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Abstract Intra-operative visualization becomes more and more an essential part of medical interventions and
provides the surgeon with powerful support for his work. However, a potential deployment in the operation
room yields various challenges for the developers. Therefore, companies usually o�er highly specialized solutions
with limited maintainability and extensibility As novel approach, the CAMPVis software framework implements a
modern video game engine architecture to provide an infrastructure that can be used for both research purposes and
end-user solutions. It is focused on real-time processing and fusion of multi-modal medical data and its visualization.
The fusion of multiple modalities (such as CT, MRI, ultrasound, etc.) is the essential step to e�ectively improve and
support the clinician's work�ow. Furthermore, CAMPVis provides a library of various algorithms for preprocessing
and visualization that can be used and combined in a straight-forward way. This boosts cooperation and synergy
e�ects between di�erent developers and the reusability of developed solutions.

1 Introduction

Recent advances in the �eld of medical image computing pro-
vides today's clinicians with a large collection of imaging
modalities and algorithms for automatic image analysis. How-
ever, translating innovations from research into the daily work-
�ow of clinicians is a di�cult and time-consuming task since
the deployment into a clinical setup poses various challenges.
Developing solutions for medical imaging and visualization be-
yond mere image viewers does usually not yield small and self-
contained algorithms but rather an aggregation of many li-
braries and algorithms. This is mainly due to the visualization
pipeline being rather long and requiring many preprocessing
steps (e.g. image retrieval, registration, �ltering, etc.) before
one can start with the actual work on the visualization aspects.
Thus, this is an extensive �eld of research and brings together
experts and researchers of di�erent disciplines who are working
on various aspects of the visualization pipeline.

However, at the same time everybody needs a more or less
complete implementation of the entire pipeline in order to im-
plement and evaluate their work: Researchers working on novel
processing methods need sophisticated visualization techniques
in order to evaluate their results. At the same, time visualiza-
tion researchers also require advanced preprocessing algorithms
in order to yield high quality input data for their renderings.
This mutual dependency o�ers a large potential for synergy
e�ects when researchers work within the same software frame-
work.

Unfortunately, such highly interdisciplinary work often runs
into problems when it comes to sharing a common code base
or integrating the work from multiple working groups into a sin-
gle solution. In particular in environments with limited funding
and high employee �uctuation, such as universities, once cre-
ated software libraries are often abandoned after �nishing the
project and are hardly designed to be reused by others.

With this motivation in mind, we identi�ed the following list
of requirements and design goals focusing on the usage in het-
erogeneous academic environments:

� Modern software architecture: Usage of platform-
independent and standard-compliant state-of-the-art tech-
niques. Start mostly from scratch and avoid deprecated
interfaces due to forced backwards-compatibility.

� Bridging the gap between development and deployment:
Focus on research-usage supporting rapid software proto-
typing, but at the same time allowing for easy transfor-

mation of implemented algorithms to end-user products.

� Sandbox-like environments: While using the same code
base, multiple developers can implement code indepen-
dently from each other without forcing each other to meet
one's code dependencies.

� Distributed/decentralized computing: Allow CAMPVis to
be run on di�erent devices and support communication
between them in order to share computational resources.

In order to meet these requirements, we use the software ar-
chitecture design of modern video game engines as reference
and inspiration. 3D video games have a long tradition in sim-
ulating complex environments and providing real-time visual-
izations. They usually run on a wide range of hardware and
massively multiplayer online games (MMOGs) even manage
to synchronize the game state over thousands of computers.
Hence, video game engines provide a promising approach to
integrate the handling of a large amount of data, real-time
graphics, interactivity and network computing into a uniform,
extensible infrastructure.

2 Related Work

As of today, there is a plethora of di�erent software platforms
and applications for medical imaging and visualization avail-
able. Categorizing them in a structured manner is a challenging
task as one can di�erentiate them along various dimensions.

The speci�c focus of the software platforms is one dimension to
di�erentiate. Some libraries such as ITK [13] target only the
image processing part while others like VTK [14], Voreen [18],
Inviwo [24] or ImageVis3D [9], only focus on the visualization
part. Most software frameworks, however, try to combine both
aspects into a single platform. While 3D Slicer [8] and MITK
[29] emphasize the application domain, other frameworks, such
as MeVisLab [20], DeVIDE [4] or XIP [25], use the concept
of a data �ow network to better support rapid prototyping
development.

In 2007, Bitter et al. compared four freely available frame-
works for medical imaging and visualization based on ITK [3].
The survey paper of Caban et al. focuses more on the rapid
development aspect of such libraries [5].
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2.1 Entity Component System Architecture

Many modern game engines exploit data-driven programming
[2, 15] and implement the Entity Component System (ECS)
paradigm as main software architecture. While there is no of-
�cial de�nition of this paradigm, most approaches show strong
similarities in their central design. The main intention of ECS
is to yield a cleaner software architecture than classic object-
oriented programming (OOP) approaches. Game engines have
a large number of di�erent game objects, each of them be-
ing formed of multiple aspects, such as physics, player inter-
action, graphical representation and automation. Trying to
model such a complex setup by a traditional OOP class hier-
archy will yield a very complicated inheritance graph that is
very hard to maintain and extend [17,27,28].
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Figure 1: UML diagram illustrating the Entity Component
System software architecture, which is separated into three
parts: The data domain storing the system state, the algo-
rithm domain storing the functionality and the EntityManager
as database for storing all entities.

An alternative is to follow the common �favor composition over
object-inheritance� paradigm [10]. Therefore, the central idea
of ECS is to decouple objects from their state and their func-
tionality as illustrated in Figure 1. This is achieved through
introducing three concepts [16,27]:

Entity The entity is the single general purpose object that
stores neither data nor functionality (i.e. methods). Its
sole purpose is to provide a tag for each game object.

Component Components are attached to entities and store
the raw data but no functionality. Their purpose is to
de�ne a certain aspect of the object and how it interacts
with the world. Attaching a component to an entity labels
the entity to possess this particular aspect. An entity can
have multiple components attached and each component
can be attached to multiple entities.

System The system de�nes the actual functionality. Usually,
there is one system for each component (aspect) that mod-
els and implements the global interaction and functionality
of the game.

This concept allows for a very �exible game design where usu-
ally many objects of di�erent type share parts of their aspects.
Squeezing this into a classic OOP architecture would require
a highly fragmented and complex inheritance graph of a large
number of very tiny classes and interfaces or a bunch of quite
large and partly redundant classes [17].

3 CAMPVis Software Architecture

The core of our software framework consists of four main com-
ponents that interact together in order to generate output (cf.
Figure 2).

� DataContainers act as central database storing and man-
aging all non-temporary data that occurs during execu-
tion.

� A Pipeline de�nes what computations are actually per-
formed, handles user interaction and provides the output
render data.

� Processors act as building blocks implementing speci�c
algorithms. Although one could certainly implement all
algorithms fully inside a pipeline, we do not encourage
this. Instead, encapsulating single algorithms in proces-
sors makes it easier to re-use them in other projects.

� Properties are used for con�guring implemented algo-
rithms.

In the application domain, these components are then exposed
through an OpenGL canvas that takes care of bringing the cor-
responding pipeline's output onto the screen, as well as through
PropertyWidgets that wrap around properties to automatically
generate a graphical user interface (GUI).

CAMPVis Application

CAMPVis Core

OpenGL Canvas
(Window)

PropertyWidget

Property

Pipeline

DataContainer

Processor

GUIGUI

Configuration

Data Storage Algorithms

Figure 2: UML component diagram providing an overview
of the main concepts of CAMPVis and how they interact with
each other.

In this section, we will describe how these components interact
with each other in order to implement a variant of the ECS
paradigm. Furthermore, we will present architectural software
design decisions and discuss how they relate to the initial set
of requirements.

3.1 Build System

To provide a uniform build process across multiple platforms
and compilers, CAMPVis uses the CMake build system [12]
where the build process is de�ned using a scripting language.
This allows us to e�ectively manage and con�gure the various
build options, as well as to scan the �le system for available
modules to implement our module architecture (cf. Section
3.5). In a separate step, the build instructions are then trans-
formed to project and make �les for the speci�c target archi-
tecture.

3.2 Package Architecture

As introduced in Section 2.1, the ECS paradigm encourages the
separation of data domain and algorithm domain. We transfer
this concept to the main CAMPVis package architecture as il-
lustrated in Figure 3. Driven by our goal to minimize the gap
between development and deployment and inspired by Voreen
architecture [18], we furthermore separate all GUI toolkit de-
pendent code into a separate package. This allows to easily
switch out the rapid-prototyping user interface with an end-
user interface suited for clinical setups.

Core Package The core package wraps the data domain and
provides the infrastructure for the core system of CAM-
PVis. These are basic data structures, base classes for
processors, pipelines, properties, etc., common tool classes
such as type traits or string utilities, as well as common
GLSL headers. This package has as few external depen-
dencies as possible and in particular no GUI dependencies.

2



Modules Package This package wraps the algorithm domain
and contains the main functionality of CAMPVis. Mod-
ules contain individual processors that implement concrete
algorithms, as well as individual pipelines that implement
solutions and work�ows for concrete applications. This
package is also not dependent on GUI libraries. An im-
portant aspect of the modules package is that the package
actually is a collection of modules, which can individually
be selected to be included into the build or not. This al-
lows to easily manage multiple independent modules main-
tained by di�erent people. If one of them is faulty it can
be excluded from the build so that CAMPVis is still com-
pilable (cf. Section 3.5).

Application Package The application package provides the
tools to build an actual application based on CAMPVis.
It ties together the core and modules package and provides
the user with a default GUI. This GUI is intended as re-
search interface and hence exposes all internal parameters
(i.e. properties) of the individual processors and pipelines.
Furthermore, it comes with a convenient debug interface
to inspect the contents of the DataContainer. However,
the application package is fully optional and can be re-
placed by own implementations, for instance when inte-
grating CAMPVis into an existing application.

The number of external libraries required for the core pack-
age is kept as small as possible. Besides OpenGL 3.3 and a
small OpenGL wrapper library (CAMP Graphics Toolkit, cgt),
the single other mandatory external library is Intel TBB [11]
providing clean interfaces to support multithreading and con-
current algorithms. All other potential dependecies are part
of individual CAMPVis modules and thus only required when
the corresponding module is enabled.

User Interface

External packages

Data Domain

Algorithm Domain
(Functionality)

Qt

GUI Framework

.

.

ITK

Other External Libs

cgt

Intel TBB

OpenGL

Common External Libs

campvis-core

campvis-application

campvis-modules
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io

itk
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...
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Figure 3: UML diagram of the CAMPVis package structure,
which features a separation into data domain (core module),
algorithm domain (modules package) and user interface (appli-
cation package).

3.3 The Entitiy Component System for CAMPVis

We use the Entity Component System paradigm as basic ar-
chitecture for the CAMPVis framework. Its main bene�t is the
very strict and clear separation of data and algorithms that al-
lows for a great amount of �exibility. However, a software for
medical imaging and visualization has a signi�cantly smaller
amount of alive objects during runtime than video games and
not all of its systems are of fully global nature. Therefore, we
applied some modi�cations to the classic ECS approach pre-
sented in Section 2.1 and developed with the design shown in
Figure 4.

On the data domain, we implement the classic concept of enti-
ties, which act as general purpose object and store neither data
nor functionality. Each entity has a unique identi�er (for which

Database

Data Domain

Algorithm Domain
(Functionality)

Pipeline Processor

DataDataHandleDataContainer

Figure 4: UML diagram illustrating the adapted Entity Com-
ponent System software architecture for CAMPVis, which also
separates the database, the data domain and the algorithm
domain from each other.

we use strings in order to facilitate the handling for the user)
and is stored and managed by the DataContainer, an entity
database implemented as map. Therefore, we call our entities
DataHandle. In the current implementation, every DataHan-
dle just points to a single data aspect (e.g. transformation,
image, geometry, etc.). However, for the future it is planned
to have DataHandles aggregating multiple data aspects (com-
ponents) in order to move this design closer toward the classic
ECS architecture.

Regarding the algorithm domain, there is no �xed collection
of systems in CAMPVis because of its nature of being a re-
search framework. The necessary systems are rather depen-
dent on the actual project implemented in the CAMPVis plat-
form. Therefore, we decided to adapt the classic ECS model
to a platform featuring a library of systems, which behave like
building blocks and can be easily assembled together for each
individual application. We call these building blocks of sys-
tems processors as they encapsulate speci�c algorithms. This
approach is very similar to modules in MeVisLab and proces-
sors in Voreen. It encourages the developers to break their
problems into sub-problems, which facilitates reusing code and
provides an excellent rapid-prototyping environment.

However, based on our experience, there are certain limits in
terms of generality. Forcing developers to design the processors
as generic as possible either leads to a �ood of very tiny and
speci�c processors or to massive blobs that do everything alone
and try to handle every corner case. Since we consider both
these extremes as not desirable, we want to provide as much
freedom as possible when combining the processors. Therefore,
contrary to MeVisLab or Voreen, CAMPVis does not impose a
�xed a-priori structure, such as a data �ow network. Instead,
CAMPVis o�ers the very generic concept of a Pipeline that
coordinates the data domain (DataContainer) with the algo-
rithm domain (processors). Every pipeline works on a single
DataContainer and can aggregate multiple processors (Figure
5). The evaluation logic can be automated (e.g. to simulate
a data �ow network) as well as a custom pipeline-speci�c im-
plementation. This provides maximum freedom to developers
by allowing them to implement pipeline-speci�c code directly
in the pipeline, instead of forcing them to extend existing pro-
cessors or writing new ones for one-time tasks. In ECS termi-
nology, a pipeline represents a system and pipelines are either
executed in a continuous (render) loop or event-based on user
interaction.

Pipeline

Algorithm DomainData Domain

.

.

.
 

<< coordinates >>

Processor n

+process(DataContainer)

Processor 1

+process(DataContainer)DataContainer

DataHandle

DataHandle

DataHandle

Figure 5: Illustration of the CAMPVis pipeline-processor
concept. CAMPVis pipelines take care of coordinating the
algorithm domain (processors) with the data domain (Data-
Container).

CAMPVis processors are designed to be very loosely coupled:
Following the ECS paradigm, a processor only implements
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functionality and is inherently state-less regarding the data do-
main. Hence, it neither is aware of other processors it might be
collaborating with nor does it know a-priori on which data to
work on. Instead, this information is provided when executing
the processor by passing a reference to the DataContainer hold-
ing the entities. This is also the indented way of coordinating
the processors within a pipeline (cf. Figure 5). During execu-
tion, the processor queries the DataContainer for entities with
certain components and performs its computations on them.
The results are then pushed back into the DataContainer so
that they can be used by other processors.

3.4 Properties

In order to support the rapid prototyping design goal, CAM-
PVis also o�ers a property system to con�gure processors and
pipelines, similar to the one found in ITK, Voreen and In-
viwo. Instead of directly con�guring a class through primitive
local member variables, one should use Properties, which wrap
around data types and o�er various bene�ts:

� Providing an observer-like behavior

� Providing automatic getter/setter methods

� Taking care of thread-safety

� The application package can provide an automatically gen-
erated GUI

3.5 Module Architecture

One of the initial requirements was to provide sandbox environ-
ments for developers. Since CAMPVis is intended to be used as
research platform in a heterogeneous environment, there may
be a large number of developers working on di�erent projects
at the same time.

Therefore, we developed a module system using CMake build
scripts. It parses the �le system for available modules and
allows the user to select for each module whether it should
be included into the build or not. Thereby, each module can
be considered as a separate, independent sandbox minimizing
possible side e�ects when having multiple projects sharing the
same code base. For instance, if one module requires an exter-
nal library as dependency, other independent modules are still
able to compile and run without it. At the same time however,
it is possible to de�ne module dependencies so that developers
can easily reuse code.

4 Framework Features

The CAMPVis software framework o�ers various features to
programmers to implement their objective. We will present
the most important ones in this section.

4.1 Signal Manager

For a large-scale software framework, inter-object communica-
tion becomes an important issue. Game engines often feature
an event system for this purpose, where objects notify poten-
tial listeners by sending generic events through a central event
manager instance [17]. Since sender and receiver of events do
not know each other, the sender object simply sends an event
message of certain type and the event manager then takes care
of delivering the message to all listeners that registered them-
selves for this event type. The major advantage of such a sys-
tem is its simplicity in design, easy decoupling of sending and
receiving events (asynchronous messaging) and the fact that
all communication runs through a central place, which makes
tracking, monitoring and debugging of communication easy.

However, for our targeted software platform for medical imag-
ing, such a system has one disadvantage: The mapping between
sender and receiver of a message is solely based on the event
type. Since the inheritance graph of our software framework is
broader than it is deep (i.e. many communicating classes in-
herit from the same base class), e�ective �ltering and routing
of messages becomes an issue: One solution would be declar-
ing a distinct event type for each subclass. However, since
the semantic nature of all those events is the same (only the
sender type changes), this approach would not follow clean
object-oriented software design. The other solution would be
to de�ne the event type in the common base class, so that all
child objects send messages using the same type. In such a
case, however, the receiving object would receive all messages
of all objects and thus needs to �lter out the relevant messages.

Therefore, we decided to use the signal-slot pattern for our soft-
ware framework and enhance it with the central manager part
of event systems. As in the traditional signal-slot pattern pre-
sented by Qt [19], relationships between senders (signals) and
receivers (slots) are de�ned through connections. Thus, the
sender does know which objects would like to receive its mes-
sages. The actual processing of the communication is however
done by the signal manager, which acts as a central singleton
and takes care of the dispatching of messages. This way, we
achieve the �exibility of signals and slots in combination with
easy tracking and monitoring, as well as with implicit asyn-
chronous messaging.

Our signal-slot API allows for emitting signals in three di�erent
ways:

Direct/blocking call Using signal::triggerSignal(), the
signal will be processed directly in the emitting thread,
the call will block until all signal processing has �nished.

Asynchroneous call Using signal::queueSignal(), the
signal will be put into the signal manager queue and
processed asynchroneously in the signal manager thread.
Hence, the call will immediately return.

Default call Using signal::emitSignal(), the signal will be
queued by default, unless the calling thread is also the
signal handling thread (i.e. in case of cascading signals).
This ensures that cascading signals are processed in a sin-
gle batch.

Implementation Details We designed a special data struc-
ture to store the per-signal connection information. Our
concurrent_pointer_list<T> data structure is a list-like con-
tainer that allows for thread-safe bidirectional iteration, in-
sertion and removal of elements. Instead of removing deleted
items from the data structure, we mark them internally as
nullptr. Since connections are stored as pointers to slots and
pointer types support atomic operations, this is an e�ective
solution to avoid per-signal mutexes.

Furthermore, we use a memory pool for creating the signal han-
dles, which are relatively tiny objects and created with high
frequency from di�erent threads. Relying on the default sys-
tem allocator here would introduce a performance penalty as
it usually employs critical sections around each allocation and
deallocation. Implementing a pre-allocated memory pool as
custom allocator elegantly cirvumcents this issue. For minimal
e�orts, we use tbb::memory_pool in CAMPVis, which yields
a speedup of almost 20% compared to the standard memory
allocator.

To facilitate the debugging of sent messages, we implemented
a transparent debug layer into our signaling API. When built
with the debug �ag enabled, all emitted signals will automat-
ically store information on the calling function, �le and line
together with the sent message (Listing 1). This compensates
for the incomplete call stack information in multi-threaded,
asynchronous messages.
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class signal0 {
// [...]
void triggerSignal();

}

#ifdef CAMPVIS_DEBUG
struct signal0_debug_decorator : public signal0 {

// overload method to store debug information and return this
signal0& triggerSignal(string caller, string file, int line) {
storeDebugInfo(caller, file, line);
return *this;

}
};

// redefine all necessary symbols
#undef signal0
#define signal0 signal0_debug_decorator

#undef triggerSignal
#define triggerSignal triggerSignal(__FUNCTION__, \

__FILE__, __LINE__).triggerSignal
#endif

Listing 1: Code excerpt of the debugging hooks for our signal-
slot API. Using C macros, we can rede�ne the signal symbol to
a debug implementation that stores information on the calling
function, �le and line for debugging purposes.

4.2 Factory Registration

Another notable feature of the CAMPVis software platform is
dynamic module registration. This lets modules register their
classes with object factories, so that the core code can gener-
ically access their functionality without actually knowing of
them at build time. With CAMPVis, this counts for instance
for the dynamic registration of image converters, pipelines and
property widgets.

CAMPVis combines the C++ static registration idiom with
the factory pattern. Using C++ templates and static member
variables, we achieve a non-intrusive solution for automatic
module registration at static initialization time. Its central
piece is the templated Registrar class with two essential parts:

1. a static function to create an object of that type (as it
knows the object type through the template),

2. a static integer member variable.

The initialization of the integer member is performed by a func-
tion call to the factory singleton's registration method (cf. List-
ing 2), which returns an integer to store in the static �eld (since
the actual value does not matter, our implementation returns
the sequential number of the just registered object).

// The Registrar class takes care of the actual registration.
// Template parameter is the type of the registree
template<typename T>
class Registrar {

// Static factory method for creating the object of type T.
static AbstractRegistree* create() {
return new T(dc);

}

// static field stores the result of the registration function
static const size_t _factoryId;

};

// Static initialization performs the function call to register
// the registree with the factory.
template<typename T>
const size_t Registrar<T>::_factoryId =

Factory::register<T>(&Registrar<T>::create);

// In a particular module, define a concrete class to register:
class ConcreteRegistree : public AbstractRegistree {

// [...]
}

// Explicit template instantiation: instantiate the registrar,
// which performs the registration at static initialization time
template class Registrar<ConcreteRegistree>;

Listing 2: Code excerpt showing the C++ static registration
idiom we use for factory registration.

4.3 Scripting Layer

CAMPVis has an optional scripting layer, which can be enabled
in order to add support for runtime-scripting with the Lua
scripting language [6]. This serves various purposes: On the
one hand, it o�ers a scripting console allowing the user to in-
spect and modify the data model at runtime through Lua com-
mands. Similar to MATLAB or many game engines, this pro-
vides developers with straight-forward interaction with their
software at runtime without the need to explicitly program
a graphical user interface. On the other hand, the scripting
layer allows de�ning entire pipelines in Lua scripts (cf. Listing
3). This further accelerates the rapid prototyping nature of
CAMPVis since changes to pipelines no longer relate to a re-
compilation of C++ code but only to updating the script and
loading it at runtime.

Figure 6: Screenshot of CAMPVis with enabled Lua script-
ing functionality. The scripting console in the bottom dock
allows for accessing and manipulating the internal CAMPVis
data model at runtime, for instance to modify the properties of
processors in a systematic fashion. Furthermore, the widget in
the dock on the right-hand side allows to inspect all variables
and tables that are present in the Lua virtual machine.

Furthermore, we exploit the scripting support as persistence
mechanism: To save the current program state in a �le, CAM-
PVis writes a Lua script holding the necessary code to recreate
the pipeline and its state. The program state can later be re-
covered by simply executing the Lua script.

Implementation Details C++ classes are exposed to the Lua
virtual machine by creating appropriate bindings for them.
The scripting layer uses SWIG [1] to wrap selected CAMPVis
modules and core packages, and generate Lua modules that
make them available to scripted pipelines. The process of gen-
erating bindings is not completely automated - SWIG must
be told what classes to wrap, which of their members to ex-
pose, and how to deal with advanced C++ features such as
templates. This information is encoded in interface �les which
are passed to SWIG along with the C++ code to produce Lua
modules (cf. Figure 7).

Figure 7: Illustration of the Lua binding generation process
using SWIG. In order to expose CAMPVis functionality to the
Lua virtual machine, SWIG uses interface �les to create Lua
bindings for the existing CAMPVis code.
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require("application")
require("cvio")
require("vis")

-- All created CAMPVis objects have to be kept alive and must not
-- be garbage-collected by Lua. Thus, we create a global table for
-- this script, where everything resides in
LuaDemo = {}

-- create DataContainer and Pipeline
LuaDemo.dc = application:createAndAddDataContainer("DC Name")
LuaDemo.pipeline = campvis.AutoEvaluationPipeline(

LuaDemo.dc, "Pipeline Name")
local pipeline = LuaDemo.pipeline;

-- create the processors we need
local canvas_size = pipeline:getProperty("CanvasSize")
LuaDemo.lsp = base.LightSourceProvider()
LuaDemo.tcp = base.TrackballCameraProvider(canvas_size)
LuaDemo.image_reader = cvio.MhdImageReader()
LuaDemo.vr = vis.VolumeRenderer(canvas_size)

-- register the processors with the pipeline
pipeline:addProcessor(LuaDemo.lsp)
pipeline:addProcessor(LuaDemo.tcp)
pipeline:addProcessor(LuaDemo.image_reader)
pipeline:addProcessor(LuaDemo.vr)

-- setup event listener and register it with the pipeline
LuaDemo.tcp:addLqModeProcessor(LuaDemo.vr)
pipeline:addEventListenerToBack(LuaDemo.tcp)

-- create an init callback function, so that the following code
-- gets called when the pipeline gets initialized by CAMPVis.
local initCallback = function()

-- set up the processors' properties
LuaDemo.vr.p_outputImage:setValue("combine")
pipeline:getProperty("renderTargetID"):setValue("combine")

LuaDemo.image_reader.p_url:setValue(campvis.SOURCE_DIR
.. "/modules/vis/sampledata/smallHeart.mhd")

LuaDemo.image_reader.p_targetImageID:setValue("reader.output")
LuaDemo.image_reader.p_targetImageID:addSharedProperty(
LuaDemo.vr.p_inputVolume)

-- automatically adjust the camera to the data
LuaDemo.image_reader.p_targetImageID:addSharedProperty(
LuaDemo.tcp.p_image)

end
-- register the callback with the s_init signal
pipeline.s_init:connect(initCallback)

-- Finished creating our LuaDemo - register it with the application
application:addPipeline(pipeline)

Listing 3: Example Lua script for creating a fully functional
volume rendering visualization with CAMPVis.

4.4 Network Communication

One of the initial requirements during CAMPVis development
was a good support for network communication, which has sev-
eral use cases. Multi-modal image fusion often has to deal with
multiple devices, which have an continuous exchange of data
such as images, tracking information or control commands. In
cases where mobile devices (e.g. tablet computers) lack the
necessary computation power, distributed computing can fur-
thermore provide a solution where the actual computations are
performed on a stationary workstation and only the results are
streamed to the mobile device.

The original plan was to integrate such a network communica-
tion stack directly into the CAMPVis core, as it is done with
many video game engines. However, since there are already
various established solutions available for streaming medical
imaging data over network, we decided against implement-
ing another protocol. Instead, networking support is enabled
through CAMPVis modules. The current implementation fea-
tures wrappers for both CAMPCom [21] and OpenIGTLink
[26], two state-of-the-art libraries for real-time streaming of
medical imaging data.

5 Clinical Application

As discussed in Section 1, it is important to keep the gap be-
tween research/development and deployment small. This is the
case in particular in the context of medical imaging and visual-
ization where the ultimate goal is always to improve the work

of the clinician and/or the outcome for the patient. Since this
can only be evaluated by the domain experts themselves, one
needs to implement a working prototype that su�ces clinical
requirements. To demonstrate the capabilities of CAMPVis in
this regard, we will present two case studies as examples where
the CAMPVis platform was used for both development and
deployment.

5.1 Real-time Uncertainty Visualization for 2D B-

mode Ultrasound

As �rst example, we discuss a system for real-time uncertainty
visualization for 2D B-mode ultrasound, which was presented
in [22].

The system setup consists of an ultrasound machine and a
standard workstation, which are connected through wired net-
work (cf. Figure 8). The ultrasound system acquires the
raw echo data and performs the initial processing into a B-
mode image, which is then sent via OpenIGTLink to the
workstation. There, the CAMPVis application receives the
image through the OpenIGTLinkClient processor and per-
forms some further �ltering using the corresponding proces-
sors. The CudaConfidenceMapsSolver processor computes the
Con�dence Map, which is eventually fused into the �nal visu-
alization by the AdvancedUsFusion processor. This rendering
is then routed back to the display of the ultrasound machine.
Since the new visualization is shown at exactly the same place
as a normal ultrasound image, and the user only interacts with
familiar hardware, our system has a minimal impact on the
evaluation results and we can safely assume that they really
represent the added value of the visualization technique itself
and are not biased by the quality of the system integration.

Figure 8: Deployment of CAMPVis into a clinical setup for
real-time B-mode ultrasound uncertainty visualization. The
image is acquired by the ultrasound machine (left) and sent
to a workstation running CAMPVis (right) through a network
connection. CAMPVis interactively performs the processing
of the incoming images and routes the resulting images back
to the ultrasound machine. This way, our system is minimally
intrusive since the domain expert only has to deal with the
familiar ultrasound device.

Since the presented CAMPVis processing pipeline is entirely
composed of processors as building blocks, each of the process-
ing steps can be easily reused in a di�erent project to maxi-
mize synergy e�ects (cf. Section 1). Furthermore, the asyn-
chronous implementation in the CAMPVis framework allows
for a smooth and interactive visualization even if single ultra-
sound frames should drop (e.g. due to network issues).

5.2 Multi-modal Image-guided Prostate Biopsy

As second example, we present an integrated system for multi-
modal image-guided prostate biopsy, which was recently devel-
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oped in our lab and improves the speci�city of biopsy results
for prostate cancer diagnosis [23, 30]. For this application, the
current gold standard is a random biopsy of 10 to 12 samples
under trans-rectal ultrasound (TRUS) guidance. However, this
approach is prone to a high number of false negative results
due to TRUS hardly highlighting suspicious regions. We im-
prove this work�ow by additionally acquiring a combined pre-
operative PET-MR image of the anatomy using a 68Ga-labeled
PSMA radioactive tracer exhibiting a very high speci�city for
prostate cancer [7]. After registering the PET-MR images with
the tracked ultrasound, our system uses multi-modal visualiza-
tion for guiding the biopsy toward the highly suspicious regions.

Figure 9: Screenshot of the developed multi-modal image-
guided prostate biopsy framework [23, 30] implemented in
CAMPVis. This image shows the semi-automatic registration
step for aligning the tracked ultrasound images with the MR
volume, for which the clinician de�nes a set of corresponding
landmarks in each image.

Since the clinical work�ow consists of multiple steps, we imple-
mented a custom user interface for the clinician. As a �rst step,
the system is initialized, a fully-automatic machine learning-
based registration is performed and all necessary data is read
from the disk. In the second step, CAMPVis presents a slice-
based multi-modal visualization to the clinician, in which they
evaluate the result of the automatic MR-TRUS registration.
If the images are not aligned well, the clinician can de�ne a
set of anatomical landmarks in each modality in order to yield
a better registration. The �nal step then uses OpenIGTLink
to stream the ultrasound image and tracking information to
CAMPVis, similar as with the presented ultrasound uncer-
tainty visualization system. A real-time multi-modal visual-
ization of the data the guides the clinician. One window shows
the live B-mode ultrasound image and a second window shows
the corresponding MPR in the PET-MR volumes, both featur-
ing a needle guide to target suspicious regions appearing with
high intensity in the PET data.

Since most functionality is encapsulated in processors, many
parts of this project's code can easily be reused. For in-
stance, the OpenIGTLinkClient processor is the same as the
one used for the uncertainty visualization system and the
BiopsyMprRenderer processor of the third work�ow step is also
used in a similar fashion in other CAMPVis-based projects. As
shown in [30], our system does not only yield signi�cantly im-
proved clinical results in terms of biopsy speci�city but also
got very good feedback from our clinical partners in terms of
usability and e�ectiveness.

6 Conclusion

We presented a new software framework targeted for both de-
velopment of medical imaging and visualization techniques in
heterogeneous research groups as well as for deployment into a
clinical setup. As novel approach, the system architecture and
design was inspired by modern video game engines, which are
very e�ective in handling large amounts of data in an interac-
tive real-time environment.

Future work includes the portation of CAMPVis onto mobile
tablet computers as well as some adaption of the data model
in order to move even closer to the classic Entity Component

System architecture. CAMPVis will be published under the
Apache License, Version 2.0.
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