Methods

Orientation-Driven Ultrasound Compounding

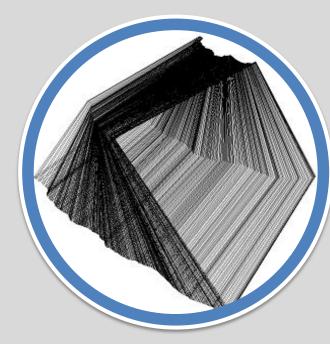
IPCAI Conference 2014, Fukuoka, Japan

Christian Schulte zu Berge¹, Ankur Kapoor², Nassir Navab¹

¹ Computer Aided Medical Procedures (CAMP), Technische Universität München, Munich, Germany ² Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA

Complex Ultrasound Image Formation

- Dependent on angle, probe pressure, patient positioning, ...
- Same anatomy may yield different information if scanned from different perspective or at different time


Traditional US Compounding Techniques:

- Assume undistorted input data
- Require constant pressure, linear trajectory

Clinical applications do not have this setup!

- Artifacts where pressure changes/frames overlap
- Averaging may yield inaccurate/incorrect results

Our Vision: Free Clinicians from Restrictive Scanning Protocols!

- Allow arbitrary trajectories
- Support incremental acquisition with interactive feedback on reconstruction

Orientation-Driven Frame Clustering

fusion of the compounded clusters

Hierarchical clustering by frame orientation

Uncertainty-based (e.g. Confidence Maps [2])

 $I(x) = \frac{\sum_{c \in C} (1 - U_c(x)) I_c(x)}{\sum_{c \in C} 1 - U_c(x)}$

Compounding of clusters into independent volumes

Our Contributions:

- Orientation-driven pressure compensation and frame clustering
- Uncertainty-based incremental information fusion

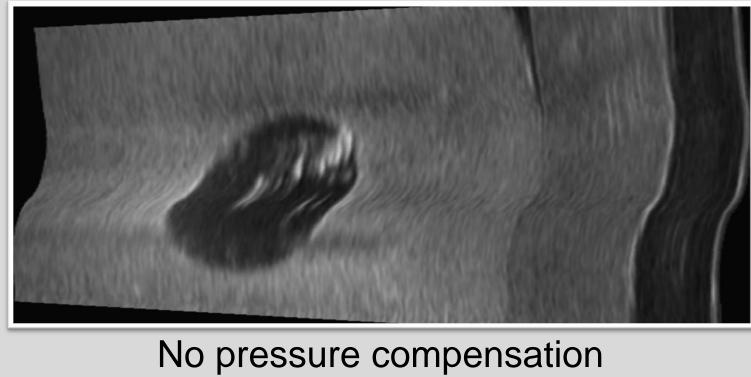
Orientation-Driven Inter-Frame Registration

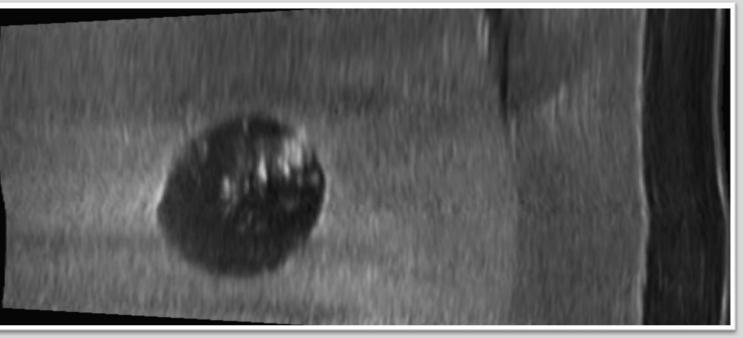
- Correlation between US frames depends on proximity and orientation to each other [1]
- Windowed SSD with orientation-driven correlation term:

$$\sum_{\substack{p \in P \\ p' \in P'}} \sum_{n=-N}^{N} C(i, i+n) \cdot (I_i(p) - I_{i+n}(p'))^2,$$

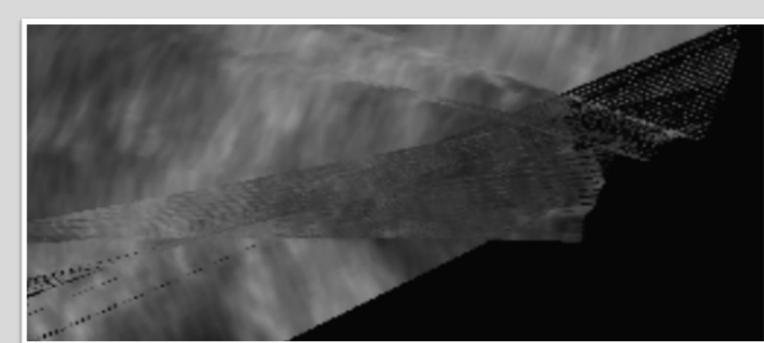
$$C(i,j) := e^{\frac{n^2}{2\sigma^2}} \cdot \left(1 - \frac{2}{\pi} a\cos\left(\frac{n_i \cdot n_j}{||n_i|| ||n_j||}\right)\right)$$

Incremental Compounding

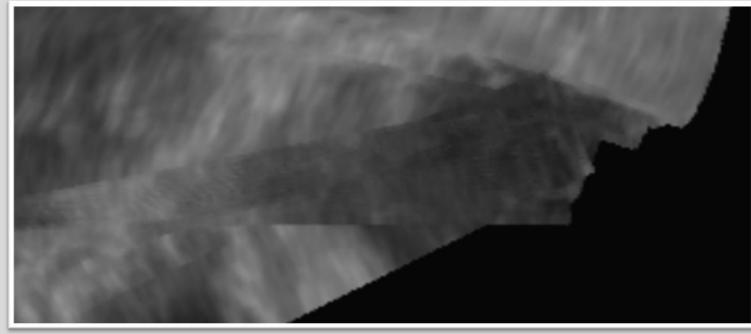

The above compounding scheme can be rewritten into an incremental in-place algorithm


$$I_{i} = \frac{U_{i-1}I_{i-1} + (1 - U_{c})I_{c}}{U_{i-1} + (1 - U_{c})},$$

$$U_{i} = U_{i-1} + (1 - U_{c})$$


Pressure Compensation

Apply deformable inter-frame registration to a grid of independent 1cm x 1cm patches



With pressure compensation

No clustering

Frame clustering and uncertainty fusion

Accuracy

Comparing average target diameter in liver phantom

- Compounded US: 14.63 ± 0.48 mm
- CT: 14.5 ± 0.84 mm

Registration Quality

	Baseline		Our Technique	
	NCC	SNR _{dB}	NCC	SNR _{dB}
Phantom / constant pressure	0.90	19.39	0.94	23.16
Phantom / pressure changes	0.81	13.02	0.94	22.47
In-vivo leg / constant pressure	0.72	9.21	0.76	11.69
In-vivo leg / pressure changes	0.67	8.53	0.75	11.03

Conclusion

Res

- Orientation-driven compounding approach superior to traditional techniques
- Important step towards "real" 3D Freehand Ultrasound

- [1] Housden, R., et al. "Sensorless Reconstruction of Unconstrained Freehand 3D Ultrasound Data." *Ultrasound in Medicine & Biology 33.3 (2007)*
- [2] Karamalis, A., et al. "Ultrasound confidence maps using random walks." Medical Image Analysis 16.6 (2012)