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Abstract. In this paper we present an in-depth evaluation of a re-
cently published tracking algorithm [6] which intelligently couples rigid-
registration and color-based segmentation using level-sets. The original
method did not arouse the deserved interest in the community, most
likely due to challenges in reimplementation and the lack of a quanti-
tative evaluation. Therefore, we reimplemented this baseline approach,
evaluated it on state-of-the-art datasets (VOT and OOT) and compared
it to alternative segmentation-based tracking algorithms. We believe this
is a valuable contribution as such a comparison is missing in the litera-
ture. The impressive results help promoting segmentation-based tracking
algorithms, which are currently under-represented in the visual tracking
benchmarks. Furthermore, we present various extensions to the color
model, which improve the performance in challenging situations such as
confusions between fore- and background. Last, but not least, we dis-
cuss implementation details to speed up the computation by using only
a sparse set of pixels for the propagation of the contour, which results in
tracking speed of up to 200Hz for typical object sizes using a single core
of a standard 2.3 GHz CPU.

Keywords: Segmentation, Visual Tracking, Registration, Benchmark,
Real-time Tracking

1 Introduction

Visual tracking is a very active research field in which many different, competing
methods have been proposed [20]. As many of them focus on similar applications,
i.e. generic tracking of manually selected patches, it is important to understand
the properties of the type of tracking category each method falls into. Only then
it is possible to select the right algorithm from the obscure and overloaded pool
of different approaches for a specific task. For instance if one needs to follow the
face of a presenter in a lecture hall using a camera, a fast face detector running
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as a tracking-by-detection approach might be a better choice than tailoring a
generic patch tracking algorithm to that task. In that sense, tracking benchmarks
have become increasingly popular to shed some quantitative light into the large
pool of many methods. However, often the best performing methods rank almost
equally well or their ranking differs depending on the benchmark. The best per-
forming methods on the well-known ”Online Object Tracking Benchmark” [28]
were learning-based tracking-by-detection methods such as STRUCK [14] and
TLD [18]. However, in the same year the "The Visual Object Tracking Chal-
lenge” [19] ranked their performance in middle of all methods compared, which
was confirmed by the experiments run in the follow-up challenge 2014 [20]. As
the selection of algorithms, which were compared and the pool of video sequences
used for evaluation had a significant overlap, the conclusions that can be drawn
from these results on the general tracking performance are not so obvious for an
end-user. After all, these benchmarks only demonstrate that a computer vision
algorithm solves a dataset, but not necessarily a target application.

One class of methods which has been under-represented in these state-of-
the-art benchmarks are segmentation-based tracking approaches. In our view
this is due to four reasons. First, many top-performing methods run usually
not in real-time [8,12]. Second, the overlap computation using bounding boxes
penalizes segmentation-based methods as these extract tight object contours,
which are usually smaller than the coarse, surrounding groundtruth rectangle.
Third, the appearance model is often based on color, which is considered a
limitation as apposed to gradient-based descriptors, because color models tend
to perform poorly on grayscale and low-contrast sequences. Fourth, segmentation
automatically locks onto object boundaries, which prohibits tracking of patches
that are not bound by a clear contour, e.g. upper part of a human face. In this
paper we want to promote segmentation-based tracking algorithms for generic
visual tracking. We demonstrate that the four reasons mentioned above do not
always hold true.

On the contrary to the prejudices to segmentation-based tracking, there are
quite a few advantages. Highly deformable objects are often impossible to de-
scribe with a bounding box. Hence, background information is also included in
the foreground area, which misleads learning-based approaches during the online
adaption step and can be a major source of drift. A segmentation step, which ex-
tracts the contour, could be very valuable to guide the sampling of positive and
negative examples for a co-running tracking-by-detection method. Additionally,
the contour itself is also a valuable descriptor, which can be used for downstream
applications such as pose estimation. For very small objects or those with ho-
mogeneous appearance color might be the only valuable descriptor as opposed
to the very popular gradient-based ones.

Recently a segmentation-based tracking algorithm was presented [6] which
achieves impressive performance in terms of accuracy and run-time. The core
power of this approach is the intelligent coupling of rigid registration and fast
segmentation via level-sets. This combination allows very fast computation and
yet accurate contour estimation. Both together allow the color-based model-
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ing to achieve best performance even in very low-contrast scenarios, which are
considered intractable for segmentation-based tracking. Due to the challenges
in reimplementation and lack of a quantitative evaluation on state-of-the-art
datasets, the method did not receive the attention it deserves. Therefore, we
present in this paper such a quantitative evaluation using the latest datasets
in the tracking community and compare it to the best methods. Furthermore,
we extend the method in terms of color and shape model in order to overcome
major limitations such as the confusion between fore- and background. Last, but
not least, we provide details about an implementation trick using only a subset
of the pixels around the contour, which results in tracking speeds of up to 200Hz
for typical object sizes using a single core of a standard 2.3 GHz CPU.

The paper is structured as follows. First, we provide an overview of rele-
vant tracking methods and discuss our choice of the baseline segmentation-based
tracking. In section 3, we discuss the details of the baseline method. In section 4,
we present our extensions to the baseline method. In section 5, we compare all
methods against other state-of-the-art approaches using three common bench-
mark datasets. Last, but not least, we conclude our paper and give an outlook
to future research.

2 Related Work

There is vast amount of literature on visual object tracking. For a detailed review
we refer to [21,29]. In this section, we present related work to our method and we
mainly focus on approaches that rely on segmentation and non-bounding object
representations.

Learning-based object trackers have dominated the field of non-rigid object
tracking. The first works on this direction have been published by Avidan [2]
and Javed et al. [16], where tracking is defined as a classification problem. In
[13] a semi-supervised algorithm was proposed, which learns from unlabeled
data during the execution. Another popular learning-based tracker (TLD) was
published in [18], which combines online updated random forest and a KLT
tracker [4]. Finally, the margin-based trackers[7, 14] have relied on a structured
SVM and online updates for tracking, often at the cost of speed. However, all the
above approaches are being trained with samples that come from a bounding-
box. Consequently, background information can be included into the training
process with the threat to drift the tracker. Also the online training inherently
limits the run-time speed.

The idea of tracking-by-segmentation has been investigated extensively in the
past [24]. In [5], a particle filter has been combined with a graph-based segmen-
tation for sampling observations only from the foreground area. Segmentation-
based approaches have also been combined with a Bayesian framework [1], Ran-
dom walkers [23] and variational approaches [26]. In [8], the object is defined by
fragments based on level-sets. Recently, Tsai et al. [25] have proposed an energy
minimization scheme within a multi-label Markov Random Field model, but the
method does not work online. A new approach based on level-sets was published



4 Falk Schubert et al.

in [6]. As opposed to the methods discussed before, the key insight of the authors
is, that the contours of deformable objects have a significant rigid part, which
can be propagated more efficiently via a registration rather than re-segmentation.
The impressive results demonstrated accurate and very fast tracking. However,
due to missing quantitative evaluation, the method never raised enough atten-
tion in the community to promote segmentation-based tracking. In this paper
we adopted this approach and provide such as an evaluation as well as several
extensions to it.

To leverage the power of both worlds, learning-based and segmentation-based
tracking, approaches have been developed which combine them. In [12] a method
called HoughTrack was proposed, merging random forests, hough voting and
graph-cut segmentation. The classification output initializes the segmentation
serving as a better refinement of the target object. The tracker is relatively
slow, but it has produced promising results. PixelTrack [10] also relies on hough
voting to detect the object, followed by segmentation between foreground and
background. Both are few exceptions of approaches using segmentation that were
considered in the two VOT-challenges [19, 20]. In our evaluation we compare both
methods against [6] and our extended version.

3 Segmentation-based Tracking

In order to make the paper self-contained and to provide background information
for our proposed extensions, we revisit the baseline method [6] which consists of
three major steps as illustrated in figure 1. First, the appearance-model is con-
structed using a probabilistic formulation with a pixel-wise posterior. Second,
using this model the level-set segmentation is carried out. Third, the rigid regis-
tration and contour propagation (i.e. tracking) is performed. In the following we
will discuss each of the steps individually. Last, but not least, we present details
on how to significantly speed up the computation by considering only a subset
of the pixels as motivated in [6].

Foreground Segmentation Registration
Background t l

Adapt Color Models - Refine Segmentation

Fig. 1. Overview of the method presented in [6].
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Appearance-Model The segmentation and tracking procedures are derived
from a probabilistic framework in which the representation of the object is ob-
tained by modeling the information coming from its location (defined by a warp
W (z,p) within the image and the shape of its contour C' (the zero-level set
C = {z|®(z) = 0}, extracted from the embedding function @(x)). The latter
enable to define the foreground and background areas (2;,i = {f, b} from which
the colors y at the pixels locations x are used to build the color histograms
M;,i = {f,b} which serve as the appearance models P(y|M;),i = {f,b}. Within
this framework, it is possible to infer the embedding function ¢(x) and the po-
sition p of the object by expressing the pixel-wise joint probability distribution:

P(x,y,®,p, M) = P(x|,p, M)P(y|M)P(M)P(®)P(p) (1)
Conditioning on x and y and marginalizing over M yields the pixel-wise posterior
[6]:

P(®,plx,y) Z {P(x|®,p, M;) P(Mi|y) } P(®)P(p).  (2)
i={f,b}

For each pixel x, the posteriors are merged with a logarithmic opinion pool
assuming pixel-wise independence:

P(®,p|2) = H > {P(xil®,p, M;)P(M;ly;)} P(¢)P(p) 3)

i=1j={f.b}

In order to remove the need to re-initialize the level set during its evolution, @
is forced to be as close as possible to a signed distance function by introducing
a geometric prior:
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By taking the log of Eq.3, we obtain the objective function for the pixel-wise log
posterior:

{1og (P (x:1, b, y,)) = (2G4 Nlog (L) + log (P(p))

()

™M=

log (P(®,p|{2)) o

Il
il

7

Segmentation The segmentation of the object foreground from its background
is achieved by iteratively optimizing Eq.5 w.r.t. @ under the assumption of con-
stant p using the following derivative of Eq.5:

OP@.pl2) _ 5.@)(P; - P) : vo
0P T Px®,py) o2 {V ¢~ div (|V€P|>} (©)

in which 6.(®) is the derivative of the blurred Heaviside step function H. and
V2 is the Laplacian. The probabilities P;,i = {f,b} indicate how strong a color
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value y belongs to foreground/background and is defined as follows:
. P(y|My)

ngP(y|My) + neP(y| M)

Note, that the use of normalized histrogram look-ups (P(y|M;),i = {f,b}) is

crucial. We normalized via dividing the histrograms by the number of fore-
/background pixels and using discrete voting for the construction of them.

vi={f,b} (7)

Tracking Following the inverse compositional approach [4], the position of the
object in a sequence is described by the warp transformation W (x,Ap), where
Ap represents the incremental warp and is calculated by optimizing Eq.5 w.r.t.
the parameter vector p while keeping the embedding function ¢ constant. The
resulting Ap is expressed as:

% (P;—Py)I"
2 PWx ApEpy)”

(8)

Ln which J = 2 g—i% =0 (P (%)) VO (x;) % and % is the warp Jaco-
ian.

N
Ap = 1 ( & B >JTJ
p ;:1 2P(W(xi, AP)[#,p.¥:) \ \/H.(#(x:)) + V(H(P(x:)))

Speed-Up via Pixel-Subsets In a straight-forward implementation the prob-
ability maps are computed dense on the area selected by the user which defines
the foreground and some border padding which defined the background area. A
drawback of this implementation is that the run-time significantly depends on
the size of the user selection. Since the global color-model is not very sensitive
to the resolution, the selection can be internally down-scaled to a maximum size
(e.g. 80 x 80 px) which guarantees an upper bound on the run-time.

If we investigate the actually values that are considered for the computation,
we see that the derivative of the Heaviside step function d. defines a tight area
along the contour in which values are greater than zero. Outside this area the
values are very small and hence the influence of the other variables in Eq. 6 is
suppressed. Therefore, we compute this area as a list of pixel indices and also
store a precomputed index list for each neighbor. Then we iterate only over these
index lists for all computations instead over the whole image matrix. To reduce
the influence of the contour size on the run-time, we keep the width of the area
constant at 8 = 10px. The cut-off threshold of d.(z) is controlled by the decay
function ¢ = %.
dc(x) > c are stored in the final index lists. On the "hand sequence” of [6] this
increases the overall framerate from 60Hz (using all pixels) to 200Hz on average
using a single core of a standard 2.3GHz Intel i7 CPU.

Only indices relating to pixel positions z for which

4 Extensions

One of the major failure cases of the baseline method is confusion between fore-
and background color which destroys the appearance models during run-time
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and often ends in tracking failure. In order to overcome this, we discuss three
extensions. First, an additional prior which guides the smoothness of the con-
tour can be added to the geometric one (see Eq.4) as discussed in [22]. This
prior penalizes long contours and therefore ones with high curvature. This slows
down the expansion of the contour to wrong foreground pixels without gener-
ally shrinking it. Hence, in situations where fore- and background are hard to
distinguish, the stiffness of the contour will temporarily aid as a guide.

As a second and third extension we propose modifications to the sampling for
building and updating the color model. Both extensions aim to avoid sampling
confusing colors either by assuming geometric locality of the foreground or by
explicitly avoiding colors which also appear in the background. In the following
we will discuss each one separately.

Color Locality The fore- and background probability maps Py and P, in Eq.6
are computed using two separate color-histograms. In the baseline method each
pixel votes into them by equal weight. Hence, any information about spatial
content is lost. Whereas this results in a rotation invariant description, it is
quite sensitive to wrong pixel assignment to fore- and background in cases of bad
contour estimation. Therefore we build the appearance histograms in a similar
manner to the locality sensitive histogram algorithm [15]. Each pixel vote is
weighted according to its distance from the window center, leading to a histogram

expressed as: w
HY(b) = aP1(L,,0), b=1,---,B (9)
p=1

where W is the number of pixels composing the window. The value B is the total
number of bins and I (I, b) is an indicator function resulting in zero except when
the pixel information I, belongs to bin b. The weight a € [0,1] controls the decay
of importance for pixels far away from the window center. The histograms are
then normalized using the factor n% = ZZV:1 alP=¢l For the histogram relating
to the foreground, the centroid of the bounding box is used for the distance cal-
culation. Conversely, the background weighting scheme is computed considering
the bounding box borders as the origins from which to calculate the distances.

Color Frequency As discussed for the previous extension, two separate his-
tograms for modeling the fore- and background are computed. This leads to con-
troversy in scenarios where a color appears in both, background and foreground.
A color bin is much more informative and distinctive if it appears only in either
one of the histograms. Similarly problems have been discussed in the informa-
tion retrieval community. Documents are commonly represented by a vector of
frequencies of the composing words employing the 'term frequency-inverse doc-
ument frequency’(tf-idf) weighting technique. [3]. We propose to adopt a similar
weighting scheme to emphasize the uniqueness of colors by computing:
_ byl 1

POIM) =2 ey D) (10)
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in which the first term accounts for the frequency of occurrence of the color
y in the foreground while the second term considers how much the same color
appears in the background. The same is applied to the background probability
P(y|My).

5 Evaluations

In this section we will demonstrate that the baseline method and our pro-
posed extensions rank among the top performers for two well known benchmark
datasets. As a qualitative validation of our implementation, we reproduced the
results on four sequences of [6]*. All frames of the sequences were successfully
tracked. Visual results for the hand sequence” are depicted in figure 2.

Fig. 2. Four frames with our results from the "hand sequence” presented in [6]. The
contour is shown in yellow, the full 6DOF bounding box (including rotation) in green
and rectified, tight predicted bounding box used for overlap computations in red.

OOT - Online Object Tracking This benchmark® was presented in [28] and
compared 29 state-of-art trackers on 50 sequences. For brevity we will compare
the Baseline (i.e. our implementation of [6]) and our Proposed Extensions (using
all extensions together) against the 5 top-ranked trackes from the one-pass eval-
uation (OPE) experiment, which were: ASLA [17], CXT [9], SCM [30], STRUCK
[14] and TLD [18]. The evaluation scheme measured two values: success and pre-
cision rate. The first one measures the rate of overlap between the groundtruth
bounding box and the predicted one considering various overlap thresholds. To
summarize these values the area under the resulting curve (AUC) is measured.
The second rate measures how often the centers of the groundtruth and pre-
dicted box are close enough, again considering various distance thresholds. To
summarize these values, the precision rate at a distance threshold of 20 pixels
is used. Since both the Baseline method and the Proposed Extensions of this
paper intrinsically depend on color information, the evaluation is performed in
two versions: one using all sequences and one using only color sequences (35 out
of 50).

In table 1 the results for the Baseline and the Proposed Extensions as well as
the 5 best trackers are summarized (left using all 50 sequences, right considering

4 Sequences were kindly provided by Esther Horbert from the Computer Vision Group,
RWTH Aachen University.
® http://visual-tracking.net
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only color sequences). The segmentation-based method successfully ranks in the
top for both success rate and precision rate, especially when considering only
color sequences. Our Proposed Extensions always show an increased performance
w.r.t. the Baseline. This demonstrates the power of color-based segmentation in
respect to well-known learning-based techniques and motivates the combina-
tion of both worlds. Visual results for the sequences ”FaceOccl”, ”Woman” and
”Lemming” are depicted in figure 3.

(a) OOT using all sequences. (b) OOT using only color sequences.
OOT Benchmark (all sequences) OOT Benchmark (only color sequences)
Success Precision rate Success Precision rate
AUC Location error at 20 px AUC Location error at 20 px
Tracker Score Tracker Score Tracker Score Tracker Score
SCM [30] 0.5052 STRUCK][14] 0.7088 SCM [30] 0.4517||Proposed Extensions|0.6485
STRUCK][14] 0.4777 SCM [30] 0.7069 Proposed Extensions| 0.45 STRUCK][14] 0.6364
TLD[18] 0.4405 TLD[18] 0.6774 Baseline 0.4411 Baseline 0.6288
ASLA[17] 0.4387 ||Proposed Extensions| 0.6389 STRUCK][14] 0.4304 SCM [30] 0.6242
CXT[9] 0.4288 CXT[9] 0.6121 TLD[18] 0.3859 TLD[18] 0.5957
Proposed Extensions|0.4217 ASLA[17] 0.6030 ASLA[17] 0.3698 ASLA[17] 0.5172
Baseline 0.4103 Baseline 0.5988 CXT[9] 0.3499 CXT[9] 0.5107

Table 1. OOT Benchmarks: left, top-5 as reported in [28] and our proposed methods
using all 50 sequences; right, the results when considering only color-sequences. Highest
result is marked in red, the second highest is marked in blue and the third highest is
marked in green.

Fig. 3. Three videos from the OOT[28] dataset showing the groundtruth in blue and
our method in yellow (for the contour) and red (for the final predicted bounding box).

VOT - Visual Object Tracking The idea of the OOT benchmark was to pro-
vide a reference dataset for better comparison of tracking methods. It compared
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publicly available trackers (using default parameter settings) on a manually de-
fined collection of videos. The VOT2013 carried this idea further and created
an open competition. All participants could individually tune their algorithm
to the benchmark dataset for best performance guaranteeing a fair comparison.
The 16 benchmark videos were automatically extracted from a pool of about 60
sequences. A whole committee supervised the challenge (i.e. selection of algo-
rithms and dataset) and the results were published in [19]. Due the big success,
the challenge will be continued (e.g. VOT2014[20]). The evaluation scheme is
similar to the OOT. The performances are captured by two measures: accu-
racy and robustness. The accuracy value measures how well the bounding box
predicted by the tracker overlaps with the groundtruth bounding box. The ro-
bustness of a tracker is evaluated by the failure rate which expresses how many
times the tracker completely loses the target within a sequence. The results
are averaged over 15 runs. Three experiments were carried out: Baseline, in
which a tracker is tested on all sequences by initializing it on the groundtruth
bounding boxes; Region noise, like the Baseline but initialized with noisy
bounding box; Grayscale, like the Baseline one but on grayscale converted
sequences. Similarly to OOT benchmark, we exclude the last experiment as our
segmentation-based methods heavily rely on color as a descriptor.

The official results are summarized in the left part of Table 2. The top per-
forming trackers on all the experiments are PLT®, FoT[27] and EDFT[11] respec-
tively. Interestingly, the top-performing learning-based methods STRUCK][14]
and TLD[18] from the OOT benchmark rank only in the middle. The reasons
are not clear, other than that the dataset is different, yet the visual challenges
in the videos are quite similar. We also report the scores of the state-of-the-art
segmentation-based tracker HT[12] which also ranks in the lower part.

In the right part of Table 2, the results for our segmentation-based method
(Baseline and the Proposed Extensions) are reported. The average overlap as
well as the mean number of restarts are comparable to the two top-performing
methods. As the ranking procedure was only accessible to the authors of the
VOT2013 challenge, it was not possible to compute the exact rank our proposed
methods would have reached. Nevertheless, in comparing the obtained perfor-
mances in both parts of Table 2 w.r.t. the rank of the winning trackers, it is
reasonable to place both versions of the considered tracker among the first ones.
Our proposed extensions enhanced the performance of the baseline version in
terms of robustness. The drop in accuracy is due to the intrinsic tendency to
focus on unique colors, especially that ones close to the object center, leading
to a smaller bounding-box. It is exactly that feature that allowed it to be less
sensible w.r.t. noisy initializations keeping the track more steady on the target.

Overall, the experiments confirm the reliability of the presented segmentation-
based tracking approach, especially in presence of challenging conditions such
as changes in lighting condition (e.g. see top row of figure 4), deformations, etc..
The results strengthen the intuition to exploit more information related to the

5 No official publication available. Only a brief abstract in [19].
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color appearance. Visual results for the three sequences ”"David”, ”Bolt” and
”Bicycle” are depicted in figure 4.

VOT2013 CHALLENGE: Official Results Evaluated Methods

E . ¢l Metri #1: #2: #3: #12: #17: #20: Baseli Proposed

xperimen CIC 1 pLT |[FoT[27]|EDFT(11]|STRUCK[14]| TLD[18)|[HT[12] || **°""°|Extensions
bascli Accuracy 0.6185]0.6492] 0.6 0.584 0.5962 [0.4727]] 0.6316] 0.6053
ASCINE Robustness| 0 | 0.6545 | 0.4455 1.365 2.9383 |1.6558|| 0.1875| 0.125
erionnoisol Accuracy [0.5892] 0.6 | 0.5693 0.5275 | 0.5735 0.4723][ 0.6256 | 0.6054
€ Robustness|0.0236] 0.6921 | 0.6593 14710 | 2.9839 |1.8432([0.2667 | 0.1375

Table 2. VOT2013 challenge: results comparison. Highest result is marked in red, the
second highest is marked in blue and the third highest is marked in green.

Fig. 4. Three videos from the VOT2013[19] dataset showing the groundtruth in blue
and our method in yellow (for the contour) and red (for the final predicted bounding
box).

Segmentation-Based Trackers Since segmentation-based trackers are under-
represented in the two benchmarks discussed above, we represent a comparison
of three state-of-the-art methods using segmentation: PaFiSS [5], PixelTrack
[10] and HT[12]. Following [10], we measure the percentage of frames in which
the object is correctly tracked. The tracking is considered correct if the overlap
measure between the output bounding box and the groundtruth is above 10%.
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The evaluation is performed using the dataset presented in [10], which contains
objects that undergo rigid and non-rigid deformations, large lighting variations
as well as partial occlusions. In table 3 the results are summarized by two average
values. The first average value in the last row is the performance considering all
sequences. The second value only considers values for which PAFISS results were
available. Our proposed approach outperforms all other methods. The extensions
perform slightly worse due to the same reasons as reported for the VOT2013
dataset. Visual results for the sequences ” Cliff-dive 1” and ”Mountain-Bike” are
depicted in figure 5.

Sequence HT[12] PixelTrack[10] |PaFiSS[5] Baseline EP ropo§ed
xtensions

David 89.25 45.16 - 99.78 99.57
Sylvester 55.02 36.80 — 99.92 99.82
Girl 92.22 93.21 80.64 99.80 99.80
Face Occlusion 1 99.44 100 98.78 99.77 99.66
Face Occlusion 2 100 88.34 71.41 99.88 99.88
Coke 72.88 91.53 — 99.65 99.65
Tiger 1 26.76 46.48 - 99.72 99.72
Tiger 2 41.10 98.63 — 99.72 99.72
Cliff-dive 1 100 100 100 100 100
Motocross 1 100 57.59 23.78 99.39 99.39
Skiing 100 100 61.63 98.76 97.53
Mountain-bike 100 94.55 98.68 99.56 99.56
Cliff-dive 2 100 32.79 23.19 100 100
Volleyball 45.12 100 34.6 58.60 58.40
Motocross 2 100 100 100 69.56 69.56
Transformer 38.71 94.35 100 100 100
Diving 21.21 88.74 26.84 100 87.01
High Jump 77.87 94.26 9.02 65.57 66.39
Gymnastics 98.87 99.09 19.95 100 90.87
Average 77.13 / 84.32|82.18 / 88.78|- / 60.61 ||94.19 / 92.21|92.97 / 90.57

Table 3. PixelTrack [10] comparison: percentage of correctly tracked frames. Highest
result is marked in red, the second highest is marked in blue and the third highest is
marked in green. The first average value in the last row is the performance considering
all sequences. The second value only considers values for which PAFISS results were
available.

6 Conclusions

In this paper we motivated the use of segmentation-based tracking. We adopted
a baseline method [6] which intelligently couples rigid registration and fast level-
set segmentation and reported impressive results. Our implementation verifies
the conclusions of the authors as we could qualitatively reproduce the published
results. However, the method did not receive the attention it deserves in the
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Fig. 5. Two videos from the PixelTrack dataset [10] showing the groundtruth in blue
and our method in yellow (for the contour) and red (for the final predicted bounding
box).

latest tracking benchmarks. We believe this is mainly due to the challenges in
reimplementation and a missing quantitative evaluation on common datasets. In
this paper we provide such an evaluation using the latest benchmark datasets
and following the state-of-the-art evaluation protocols. The results show that
this method ranks among the best performing trackers, which demonstrates
the often underestimated power of segmentation-based tracking. In many ap-
plications contours and color-models are much more useful than the typically
used gradient-based descriptors, making such a segmentation-based tracking al-
gorithm an interesting alternative. Furthermore, we presented various extensions
which aim to mitigate a major drawback of the global color-based appearance
model. In future work, we would like to couple this segmentation-based tracker
with a tracking-by-detection algorithm to increase the overall tracking perfor-
mance even further.

Acknowledgments We thank Esther Horbert (Computer Vision Group RWTH
Aachen University) for providing four evaluation sequences and valuable feed-
back for resolving open questions on the hidden details of [6].
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