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Abstract

In this paper, we propose a method for detection and
tracking of multiple planes in sequences of Time of Flight
(ToF) depth images. Our approach extends the recent
J-linkage algorithm for estimation of multiple model in-
stances in noisy data to tracking. Instead of randomly
selecting plane hypotheses in every image, we propagate
plane hypotheses through the sequence of images, result-
ing in a significant reduction of computational load in ev-
ery frame. We also introduce a multi-pass scheme that al-
lows detecting and tracking planes of varying spatial extent
along with their boundaries. Our qualitative and quantita-
tive evaluation shows that the proposed method can robustly
detect planes and consistently track the hypotheses through
sequences of ToF images.

1. Introduction

Recent developments in Time of Flight (ToF) camera
technology allow the direct and fast acquisition of depth
images and avoid problems associated with stereo systems
(such as lack of texture, repetitive structures or poor light-
ing). Despite the low resolution of current commercial ToF
devices when compared to stereo or laser range systems and
the presence of several sources of noise, the depth infor-
mation provided by ToF cameras is very valuable for sce-
narios where fast modeling and interpretation of a scene
is required. In this context, relevant applications include
augmented reality [24], robotics [23, 19, 12] and human-
machine interaction [22].

Given the camera calibration, a ToF depth image can be
transformed into a set of 3D points. Such a point repre-
sentation of a scene is general but inefficient to store and
process [19]. In particular, difficulties arise when dealing
with sequences of point sets (i.e. depth videos). Tempo-
ral processing and measurement of motion require estab-
lishing correspondences between the point sets in different

frames. Therefore, scene modeling methods seek to build
a compact representation of the environment that is consis-
tent over time. This is a well studied problem, for instance
in robotics [11, 19]. Commonly used methods for creating
a global representation of the scene consist in incrementally
matching the sets of 3D points over time, for instance, using
standard Iterative Closest Point (ICP) approaches [28]. Si-
multaneous Localization and Mapping (SLAM) approaches
focus on fusing the information over time.

Such global, high-quality representations can be expen-
sive to compute and thus unsuitable for online applications,
where only the currently observed portion of the scene is
relevant and where local representations suffice. An intu-
itive approach for building local, temporally consistent rep-
resentations is to partition the scene into elementary com-
ponents that are subsequently tracked. A popular choice is
to decompose the scene into planar primitives. The moti-
vation for using planes comes from the compactness, sim-
plicity and stability of this representation [3, 10]. Indeed,
planes have proven to be important geometric features in
several applications. Examples include feature matching
and grouping [8], robot localization [19] and 3D recon-
struction and modeling [1, 9, 17].

In this paper, we address the problem of extracting a lo-
cal, temporally consistent representation of a scene from
sequences of depth images acquired with a ToF camera.
We rely on the assumption that important, dominant or sta-
ble regions of the scene are planar, which is reasonable
for structured, man-made interiors, such as laboratories or
industrial environments [3]. More specifically, our pro-
posed method consists in detecting and tracking multiple
instances of a plane model, given sequences of noisy 3D
point data. We build upon the J-linkage clustering algo-
rithm for model estimation, recently introduced by Toldo
and Fusiello [26, 27]. What makes J-linkage particularly
suitable in our setting is its ability to identify multiple in-
stances of a given model in the presence of large amounts
of noise. In order to extract a temporally consistent repre-
sentation, we extend the J-linkage algorithm, mainly used
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for detection, to tracking. This is achieved by linking the
processing of individual frames together by means of plane
hypotheses that are propagated over time. Additionally, as
the planes observed with ToF cameras appear as point-sets
with variable size, point-density and degree of noise, we
adapt the plane detection method to handle these situations
with an iterative multi-pass scheme.

Our method provides as an output the detected planes
and their boundaries throughout the given sequence of ToF
images. Figures 1 and 2 give a pictorial overview of the
method. The experiments presented in section 4 provide
a qualitative and quantitative evaluation on different se-
quences of a ToF camera moving in a static environment.
Comparisons are performed against the full J-linkage de-
tection method.

2. Related Work
Detecting and building piecewise representations of an

observed scene based on 3D planes is a broadly studied
problem in computer vision. The success of piecewise
planar models arises from the strong planarity constraints
which improve the robustness of 3D reconstructions and
from the compactness of the representation, suitable for
storage and rendering [3, 10]. Many of the approaches for
planar scene representation focus on detecting 3D planes
based on 2D point correspondences in multiple views, mak-
ing use of projective geometry [16]. Detected planes are
then used for various applications, such as filtering, gener-
ating hypotheses of new 2D point correspondences [14], or
creating a 3D reconstruction of the environment [25, 1, 17].
We target a similar application, namely a plane piecewise
representation, however, using a ToF camera and thus over-
coming some of the problems associated to finding 2D cor-
respondences in multiple views (e.g., the lack of texture or
repetitive structures). Furthermore, we focus on the tem-
poral consistency of the representation. Some attempts to-
wards detecting and tracking 3D planar representations over
time have been made, but from 2D image correspondences,
as proposed in [24, 21].

In robotics, planar representations of the environment
are commonly used to facilitate mapping and localization
tasks [12]. Examples of efforts towards planar piecewise
representations using range data acquired with laser scan-
ners include [15, 4]. Recently, some attempts have also been
done using ToF images [13, 20]. Holz et al. [13] target
the application of grasp planning and object manipulation.
Poppinga et al. [20] propose a sequential plane detection
method from ToF videos. Like in our case, the temporal
consistency in [20] is achieved by modifying the plane esti-
mation and taking into account the estimates from previous
frames. However, the basic plane detection method differs
from ours, as it is based on the region growing algorithm
in [11]. Indeed, different approaches to planar surface de-

tection and estimation of the corresponding plane parame-
ters exist. The authors of [6] categorize the approaches into
iterative methods [2], voting-based methods [23, 9] or meth-
ods employing a growing procedure [11, 29]. As opposed to
these approaches, we formulate the problem in terms of ro-
bust model estimation in the presence of multiple instances
of a model, where the model is a plane.

Standard methods for robust model estimation exist,
RANSAC [7] being perhaps one of the most popular ap-
proaches in computer vision. Although robust, the original
RANSAC algorithm is not able to handle multiple model in-
stances. Bartoli et al. [3] have proposed a method to detect
planes in 3D sparse correspondences that adapts RANSAC
to cope with multiple instances. Methods for model es-
timation under multiple instances include mean-shift [5]
and the Hough transform. The former is based on a clus-
tering approach that finds the modes of the distribution of
models. The latter works in the transformed Hough space,
where agreeing models can be easily detected. The Ran-
domized Hough Transform (RHT) has been used for range
image segmentation [18, 6] in planar regions. However,
RHT-based methods have limited accuracy and low compu-
tational efficiency [27]. Recently, J-linkage clustering [27]
has been proposed as a method for fitting multiple instances
of a model to data corrupted by noise and outliers. The al-
gorithm is based on random sampling and an agglomerative
clustering method. First, the input data points are repre-
sented with feature vectors that indicate the set of random
models consistent with every point. In this feature space,
J-linkage clustering is used to group the points belonging
to the same model. Fouhey et al. [8] have recently applied
J-linkage to the detection of planes from 2D images.

The use of the J-linkage model estimation algorithm al-
lows us to successfully handle the noise present in ToF im-
ages. However, the direct application of the method to this
type of data is not sufficient for detecting all plane instances
and, moreover, does not provide a solution for the tem-
poral consistency problem. In the following, we describe
our modifications to the original algorithm, extending it to
tracking and allowing to overcome problems of different
plane densities and sizes.

3. Plane Detection and Tracking Method
Given a sequence of T ToF depth images I1, . . . , IT ,

each consisting of N = Nx × Ny pixels, our objective is
to detect an arbitrary number of planes in the first frame
and to track the planes throughout the sequence. Here, a
plane p = (n, d) is represented by its normal n, its dis-
tance d to the origin and the coordinates of its four bound-
ary points {bi}4i=1, with bi ∈ R3. For each image It with
1 ≤ t ≤ T , we first compute the corresponding set of 3D
points Xt = {xt,i}Ni=1, where xt,i ∈ R3, based on the in-
trinsic parameters of the ToF camera.
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Figure 1. Multi-pass plane detection scheme on a single ToF image. a) Input depth image. b)-e) 3D point set before every pass of the
algorithm (top), planes detected incrementally (bottom). Points belonging to detected planes are removed from the initial point set after
each pass. In the last pass, no additional planes are detected and the multi-pass scheme terminates.

Our method consists of a plane detection algorithm, ap-
plied to the first frame of the sequence, and a plane track-
ing algorithm for all other frames. Both parts build upon a
multi-pass strategy that allows dealing with noise in the ToF
data and with planes of varying size. In each pass, plane
hypotheses are extracted using the J-linkage algorithm [26],
followed by refinement and global aggregation. Our method
does not require any prior information for initialization and
uses the full J-linkage algorithm in the first frame. For all
subsequent frames, we propose a modification, where plane
hypotheses from previous frames are used for initialization
and are propagated in time. Figure 2 gives an overview of
the proposed method. We will first describe our plane de-
tection approach for individual images in sections 3.1, 3.2
and 3.3, before turning to tracking in section 3.4.

3.1. Extraction of Plane Hypotheses (J-linkage)

The J-linkage algorithm was recently introduced for ro-
bust detection of multiple model instances in data that con-
tains significant amounts of noise and outliers [26]. In our
setting, model instances correspond to planes that we wish
to detect in ToF images. Let X be a set of input points
extracted from a ToF image. Initially, the algorithm gener-
ates plane hypotheses P̂ = {p̂1, . . . , p̂M̂}, by selecting M̂
triplets of points from X . The first point of each triplet is
chosen at random, while the other two points are taken from
the vicinity of the first point [26].

Next, the preference set is computed for every point
xi ∈ X , indicating which of the plane hypotheses the
point supports. The preference set is represented by an
M̂ -dimensional binary vector, where the j-th entry is 1 if
d⊥(xi, p̂j) < τ , and 0 otherwise. Here, d⊥(xi, p̂j) denotes
the orthogonal distance of a point xi to a plane p̂j and τ is
the maximum allowed point-to-plane distance. The prefer-
ence set representation is used to cluster the points in X in
order to extract plane hypotheses with the largest support.

An agglomerative clustering approach is used together with
the Jaccard distance metric. The Jaccard distance between
two preference sets ranges from 0, for identical sets, to 1,
for disjoint sets [26]. Starting with separate clusters for all
points in X , pairs of clusters with the smallest Jaccard dis-
tance are repeatedly merged by intersecting their preference
sets. Clustering terminates when all preference sets are dis-
joint. The points in the remaining clusters are finally used
to estimate the M̄ plane hypotheses P̄ = {p̄1, . . . , p̄M̄},
where M̄ � M̂ . We only retain clusters that consist of at
least µ points.

3.2. Refinement of Plane Hypotheses

The plane hypotheses obtained so far are often sup-
ported by points that belong to spatially separated 3D ob-
jects. As this effect is undesirable, our aim is to refine
the plane hypotheses such that each retained plane is sup-
ported by evenly distributed points. To this end, we pro-
ceed as follows for each of the M̄ plane hypotheses. Let
Xm = {x ∈ X | d⊥(x, p̄m) < τ} denote the set of points
supporting them-th plane hypothesis, 1 ≤ m ≤ M̄ . We de-
fine the average distance of a point x to its closest neighbors
as

dκnn(x) =
1

|κnn(x)|
∑

y∈κnn(x)

‖x− y‖2 (1)

where κnn(x) represents the κ nearest neighbors of x. We
then remove outlier points that are consistent with the plane
hypothesis but that are spatially separated from the majority
of points on the given plane. All points xmi ∈ Xm are
discarded if

dκnn(xmi ) >
1
|Xm|

∑
x∈Xm

dκnn(x). (2)

After outlier elimination, we re-estimate each of the M̄
plane hypotheses p̄m using only the remaining points in
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Figure 2. Schematic of the plane detection and tracking method.
At each time t, a ToF image is converted to a 3D point set, fol-
lowed by multiple passes of hypothesis extraction and refinement.
After every pass, the points belonging to detected planes are re-
moved from the original point set. When no additional planes are
found, the active plane hypotheses are updated and used as an ini-
tialization for the following image.

Xm. These points are also used to estimate the boundary
points Bm = {bm,i}4i=1 for each plane. We transform the
point set Xm using PCA, such that the directions of largest
variation coincide with the coordinate axes, allowing us to
easily obtain the bounds of the point set. As a final refine-
ment step, we compute the area am of each plane hypothe-
sis and discard planes for which am < α or |Xm|/am < β.
Here, α is a minimum plane area and β is a minimum point
density that we require for all planes. We denote the final
plane hypotheses for the point set X as P = {pi}Mi=1 and
the bounding points as B = {Bi}Mi=1, where M ≤ M̄ .

3.3. Multi-Pass Strategy

The hypothesis refinement step ensures that retained
planes have an even point distribution and do not stretch
across large spatial gaps. However, while J-linkage is de-
signed for detection of multiple model instances, detection
of planes at very different sizes remains challenging. By
the discrete nature of ToF imaging, small structures will be
represented with fewer points than larger structures. In ad-
dition, the number of points per unit surface area decreases
with the distance of a structure from the camera. Increasing
sensitivity by allowing for clusters with fewer points in the
J-linkage algorithm unfortunately leads to numerous false
plane hypotheses, and thus to computational overhead.

We therefore propose a multi-pass strategy, where the
hypothesis extraction and refinement steps described above
are repeated iteratively. More specifically, we restrict the
point set before the k-th pass to X [k] = X − Y , where
Y contains all points belonging to planes detected in the
previous passes:

Y =
k−1⋃
c=1

Mc⋃
m=1

X [c]m. (3)

Here, X [c]m are the points supporting the m-th plane hy-
pothesis at the c-th pass and Mc is the number of refined
plane hypotheses for that pass. Note that, in each pass, we
remove points of previously detected planes from the origi-
nal point set X to prevent duplicate plane detections. More-
over, we resample X [k] before each pass to contain n� N
points, where n is equal at each pass. This way, we increase
the probability of detecting small planes, since a plane un-
detected in a previous pass will be represented by a larger
number of points after resampling. The multi-pass scheme
terminates if no additional plane hypotheses are found after
the refinement step. An illustration of the procedure can be
found in Figure 1, a summary is provided in Algorithm 1.

Algorithm 1 Multi-Pass Plane Detection
1: input X
2: P = ∅, Y = ∅, B = ∅, k = 1
3: repeat
4: X [k]← X − Y
5: X̄ [k]← resample(X [k], n)
6: P̄[k]← extractHypotheses(X̄ [k])
7: P[k],B[k]← refineHypotheses(P̄[k],X [k])
8: Y[k]← ∅
9: for m← 1 to |P[k]| do

10: X [k]m ← {x ∈ X [k] | d⊥(x,pm) < τ}
11: Y[k]← Y[k] ∪ X [k]m

12: end for
13: Y ← Y ∪ Y[k], P ← P ∪ P[k], B ← B ∪ B[k]
14: k ← k + 1
15: until P[k] = ∅
16: return P , B

3.4. Plane Tracking Over Time

In the previous sections, we have described our approach
for extraction and refinement of plane hypotheses from indi-
vidual ToF images using a multi-pass strategy. We will now
turn to the problem of tracking detected planes through a se-
quence of ToF images I1, . . . , IT . The proposed extension
to plane tracking consists of a modification that significantly
increases the efficiency of the J-linkage-based hypothesis
extraction step and, at the same time, links plane detections
from one frame to the next.



As described section 3.1, the J-linkage algorithm initially
generates a set of plane hypotheses P̂ by randomly selecting
triplets of points. Following [26], the number of hypotheses
M̂ needs to be chosen large to ensure robustness against
noise and outliers in the point set. While this procedure
favors that suitable plane hypotheses are generated, it also
causes a significant computational load, in particular for the
clustering step. For the case when planes have already been
detected in a previous frame, we therefore propose to use
the existing plane hypotheses as prior knowledge.

We introduce a set of active hypotheses Pact that are
tracked and updated from frame to frame. After plane de-
tection in the first frame (t = 0) using full J-linkage, we
set Pact = P0, where P0 refers to the planes detected in the
first frame. Let Mact = |Pact|. In all subsequent frames, we
do not initialize the J-linkage algorithm with random plane
hypotheses P̂t, but instead create a set of guided hypotheses
P̃t from Pact. The guided hypotheses are comprised of the
active plane hypotheses and transformed duplicates thereof,
to account for motion occurring between the frames.

The transformations we apply to generate the guided hy-
potheses correspond to incremental rotations of the ToF
camera around its center with random translations. More
formally, we define the set of guided hypotheses P̃t before
any frame t > 0 as

P̃t =
{
P̃1
t ∪ . . . ∪ P̃

Mact
t

}
, (4)

where P̃it is the set of plane hypotheses derived by transfor-
mation of the plane pact

i ∈ Pact. Let T(θ, φ, ψ, t) denote
a 4 × 4 rigid homogeneous transformation matrix that ro-
tates by θ, φ and ψ around the three coordinate axes and
translates by a vector t. We can then write

P̃it = {T(θ, φ, ψ, t)−>pact
i } ∀θ, φ, ψ ∈ Ω, (5)

where t ∈ R3 is a random vector, unique for every element
of the set, and Ω contains ρ rotation angles from an interval
[−γ; γ]. The maximum rotation angle parameter γ has a
significant influence on tracking results, as demonstrated in
section 4. In total, the number of guided hypotheses in P̃t
is M̃ = ρ3Mact, and in practice M̃ � M̂ .

Using the guided hypotheses as an initialization for J-
linkage, we proceed as described above with hypothesis ex-
traction, refinement and multi-pass processing. Once the
final plane hypotheses Pt for frame t have been obtained,
we update the set of active hypotheses. For each plane
pact
i ∈ Pact we look for the closest plane pt∗ ∈ Pt, such

that ‖nact
i × nt∗‖ < µ and |dact

i − dt∗| < ε. If such a plane
exists, we set pact

i = pt∗, otherwise the plane pact
i remains

unchanged. The plane boundaries are updated accordingly,
such that the boundaries corresponding to pact

i are replaced
by the boundaries corresponding to pt∗. This way, the plane
hypotheses established in the first frame of the sequence are
continuously tracked and updated.

4. Experiments and Results
We evaluated our plane detection and tracking method

on ToF sequences acquired using a PMDVision CamCube
camera with a resolution of 204× 204 pixels. Our 3 testing
sequences consist of 60 frames, each, and show a scene with
a table, boxes and walls at various angles. The ToF camera
was handheld and underwent arbitrary rotations and trans-
lations such that most of the planar structures in the scene
were visible in all frames.

We used the following two error metrics to assess our
plane detection and tracking approach. The residual error
eres(t) measures the average distance of the points xi,t ∈
Xt, 1 ≤ i ≤ N , from the planes estimated for frame t, and
is defined as

eres(t) =
1
N

N∑
i=1

min
p∈Pact

d⊥(xt,i,p). (6)

While eres(t) quantifies the plane detection quality for a sin-
gle frame, we assess the tracking precision across multiple
frames using the angular error eang(t). Since the scene is
rigid, the relative orientation of the plane normals should
remain constant over time, despite the movement of the ToF
camera. We therefore measure the deviation of all pairwise
plane orientations in frame t from those in the first frame,

eang(t) =
1

M2
act

Mact∑
i,j=1

|At
i,j −A0

i,j |, (7)

where At is a symmetric matrix containing the angles be-
tween all pairs of planes in the active hypotheses set Pact at
time t. We expect eang(t) to be small and nearly constant
for all 1 ≤ t ≤ T .

Figure 4(a) shows plots of eres(t) for one of the testing
sequences, averaged over 10 repetitions per graph, in or-
der to decrease the influence of random effects. We varied
the parameter γ that represents the maximum rotation angle
used in the creation of guided hypotheses (Section 3.4). For
each rotation axis, we selected ρ = 5 values from the in-
terval [−γ, γ]. For values of γ up to 8 degrees, the residual
error grows significantly after frame 30, indicating that the
tracked planes increasingly deviate from the point data. The
rotation angles provided for the hypothesis extraction step
are thus insufficient to capture the true rotation induced by
the moving ToF camera. Values of γ ≥ 12 allow keep-
ing track of the planes throughout the sequence, without a
deterioration of residual error even for very large γ. Ob-
viously, the chosen value for γ should reflect the expected
maximum camera movement for a sequence. The dashed
graphs follow a common shape corresponding to the cam-
era movement that, after rotating to the side, returns to the
initial orientation. Between frames 25 and 40, the resid-
ual increases, caused by an appearing side of an object that



was hidden during the first frame, when plane hypotheses
were initialized. For comparison, Figure 4(a) also shows
the residual graph for a pure detection approach, where the
full J-linkage algorithm is used in every frame without prop-
agation of plane hypotheses. In this case, the residual error
is lower and less dependent on changes in the camera ori-
entation. The reason for this behavior is intuitive: the track-
ing approach relies on the planes detected in the first frame,
while the pure detection variant is able to identify new pla-
nar structures as they appear during the sequence. However,
our proposed tracking extension to J-linkage results in a sig-
nificant performance gain. While a multi-pass detection run
(consisting of 3-4 passes) using the full J-linkage algorithm
takes 50 seconds for a single frame on average, a frame can
be processed in 10 seconds with our tracking extension. Our
Matlab implementation is based on the J-linkage algorithm
code of Toldo and Fusiello, available online [26].

Figure 4(b) gives the angular deviations eang(t) corre-
sponding to the above experiments. For all settings of γ,
low deviations around 2 degrees are measured, with a slight
increase by about 1.5 degrees through the sequence. This
indicates that the mutual orientation of the tracked planes
remains stable. Incorrect plane estimations would lead to
inconsistent plane orientations, and thus, to a significant in-
crease of the deviation. Note that eang(t) does not deterio-
rate for small values of γ, as is the case for eres(t). For these
settings, tracking is lost for multiple planes at the same time,
with the effect that their plane equations are not updated any
more and their mutual orientation does not change.

A qualitative assessment of the proposed plane tracking
method can be made by means of Figure 3. Selected frames
from three testing sequences are shown with superimposed
points indicating detected and tracked planes. Note that
planes disappear in both sequences and are correctly tracked
after reappearance. The reason is that plane hypotheses are
kept in the set of active hypotheses and simply do not get
updated if no corresponding plane is detected.

5. Conclusion
We have presented a method for detection and tracking

of multiple planes in depth images from a ToF camera. Our
approach builds upon the recent J-linkage algorithm for de-
tection of multiple instances of a model in noisy data [26]
and extends it to plane tracking. The proposed extension
significantly reduces the computational complexity required
on each image by propagating plane hypotheses from one
image to the next. In order to cope with noise and sampling
artifacts of ToF cameras, we also introduce a multi-pass
strategy applied for every frame. Our evaluation indicates
that planes can be consistently tracked in image sequences
acquired with a moving ToF camera. The achievable ac-
curacy is close to that of a detection approach using full
J-linkage, at a significantly improved computational per-
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Figure 4. Average residual error and angular deviation for 10 ex-
periments on a testing sequence of 60 frames. The maximum rota-
tion angle parameter γ is varied. The residual error is also plotted
for a pure tracking-by-detection variant using full J-linkage.

formance. Future work includes an extension that allows
adding new planes during the tracking phase by dynami-
cally extending the set of active plane hypotheses. An opti-
mization with respect to processing speed seems promising,
considering recent work on efficient real-time implementa-
tion of the J-linkage algorithm [27].
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Figure 3. Qualitative illustration of plane tracking results for selected frames of three testing sequences. Top rows: Sampled points, colored
according to their plane membership, overlaid ontop of original ToF images. Bottom rows: Corresponding views from above the 3D scene
with sampled points colored accordingly. Notice that planes disappear and are tracked again after reappearance.
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