. The rotational
uncertainty is visualized with three cones along three perpendicular axes.

It is also possible to change the geometry of the target and to view the resulting uncertainty
at real-time which makes it possible for the user to design targets which meet his demands of
positional and rotational uncertainty. For example the target should be on one hand as small
as possible but on the other hand the rotational uncertainty is increasing with the decreasing
size of the target [58].

The positional accuracy in the centroid is minimal and it is only depending on the amount
of point features used [58]. When using different locations for the accuracy prediction, the
positional accuracy is also affected by the rotational uncertainty which is depending only on
the spatial distribution of the point features [58]. This effect can be seen in the comparison
between figure 7.6(a) which shows the positional uncertainty ellipsoid in the centroid and
figure 7.6(b) which shows the positional uncertainty ellipsoid at a point of interest. In the
first screenshot the positional uncertainty ellipsoid has the shape of a sphere because an
isotropic distribution of position errors was used; in the second screenshot the geometry of
the positional ellipsoid has changed due to the rotational errors. Figure 7.6(c) and 7.6(d)
show the rotational uncertainty in the centroid and in a point of interest. The geometry of
the cones has not changed as the rotational accuracy is not depending on the position.

The tool was developed using the QT4 library2 which allows portability to several plat-

2Trolltech AS, http://www.trolltech.com/

72

http://www.trolltech.com/


7 Tools

(a) (b)

(c) (d)

Figure 7.6: Screenshots of Pose Uncertainty Visualizer; the figures (a) and (a) show the po-
sitional uncertainty of the target in the centroid and in a point of interest; the
figures (c) and (d) show the rotational uncertainty of the target in the centroid
and in a point of interest
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forms eg. Linux, Windows and Mac OS X. For the visualization OpenGL was chosen which
provides also portability for many platforms.
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8 Future Work and Conclusions

This last chapter contains an outlook to potential future applications and research directions
as well as a short conclusion of the thesis.

8.1 Future Work

During work on this thesis many interesting ideas occurred how to improve the presented
methods for predicting and visualizing the accuracy of optical tracking system which could
not be realized. Some of these ideas will be presented here.

8.1.1 Monocular Accuracy Prediction

The model for predicting the pose estimation accuracy with a monocular tracking system
could be improved to consider the third euler angle and a spatial position which would lead
to a prediction of the full 6DoF pose uncertainty.

This could be achieved by using the rotation matrix from formula (3.1) and a spatial posi-
tion in the extrinsic camera matrix and by adjusting the Jacobian to consider these six vari-
ables of the pose. A model for this was developed but not tested.

8.1.2 Volume rendering

The tool for visualizing the positional accuracy of a n-ocular optical tracking setup is only
capable to show the uncertainty on the hyperplane of the tracking volume. Since the plane
can be varied in position and orientation the volume can be assessed step by step which is not
intuitive for the user assessing the system. By using volume rendering for the visualization
of accuracy the working volume can be overseen easily. Cerfontaine et al. [12] and Allen et
al. [2] used this approach for visualization of the working volume.

8.1.3 Field Covariance Measure System

Another approach for testing the accuracy tracking a single feature point within the working
volume of a n-ocular tracking system would be the use of a cellular phone or another mobile
device. A target is rigidly mounted to the device which allows to visualize the accuracy in
front of the device as an ellipsoid and with the rms. The user of such an application could
assess the accuracy within that regions he wants to use. As the computation abilities of
mobile devices are limited, the uncertainty can be calculated on a workstation and sent to
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the device via arbitrary wireless technology. Some researchers already use mobile phone
for augmented reality application such as [39]. Figure 8.1(b) shows a mock-up of a cellular
phone visualizing a covariance ellipsoid and the corresponding rms.

Covariance in
intrinsic parameters

Covariance in
extrinsic parameters

Multiple 
calibrations

Multiple 
calibrations

Overall covariance
on the image plane

Noise and
subpixel artefacts

Image Plane

Covariance for 
detecting feature 

point

+

Backward
Propagation

Forward
Propagation

Forward
Propagation

(a) (b)

Figure 8.1: In (a) a suggestion for considering uncertainties in intrinsic and extrinsic camera
parameters can be seen; Figure (b) shows a mock-up of an application for a mobile
device visualizing the spatial tracking uncertainty in the working volume

8.1.4 Uncertainty in the Target Geometry

For the model which predicts the pose accuracy of a marker it is assumed that the geomet-
rical distribution of the markers is known exactly. However it is impossible to get an exact
model of the target, even with a perfect calibrated tracking system the features will be mea-
sured erroneous due to noise. The noise can be reduced by taking multiple measurements of
the marker positions and assuming the mean of the measurement for the positions, but some
error will still be present. So a way has to be found to predict the accuracy of the target with
respect to errors in the target model. Davis et al. [15] and other researchers have developed
models considering the uncertainty in the target geometry but these can not be integrated
easily into the prediction framework presented in this theses.

8.1.5 Real-time Estimation of Accuracy

The models presented for the pose accuracy of marker targets and for the accuracy estimat-
ing feature points can be used to provide estimates for the accuracy of a specific measure-
ment at runtime. The necessary data such as poses of cameras and the geometrical models
of the used target have to be obtained somehow from the used tracking system. Such an esti-
mate of tracking accuracy at runtime is useful for almost any augmented reality application
especially for those which are safety-critical.

Instead of estimating the accuracy based on informations obtained from the tracking sys-
tem it could be integrated into the tracking systems itself. This is especially interesting since
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such a system could include all the parameters that went into the calculation of the pose into
the prediction for every frame. For instance the tracking system knows which of the feature
points are used for the pose determination of a target.

8.1.6 Consider Uncertainty of Extrinsic and Intrinsic Parameters

If a n-ocular tracking system is used the poses of the used cameras have to be determined for
a correct triangulation of the point features. Even with diligent calibration, the pose deter-
mination will be erroneous because the measurements used for the calibration are affected
by noise. This error caused by noise can be reduced by using multiple measurements for the
calibration but the result will never be exact. The same problem occurs when estimating the
intrinsic camera parameters and the parameters correcting the lens distortion.

When estimating those parameters several times, the biased error in these parameters can
be interpreted as multivariate random variables. These random variables are defined by a
mean and covariance matrix where the mean represents the most accurate calibration. The
forward propagation formulas can then be used to propagate the covariance matrix of the
calibration parameters to the image plane which results in a two dimensional covariance
matrix. This covariance matrix can be combined with the covariance matrix estimated as in
section 5.1.3. Figure 8.1(a) shows a sketch how the combination of forward and backward
propagations can be used to consider errors in the extrinsic and intrinsic camera parameters.

It has to be tested if the representation of biased errors with a zero-mean normal distribu-
tion is valid.

8.1.7 Occlusion

Since for the features of marker targets often retro-reflective marker balls are used, these
markers can be hidden by other markers (cf. section 4.1.1). The probability of occlusions
is depending on the target geometry, the size of the marker balls and the camera setup. It
would be useful to determine the probability of occlusions at design time.

Davis et al. presented in [15] a viewpoint algorithm, which can be used with some changes
to calculate the probability of occlusions. Figure 8.2 shows the principal idea behind this
method. Assuming a imaginary sphere around the centroid of the target on which the cam-
eras are placed. By taking a sufficient amount of sampling points on the sphere and test-
ing the visibility from these sampling points, it would be possible to determine the ratio of
points with occlusions to points without occlusions. This ratio could be used as a metric for
the possibility of occlusions. As this model does not consider the real positions of the cam-
eras, it cannot estimate the concrete possibilities for a specific setup, but it allows a statistical
statement about the marker target in general.

Implementing a metric for occlusion in the Pose Uncertainty Visualizer would help the
user to find the right balance between the size of the target and the requested accuracy.
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Visible Balls

Hidden Ball

Projection
Sphere

Figure 8.2: Finding occlusion of marker balls by testing multiple lines-of-sight

8.1.8 Areas or Volumes of Interest

In many applications only a specific part of the working volume is of interest. A surgeon for
example wants that a lower bound for tracking accuracy is guaranteed in the surrounding
area of his patient.

This can be achieved by defining a volume or area of interest. For this volume the accuracy
of tracking a marker target can be calculated based on the model of the target on the camera
setup. For resulting target accuracies in that region of interest statistics can be calculated –
for example the mean of the rms or, most important for the surgeon, a lower bound for the
accuracy.

Similar to this approach is the application introduced in section 7.2. In contrast to the
resulting total target error desired in this concept, in the referred tool only the accuracy
of detecting a single fiducial with multiple cameras is implemented. But the metrics for
visualizing the positional covariance matrix can also be used for examining the region of
interest statistically.

8.2 Conclusions

In this thesis the models for predicting and estimating the accuracy of optical tracking sys-
tems were derived.

Therefore a gaussian error model was introduced using multi-variate random variables to
describe the errors caused by noise and it has been shown how the errors of this gaussian
model can be interpreted and visualized.

Techniques for propagating the gaussian errors were shown and used for a set of theoret-
ical models for accuracy prediction of tracking systems.

One model can predict the pose accuracy of tracking a target with monocular system based
on the accuracy detecting a single feature on the image plane and on the geometry of the
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used target. For n-ocular optical feature tracking systems a model was developed to predict
the expected accuracy tracking a single feature, based on the accuracy on the image plane
and the geometrical distribution of the cameras. For predicting the accuracy of a marker
targets a method was presented which is based on the accuracy how accurate the system can
track the position of a single feature in 3D and on the geometrical layout of the target.

Based on these models two applications were developed. One can calculate and visualize
the accuracy of the detecting spatial position of a single feature with a n-ocular tracking
system. The other application can calculate the accuracy of a marker target the usage with a
n-ocular tracking system.

Experiments and simulations have been used to prove the feasibility of the models. The
Experiments were also used to estimate the parameters for real setups.

The presented model for predicting and estimating the accuracy of optical tracking sys-
tems can be used in future applications for instance providing real-time predictions of the
expected accuracies.
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