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Abstract

Real-time scene reconstruction from depth data in-
evitably suffers from occlusion, thus leading to incomplete
3D models. Partial reconstructions, in turn, limit the per-
formance of algorithms that leverage them for applications
in the context of, e.g., augmented reality, robotic navigation,
and 3D mapping. Most methods address this issue by pre-
dicting the missing geometry as an offline optimization, thus
being incompatible with real-time applications. We propose
a framework that ameliorates this issue by performing scene
reconstruction and semantic scene completion jointly in an
incremental and real-time manner, based on an input se-
quence of depth maps. Our framework relies on a novel
neural architecture designed to process occupancy maps
and leverages voxel states to accurately and efficiently fuse
semantic completion with the 3D global model. We evalu-
ate the proposed approach quantitatively and qualitatively,
demonstrating that our method can obtain accurate 3D se-
mantic scene completion in real-time.

1. Introduction

The development of consumer depth cameras has fos-
tered impressive advancements in research fields related to
3D geometry. Thanks to the availability of a stream of dense
depth maps as input data, 3D computer vision algorithms
are now capable of accurately localizing objects in the sur-
rounding scene and reconstructing the 3D map of the envi-
ronment. However, like any other camera, a depth camera
is a viewpoint-dependent sensor which can estimate depth
information only for the surface visible from the current
vantage point. Since the foreground objects create occlu-
sions for background objects and structure, this will result in
missing depth information across multiple different objects.
Hence, when depth maps are fused together via Simultane-
ous Localization and Mapping (SLAM) or Structure-from-
Motion (SfM) [7], the obtained 3D reconstructions are
geometrically incomplete. Importantly, the incompleteness
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Figure 1: Incremental 3D reconstruction suffers from oc-
clusions, leading to incomplete scenes. Unlike other ap-
proaches, which treat semantic scene completion as an of-
fline optimization, SCFusion carries it out incrementally
and in real-time along with scene reconstruction, yielding
an accuracy comparable to state-of-the-art offline methods.

of the reconstructed scene challenges, in turn, those meth-
ods that leverage scene reconstruction for tasks related to,
e.g., augmented reality, robotic navigation and scene under-
standing, as they need to be robust to handle partial shapes.

Several methods have been proposed to recover the miss-
ing information in a scene from a given single depth image
39 50, 146l 23] [47]] or a reconstructed 3D scan [l [4] [6].
These methods demonstrate the possibility of using par-
tial observations to reasonably estimate the full geometry
and even the semantic representations. Despite the impor-
tant steps forward of research in scene completion, a gap
remains to bring completion methods from either a single
frame or the entire scan to real-time contexts. Existing



single-frame methods [39} 147, 50| treat each input frame in-
dividually without exploiting the availability of additional
viewpoints, this leading to inaccuracies in the extrapolated
shapes, which rely mostly on priors learned by the network
from the training set. On the other hand, approaches de-
signed to process an entire scan are off-line methods which
treat this task as a post-processing optimization, and con-
sequently cannot be used in real-time applications [6} 18]
In addition, the inconsistency of input and output formats
limits the possibility of a direct integration within a uni-
fied model. Indeed, most methods take a (truncated) signed
distance function (SDF) or one of its variations as input,
while predicting occupancy probability [39, |50, 47]] or an
unsigned distance function (DF) [8]. The only method [6]
that has consistent input and output formats does not pre-
dict semantic information. All these difficulties hinder the
use of these approaches for real-time applications.

We fill this gap by proposing a framework consisting
of a novel network and fusion scheme that enables real-
time scene reconstruction with incremental semantic scene
completion, which we dub Scene Completion Fusion (SC-
Fusion). The two main pipelines that compose our pro-
posed approach, i.e. scene reconstruction and scene com-
pletion, are carried out in parallel over two threads. The re-
construction pipeline continuously fuses input depth maps
into a global volumetric map, while the completion pipeline
semantically completes the global map by regularizing its
sub-maps via a fully-connected conditional random field
(CRF). The key component of our method is to use an oc-
cupancy representation over the entire system. The explicit
voxel states and probability distribution on its estimation
from the occupancy mapping [30, [15] provide more infor-
mation than the use of TSDF fusion. We leverage this ad-
vantage and design a network which takes occupancy prob-
ability and voxels with unknown state as inputs to predict
occupancy and semantic labels. The use of voxels with un-
known state represents an additional input for the network,
to guide it towards regions where completion might be nec-
essary. The consistent input and output formats allow a di-
rect integration between the predicted occupancy from the
neural network and the global occupancy map built by the
SLAM engine. In addition, we utilize the explicit known
and unknown voxel state from occupancy mapping in our
sub-map extraction and fusion process to define a set of in-
tegration policies which result in better performance in the
task of semantic scene completion.

Notably, the currently available datasets do not have
a complete ground truth for scenes since the one they
include is obtained from real scans of the environment
[, 450 3L 133 24]] that inevitably suffer from camera oc-
clusions, while what has been a standard synthetic bench-
mark (SunCG [39]) is no longer available. Hence, to eval-
uate the performance of our method we have built a dataset
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Figure 2: The overall pipeline of SCFusion for real-time
scene reconstruction and semantic scene completion. The
front-end reconstructs a 3D scene using occupancy maps.
The back-end semantically completes the geometry and
fuses it back to the global map.
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with complete scenes using the alignments available in
Scan2CAD [, where the full 3D models from ShapeNet
[49] are fused into the scenes of ScanNet [5]. We refer to
this new dataset as CompleteScanNet.

Our contributions can be summarized as follows: (i) A
framework for real-time incremental semantic scene com-
pletion, to the best of our knowledge the first of this kind.
(i1) A novel neural architecture which leverages the voxel
states in occupancy maps to predict scene completion and
appropriately fuse it with the global 3D model, based on
the idea of leveraging known/unknown states for 3D seman-
tic scene completion. (iii) A benchmark dataset based on
ShapeNet [49] 3D models and ScanNet [S]] scenes that can
be used to evaluate semantic scene completion algorithms
based on RGB-D sequences. This fills an important gap
given the absence of such benchmarks in literature.

2. Related Work
2.1. Real-time dense 3D reconstruction

Research activities in real-time dense 3D reconstruc-
tion can be subdivided between depth-based [35, 18] and
monocular [36} 38, |51]. From the point of view of scene
representation, the methods can be classified into three
types: TSDF-based [35} 137, [16l], occupancy-based [15} [30]
and surfel-based [18 48]]. Given the scope of this paper, we
will only review depth camera-based methods with TSDF
and occupancy map representation.

For TSDF-based methods, Kinect Fusion [|35]] relies on a
3D volume which stores a Truncated Signed Distance Field
(TSDF) value at each voxel. The input depth maps are
back-projected into a 3D volume, which consists of voxel
grids, and each depth observation is converted into a TSDF
value and averaged together over the voxel grids. The sur-
face is determined by finding the interpolated zero-crossing
point via ray-casting. For occupancy-based methods, unlike
TSDF which is a surface estimation approach, occupancy-
based methods estimate occupancy in each voxel grid. This



restricts the reconstructed resolution to the defined voxel
size, and the reconstructed surface is not well-defined. Loop
et al. [26] proposed to use a quadratic b-spline instead
of a Gaussian noise model which covers the gap of oc-
cupancy reconstruction and allows occupancy mapping to
have equivalent accuracy as the TSDF method. Vespa et al.
[44]] propose to set the standard deviation value to be pro-
portional to the measured depth distance to be more realistic
to the triangulation-based depth camera noise model.

Since 3D volumetric representations are memory con-
suming and are difficult to extend to a large scale, Voxel
Hashing [37] proposed a reconstruction framework based
on a hash-grid 3D representation. Allocating small voxel
blocks around observed surfaces instead of doing it on the
entire space to reduce memory consumption and use mem-
ory more efficiently. [15] uses an octree to efficiently divide
space into cubes of different size.

2.2. 3D shape completion

The completion of 3D shapes starts from an input par-
tial 3D shape to provide an occlusion-free and complete 3D
shape. Existing methods can be divided into two categories:
object completion and scene completion.

Object completion focuses on a single object which in-
cludes recovering local surface primitives by using a contin-
uous energy minimization [40, 34} |53]], completing shapes
by leveraging symmetric information or prior information
from a database [43| 28| 141]] and replacing partial shape with
an aligned CAD model retrieved from a database [2,20}131]].
However, to apply single object shape completion to scenes,
additional object detection and segmentation are required.
The completion quality thus additionally relies on how well
the detection and segmentation methods perform.

Scene completion focuses on completing the entire
scene with or without predicting the semantics. This can
be done by using purely geometric approaches [9, 6] or by
also considering semantic information. Recent trends target
joint prediction of semantics and geometry by leveraging
deep learning [39} 10} 46]. Most recent work focus on sin-
gle viewpoint semantic completion, either based on a single
depth image [39, 47| or with RGB information [10]. Only
a few works target completion of an entire scan [8]. Al-
though these methods have shown promising results, they
target single frame prediction and do not handle sequences
of depth maps or temporal information.

2.3. Semantic 3D reconstruction

This line of work focuses on joint optimization for 3D re-
construction and semantic segmentation. Initially, [22] pro-
posed to jointly optimize semantic segmentation and stereo
matching by using a random field. Later works tried to solve
this problem by using a conditional random field on either
single view [[19] or multi-view [12}[13]]. This idea was also

extended to object-centric reconstruction [[17, [11]. A com-
mon drawback of the above approaches is that they are not
able to capture complex relationships in 3D space. Recently
[4] suggested an end-to-end trainable way to capture more
complex information between the semantic labels and the
3D geometry. However, these methods are computationally
expensive and require extensive use of memory. Finally, a
different corpus of work focuses on incremental construc-
tion of a semantic 3D map by fusing 2D semantic predic-
tions from images [27} 32].

3. Proposed incremental semantic scene som-
pletion framework

In this section, we propose our framework for real-time
incremental semantic scene completion. The flow diagram
sketching the algorithm pipeline deployed at each input
frame is shown in figure 2] The stages regarding front-end
scene reconstruction are shown as blue boxes there, while
those regarding back-end semantic scene completion are de-
picted with orange boxes. The outputs from front- and back-
end operations are marked as green boxes. We assume a
stream of depth maps acquired from a moving RGB-D sen-
sor, and the corresponding poses for each depth image ac-
quired from an external visual-inertial odometry (VIO) sen-
sor or any pose estimation methods. Our front-end pipeline
fuses each paired input pose and depth map into a grav-
ity aligned dense volumetric occupancy map (section [3.T).
The back-end pipeline predicts the occupancy and semantic
label incrementally with our sub-maps strategy along with
online map regularization (section 3.2).

3.1. Frame-wise occupancy map fusion

This section outlines our volumetric occupancy mapping
method used in the front-end scene reconstruction pipeline.
Our reconstruction system uses occupancy mapping instead
of TSDF fusion to provide a consistent format with the pre-
diction from our network. In addition, occupancy mapping
provides three explicit states at each voxel: occupied, empty
and unknown [15} 26], that can provide additional infor-
mation to our network architecture as well as to our fusion
scheme. As proposed in [37]], we use a hashed voxel map
representation which stores voxel cubes only when a depth
measurement is present. Each voxel cube consists of the
same number of voxels storing fused depth values from in-
put measurements and, in our implementation, the predicted
label from the back-end pipeline. For every input pair of a
depth map and its pose, valid depth measurements are pro-
jected and fused into the global map. Each depth measure-
ment is converted to the occupancy probability using a log-
odd representation and the noise model proposed in [44]].

Given a sensor measurement z; at time ¢, each voxel in
the global volumetric map stores a fused occupancy proba-
bility P(v|21.¢) € R at each voxel location v € R?. During



occupancy fusion, the occupancy probability P(v|z1.¢), i.e.
the probability of a voxel being occupied or empty given the
sensor measurements z;, is estimated according to

P(v|z) P(v|z1.4-1) 1—P(v)

PV = T p ey 1= P ) Pv)

based on the measured occupancy probability P(v|z;) at
time ¢, the previous probability P(v|z1.;—1) and a prior
probability P(v). The measured occupancy probability
P(v|z;) can be defined based on the given sensor model.
Here, we use a quadratic B-spline sensor noise model as
proposed in Vespa et al. [44]] to compute P(v|z;).

Then, a projected depth measurement corresponding to
voxel location v in the global map coordinate system is
computed as

z(v) = Ty KDy (u), (2)

u="r(KT;v) € R? A3)

where Dy (-) is the input depth image at time ¢, T; =
[R:,t:] € SE(3) is the current camera pose, composed of a
33 rotation matrix R; € SO(3) and a 3D translation vec-
tor t; € R3, and u is the pixel location in the input depth
image projected from voxel location v, with its homoge-
neous representation u.

As in Loop et al. [26], by using the log-odds notation
and the common assumption of an uniform prior probability
P(v) = %, equation (1) can be re-written as

U(v]z1:4) = U(v|z1:0-1) + 1(V]21) 4)

1—-P(v)

In addition to the occupancy probability, in each voxel
we stores a semantic label L;(v) € L where L denotes all
class labels, its confidence W' (v) € R and a time stamp
T;(v). The time ¢ in our system represents the number of
observations being fused to the global map.

with [(v) = log (&)

3.2. Incremental semantic scene completion

In this section, we describe the stages of the proposed
pipeline carrying out incremental sub-map semantic scene
completion, which represents the core of our proposal.
Given the incremental fashion of scene reconstruction, we
propose to also perform scene completion incrementally
during reconstruction. Our approach uses the view frustum
from the given pose to search for candidate regions, referred
to as sub-maps, which will be used to extract the input for
the proposed network, as described in section [3.2.1} Then,
the input scenes are semantically completed by our network
(see section [3.2.2).

The use of sub-maps carries out completion at a local
level and, thanks to its modularity, has the benefit of scal-
ing up to large scenes. Nevertheless, by discretizing the

scene geometry into sub-maps, this might create ambigui-
ties on overlapping parts across neighboring sub-maps, e.g.
in case of different predictions. Hence, we propose a novel
fusion scheme (see section [3.2.3) with a map regularization
method (see section[3.2.4) to handle this issue, aimed at fus-
ing both temporal and spatial information. For the sake of
efficiency and thread parallelization, all operations are per-
formed in a separate GPU stream and CPU thread which are
isolated from the main front-end pipeline.

3.2.1 Sub-map extraction

A sub-map is defined as an axis-aligned bounding box in
the global map coordinate system, consisting of an anchor
point and its enclosing bounding box. The anchor point is
calculated based on the view frustum. In our implementa-
tion the bounding box has a fixed size of 64 x 64 x 64.
The view frustum is computed from the camera pose and its
intrinsic parameters, with a distance range of [0.01m, Sm].
Given a view frustum, a minimum number of sub-maps are
selected to cover the view frustum region. Specifically, by
defining the y-axis as the elevation axis, the first sub-map is
selected as the view frustum region with minimum x and z
values. Then adjacent sub-maps are iteratively added until
the view frustum is fully covered.

Next, we want to discard the extracted sub-maps whose
voxels did not undergo major changes based on the last
depth map update. This is important for efficiency reasons,
since we want to avoid to run completion on regions that
were not modified in time. For this we adopt a specific cri-
terion: a sub-map is discarded if the percentage of the out-
dated voxels within its bounding box is above a threshold
Ts. A voxel is considered outdated when the difference be-
tween the voxel time stamp T3 (v) and the current time t is
larger than 7. In turn, the time stamp of a voxel is updated
when a predicted information is fused with this voxel, be-
ing set to 0. With that, the system is able to prevent over
completion on the same local map and also to increase the
efficiency of the system. In our implementation, we set 7
to 0.3 and 7 to 30.

3.2.2 Semantic scene completion

A key characteristic of the proposed network is that it takes,
as input, occupancy probabilities and a binary mask to pre-
dict a semantically completed scene. Similarly to [39]], a
voxel is consider occupied if it is assigned a non-empty la-
bel. We treat this state as an occupied observation in the
map, which enables a direct integration of the associated
voxel in the global map. The use of a binary mask is in-
spired by the research field in image inpainting, where it
was shown that using a mask to indicate missing regions im-
proves the prediction accuracy from a neural network [21].



Also, preventing mask vanishing during the recursive con-
volutional operations can further improve network perfor-
mance [25} 152]]. Inspired by this, we treat semantic scene
completion as a 3D inpainting task, and propose a network
architecture that leverages the benefits of occupancy maps
and combines them with 3D inpainting.

Our network is built on the semantic prediction branch
of ForkNet [47] with some modifications. First, the net-
work takes a voxel grid of normalized occupancy probabil-
ities and a voxel grid of binary masks as input. A binary
mask is generated using the unknown state encoded with
occupancy mapping. Second, we replace all convolutional
layers with gated convolutional layers to prevent mask van-
ishing, as shown in [52]. Third, instance normalization is
applied after each layer except for the final one. Last, a
discriminator with spectral normalization is added during
training [29]]. For more details on the network architecture
we kindly refer to the supplementary materials.

3.2.3 Sub-map integration

We leverage the three explicit states in occupancy mapping,
i.e. occupied, empty and unknown, to design a fusion pol-
icy that carefully fuses the predicted results into the global
map. Given a voxel prediction from the network, we de-
fine the following rules. First, the prediction is discarded
if classified as empty or if its corresponding voxel in the
global map is in the empty state. Second, the predicted se-
mantic label is instead fused in the global map if the corre-
sponding voxel is in either the unknown or occupied state.
Analogously for the completion part, a voxel predicted as
occupied by the network is fused only if the corresponding
voxel in the global map is in the unknown state. Based on
these rules, our method is able to add semantic and geomet-
ric information to the scene while being guaranteed to main-
tain the same reconstruction accuracy for the visible surface
as the mapping approach that we employ as backbone, i.e.
[44]. Remarkably, when fusing occupied voxels into the
global map, we consider them as low confidence observa-
tions, with an assigned probability of 0.51, and follow the
same approach described in section to fuse the predic-
tions. This has the benefit of improving wrongly predicted
geometry coming from an individual observation (i.e., a
depth map).

As for merging labels, unlike occupancy estimation
which deals with a continuous space, label prediction is
categorical, hence requires a different integration strategy
able to handle probability distributions. A simple solution
is to save the entire probability distribution, however this
would be impractical with a large number of labels, since
the memory footprint in this case would grow linearly with
the number of labels. Instead, we follow the approach in
[42], which stores a single label and a confidence value per

voxel. Unlike their method, which applies decrements and
increments of the confidence depending on the number of
similar observations, we propose to integrate the softmax
value of the predicted label as representative of the label
confidence. Specifically, for a given voxel v and its label
l¢(v) is predicted with a confidence value w;(v). If the
confidence of the voxel is higher than the predicted con-
fidence, we keep the label of the voxel from the previous
state Ly(v) = L;—1(v), and the confidence weight of the
voxel is updated as:

Wk () — {Wta(v) +wi(v), i (Lea(v) = 1(0))
K WE  (v) —wi(v), otherwise
®)
If I;(v) is different from the voxel label and the confidence
of the voxel is below the predicted confidence, we replace
the voxel label and reduce its weight as:

Le(v) = le(v), Wi (v) = we(v) = Wi, (v) - (6)

The label weight value is clamped with a maximum label
confidence WL

max*

3.2.4 Online map regularization

As mentioned, the use of sub-maps enables our framework
to be real-time, but it also brings in potential inconsistencies
nearby the borders of the sub-maps due to the discretization
of the global map. To improve 3D semantic reconstruc-
tion accuracy under this aspect, we apply a regularization
approach for the global map based on a fully connected
CRF model, whose use for 3D maps has been explored in
[32,127], showing promising results.

As explained in @], our map stores, at each voxel,
only a label with an associated weight rather than the whole
probability distribution. Hence, we use and modify the ap-
proach from [32] since it also relies on storing individual
labels. We use the only voxel locations as regularization
term. Differently from [32], which uses the frequency for a
certain label as probability estimate, we calculate the prob-
ability of a voxel for a certain label L as:

p"(v) = max(W* (0) /Wi aas Drin) Q)

where pL. s set to be slightly above the average label
probability (in our case 0.1). Experimental results will be
presented showing how our map regularization method is
able to improve the accuracy of 3D semantic reconstruction
- in particular, quantitatively in table [2), as well as qualita-
tively in the supplementary material.

4. Data generation

Due to the lack of a dataset including both completed
3D scene reconstructions and depth map sequences, it is



Metric ‘ Method ‘ Ceiling ‘ Floor ‘ Wall ‘ Window ‘ Chair ‘ Bed ‘ Sofa ‘ Table ‘ TV ‘ Furni ‘ Object ‘ Mean
IoU ForkNet | 0.360 | 0.500 | 0.272 | 0.255 | 0.181 | 0.148 | 0.335 | 0.244 | 0.508 | 0.118 | 0.085 | 0.273
Ours 0.197 | 0.541 | 0.379 | 0.108 | 0.310 | 0.194 | 0.266 | 0.322 | 0.659 | 0.219 | 0.148 | 0.304

Precision ForkNet | 0.735 | 0.739 | 0.466 | 0.460 | 0.421 | 0.278 | 0.452 | 0.375 | 0.554 | 0.245 | 0.244 | 0.452
Ours 0432 | 0.680 | 0.591 | 0.248 | 0.528 | 0.304 | 0.378 | 0.505 | 0.771 | 0.410 | 0.300 | 0.468

Recall ForkNet | 0.463 | 0.611 | 0.414 | 0.564 | 0.339 | 0.697 | 0.772 | 0.494 | 0.913 | 0.338 | 0.212 | 0.529
Ours 0.343 | 0.722 | 0.517 | 0.391 0.450 | 0.667 | 0.714 | 0.497 | 0.842 | 0.347 | 0.253 | 0.522

Table 1: Comparison between ForkNet and SCFusion on the test set of CompleteScanNet. Our method outperforms
ForkNet in IoU and precision, while reporting slightly lower recall.
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Figure 3: Semantic scene completion comparison on some CompleteScanNet test scenes. While both ForkNet and SCFusion
can accurately complete geometry and predict semantics, our method outperforms ForkNet if compared to the ground truth.

hard to evaluate the performance of our approach, as well
as to train our semantic scene completion network so that it
can be applied on real data. Scene completion approaches
(8l relied on the synthetic SunCG dataset [39]], which
is currently no longer available. Recently, [6] showed how
a scene completion network can be trained with incomplete
ground truth in a self-supervised manner. However, this ap-
proach does not predict semantic labels, this limiting its use
on many applications of interest.

To handle this issue, we developed a new benchmark
where 3D object models are added to semantically anno-
tated real-world scenes via model fitting. We use the model
alignment annotations provided in Scan2CAD dataset [1]]
to fit 3D models from ShapeNet in the 3D scenes of
ScanNet [3]. We refer to this new dataset as CompleteS-
canNet. During model fitting, we replace the original object
instances with their corresponding fully 3D object models
to prevent geometry misalignments among object shapes.
Then, we generate a depth sequence for each scene with
full 3D objects by rendering depth maps. Note that the gen-
erated scenes still include incomplete parts due to the pres-
ence of incomplete background parts, e.g. floor, wall, ceil-
ing. To help the network to better learn completion on in-
complete parts, we devised a skip-frame training approach,

where only one frame every 200 is processed, while the
rest is discarded. This generates relatively more incomplete
input scenes for training. Experimental results show that
a network trained with this technique is able to predict a
more complete and accurate scene than when trained on se-
quences that include all frames (see figures 3] F).

Following this data generation pipeline, we use occu-
pancy mapping with ground truth poses from ScanNet and
rendered depth sequences to reconstruct a scene with voxel
size of 5 cm3. Then we use uniform sampling to sample
sub-maps with a constant size of [64 x 64 x 64]. To en-
sure that the extracted sub-maps are not empty and have
enough object variation, a sub-map is discarded if the per-
centage of empty voxels exceeds 95% and the number of
different labels appearing in the scene is less than 2. After
sub-map extraction and filtering , 45448 training and 11238
testing samples are generated from the initial 1201 train-
ing and 312 validation scenes. Finally, ScanNet labels are
mapped to the SunCG [39]] ones to prevent confusion dur-
ing training caused by objects having different labels but
similar shapes.



Ceili. | Floor | Wall | Window | Chair | Bed | Sofa | Table | TV | Furni | Object | Mean

ForkNet+Fusion (-s)[47] | 0.131 | 0.390 | 0.241 | 0.000 | 0.147 | 0.061 | 0.233 | 0.291 | 0.003 | 0.212 | 0.033 | 0.158
ScanComplete (-s)[8] 0.225 | 0.541 | 0.440 | 0.020 | 0.312 | 0.055 | 0.177 | 0.371 | 0.007 | 0.195 | 0.107 | 0.222
Proposed w/o CRF (-s) | 0.250 | 0.532 | 0.413 | 0.121 0.348 | 0.277 | 0.339 | 0.350 | 0.084 | 0.287 | 0.130 | 0.284
Proposed (-s) 0.236 | 0.537 | 0.437 | 0.134 | 0.362 | 0.282 | 0.346 | 0.356 | 0.086 | 0.299 | 0.136 | 0.292
ForkNet+Fusion (-0)[47] | 0.052 | 0.225 | 0.123 | 0.000 | 0.092 | 0.057 | 0.182 | 0.149 | 0.001 | 0.126 | 0.018 | 0.093
ScanComplete (-f)[8] 0.164 | 0.393 | 0.350 | 0.018 | 0.204 | 0.038 | 0.112 | 0.277 | 0.006 | 0.132 | 0.078 | 0.161
Proposed (-f) 0.128 | 0.329 | 0.265 | 0.096 | 0.225 | 0.207 | 0.264 | 0.210 | 0.074 | 0.192 | 0.086 | 0.189

Table 2: Comparison in IoU for semantic scene completion on CompleteScanNet. IoU is measured on both visible surfaces

only (-s) and on the entire scan (-f).

Reconstruction ForkNet+Fusion [47]]
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Figure 4: Semantic scene completion comparison on some CompleteScanNet test scenes.

5. Experimental results

Experiments are conducted to validate the performance
of, respectively, the proposed network and the overall SC-
Fusion framework on the CompleteScanNet dataset. First
we validate the design of our network by comparing the
performance on single prediction to its baseline method, i.e.
ForkNet [47] with the use of intersection-over-union (IoU)
as the metric on the CompleteScanNet sub-map test set.
Then, we evaluate the performance of SCFusion on entire
scenes by comparing it against the state of the art in offline
scene completion, i.e. ScanComplete [8]. Finally, we show
the effectiveness of the proposed fusion method by compar-
ing it against fusion of ForkNet predictions.

5.1. Parameters and experimental environment

Training and testing is done on an Intel(R) Core i7-
8700 CPU @ 3.20GHz, 64GB DDR4 RAM, 2 x NVIDIA
GeForce RTX 2080ti. Our network is trained with Adam
optimizer with a learning rate of 0.001, batch size of 4 with
an accumulated gradient factor of 4. The whole network is
trained for 40 hours until convergence.

5.2. Network evaluation

We evaluate the performance of our network against
ForkNet [47] on the 11238 test sub-maps of CompleteScan-
Net. Both networks are trained from scratch until conver-
gence on the CompleteScanNet training set. Since ForkNet
takes inverted TSDFs as input, we generate its training data
using TSDF fusion. Results in figure[3]and table[I]show that
our method tends to predict more precise object shapes than



Mean Std

Thread Operation (ms) (ms)

. Input Processing 0.039 0.097

Scene Reconstruction Mapping 5056 3 434
Sub-Map Extraction 0.620 0.467
Semantic Scene Completion Semantic Scene Completion  123.067  8.898
P Sub-Map Fusion 1124 0232

CRF Regularization 33.261 12.092

[ Average run-time per-frame | 10.863  25.486 |

Table 3: Runtime analysis of the SCFusion stages averaged
on the scene0645_00 sequence from CompleteScanNet.

ForkNet, which instead predicts coarser geometries. More-
over, the predicted scenes of our method tend to be more
complete than ForkNet. Although the dataset still partially
present incomplete ground truth surfaces, both ForkNet and
our method trained with the proposed skip-frame approach
are able to predict reasonably complete scenes.

We provide an ablation study on the changes we made
on the ForkNet architecture in the Section 2 of the supple-
mentary material.

5.3. Full framework evaluation

We compare our scene reconstruction approach against
the state of the art for scene completion on all 312 test
scenes of the CompleteScanNet based on the IoU metric.
Since our method predicts occupancies while ScanCom-
plete predicts surfaces, we evaluate IoU on both the vis-
ible surface (referred as -s) and the entire occupancy (re-
ferred as -f). We use the same trained network as the one in
the experiments of section [5.2] As for ScanComplete [8]],
we use the three hierarchy levels of training data gener-
ated by our pipeline described in section 4] and trained it
from scratch until all levels converged. In addition, we in-
clude as baseline a framework where ForkNet [47]] replaces
our back-end and its completions are fused into a separated
map (ForkNet+Fusion). Finally, as ablation, we include our
method without CRF regularization.

All the test scenes are reconstructed with the rendered
depths and the skip-frame method as described in our data
generation section in order to evaluate both semantic la-
belling and scene completion. The scene prediction re-
sults are obtained using the proposed incremental pipeline,
apart from ScanComplete which are predicted hierarchi-
cally from three-level of scans.

Results are illustrated in table[2]and figure[] Our method
has the highest IoU score in both visible surface (-s) and
completed regions (-f). The naive integration of single pre-
dictions has the worst performance both qualitatively and
quantitatively, since the predicted geometry often does not
match the ground truth geometry. While ScanComplete is
able to accurately complete the scene and predict semantic
labels, our method obtains a higher accuracy for both recon-
struction and semantics. It is noteworthy that our method

Figure 5: Output of SCFusion on a self-recorded sequence.

runs in real-time with a single voxel level input while out-
performing all other methods.

5.4. Run-time analysis

We present in table[3]a runtime analysis on one sequence
(scene0645_00) of the CompleteScanNet dataset. The sub-
map extraction and fusion operations will block the front-
end pipeline for a short time due to the asynchronous ac-
cess to the global map in the back-end pipeline. Since our
method assumes a known pose, the time related to tracking
is not included in the analysis.

5.5. Real-world scenario

Finally, we show qualitative results of SCFusion on a
recorded office sequence using a Xtion PRO LIVE sen-
sor with the frame-to-model pose estimation method imple-
mented in InfiniTAM [16]. We use the same trained net-
work in section[5.3] The reconstruction results are shown
in figure [5} Our method can successfully obtain semanti-
cally complete scenes on the recorded sequence. Notably,
the network was still trained on CompleteScanNet, which
presents remarkable differences with respect to this test se-
quence. Also noteworthy, SCFusion runs in real-time also
when including the tracking process. Please refer to the sup-
plementary material for the full video.

6. Conclusions

We have proposed SCFusion, the first framework for in-
cremental real-time semantic scene completion. Key ideas
for our proposal are the design of a network that processes
occupancy maps for efficient 3D semantic scene comple-
tion, as well as a specific fusion policy that can integrate
completion with a global map incrementally built by a
SLAM front-end. This fills a gap in the scene completion
literature, arguably being the first approach to run semantic
scene completion incrementally and in real-time. Experi-
mental results show how SCFusion obtains accurate results
both in terms of geometry and semantics, en par or even out-
performing the state of the art for both offline completion of
entire scans and single depth maps.
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7. Supplementary material
7.1. Network architecture

Our network architecture consists of a generator and a
discriminator, which are highlighted in a green and an or-
ange box, respectively (Figure[7). The generator consists of
gated convolutional layers, denoted as GConv(c, k, s,d),
3D ResNet blocks [[14], denoted as Res3D(-,-), 3D trans-
pose convolution layers, denoted as ConvT (¢, k, s, d) and a
SoftMax layer. Where c is the output channels, k is the num-
ber of kernels, s is the stride, d is the dilation. Note that all
the convolutional layers, including inside the Res3D(-, )
are replaced with gated convolutional layers. Apart from
the final GConw(-) layer and Softmax, all operations in the
generator are followed with an instance normalization layer
and a LeakyRelu activation function with a negative slope
ratio of 0.2. As for the discriminator, it consists of five con-
volutional layers, denoted as Conuv(c, k, s, d), all followed
by a spectral normalization operation and a leakyReLu op-
eration, except the final convolutional layer.

7.2. Ablation study
7.2.1 The effect of map regularization

The effect of our map regularization method is illustrated in
figure[f] We highlighted the regions which failed to predict
labels that are corrected by the regularization.

7.2.2 Different network designs

We compare our final design with the two other setups with
the metrics we used to evaluate our network in the main
paper. First, as a baseline, the semantic scene prediction
branch from ForkNet[47]] with the replacement of the in-
put format from the inverted truncated distance function to
the occupancy probability (denote as base). Second, we
replace all the convolutional layers with the gated convolu-
tional layer and add a mask, as an additional input, which
indicates the regions where a completion process may be
needed (denote as base+G). The result is shown in table
and figure 8] It can be seen that the use of gated convolu-
tional layers and a mask improve the overall network per-
formance in a margin. The effect of discriminator slightly
improves the numerical result, while dramatically increases
the prediction in fine details.

7.3. Limitations

Our method uses only geometry input which limits its
ability to distinguish the objects with ambiguous geometry
shape and the objects that only differ from colors. For in-
stance, a small table is adjacent to a chair may be classified
as a sofa (See ﬁgurered circles).

Figure 6: The effect of our regularization method and some
failure cases of our SCFusion. The blue, green, and orange
areas indicate the regions with noticeable improvement by
our regularization method. The red circles show the failure
case of misleading geometry of connecting chair and table,
which result in wrongly label prediction.
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Figure 7: The proposed network architecture. The main network operations is included within the green box, while the
operations of discriminator is shown within the orange box.

Metric | Method | Ceiling | Floor | Wall | Window | Chair | Bed | Sofa | Table | TV | Furni | Object | Mean

base 0.193 | 0.548 | 0.372 | 0.057 | 0.300 | 0.211 | 0.207 | 0.323 | 0.295 | 0.207 | 0.121 | 0.258
IoU base+G | 0.226 | 0.564 | 0.392 | 0.068 | 0.337 | 0.290 | 0.295 | 0.334 | 0.181 | 0.207 | 0.152 | 0.277
Ours 0.197 | 0.541 | 0.379 | 0.108 | 0.310 | 0.194 | 0.266 | 0.322 | 0.659 | 0.219 | 0.148 | 0.304

base 0.561 | 0.691 | 0.654 | 0.189 | 0.501 | 0.398 | 0.319 | 0.582 | 0.367 | 0.381 | 0.321 | 0.451

Precision | e+G | 0535 | 0.757 | 0632 | 0.179 | 0.551 | 0.495 | 0.440 | 0579 | 0.238 | 0.424 | 0.313 | 0.468
Ours | 0432 | 0.680 | 0.591 | 0.248 | 0.528 | 0.304 | 0.378 | 0.505 | 0.771 | 0.410 | 0.300 | 0.468
Recall |__Dase | 0248 [ 0704 [ 0.536 | 0.082 | 0447 [ 0.260 | 0.251 [ 0471 | 0310 | 0314 | 0202 | 0.348

base+G | 0.333 | 0.687 | 0.511 | 0.397 | 0.484 | 0.613 | 0.684 | 0.459 | 0.850 | 0.315 | 0.257 | 0.508
Ours 0.343 | 0.722 | 0.517 | 0.391 0.450 | 0.667 | 0.714 | 0.497 | 0.842 | 0.347 | 0.253 | 0.522

Table 4: Ablation study of the network design. We compare our method (ours) against the baseline ForkNet semantic
branch (base) and the baseline plus an input mask with gated convolutions (base+G).

Ours Ground Truth

Input base base+G m]

D Empty D Ceiling |:| Floor D Wall . Window D Chair . Bed . Sofa . Table . ™V .,Furniture . Objects

Figure 8: The use of gated convolutional layers with an input mask increase the completion ability significantly. Plus the
constraint provided from the discriminator, the network is able to predict more complete scenes more precisely.
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