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INTRODUCTION 

The fusion of  Magnetic Resonance Imaging (MRI) and 

Ultrasound (US) for targeted prostate biopsy can solve 

the diagnostic dilemma of patients with repeated 

negative prostate biopsies seen in the conventional 

Trans-Rectal UltraSound (TRUS) guided systematic 

biopsy. Recently, 
68

Gallium labeled ligand of Prostate 

Specific Membrane Antigen (
68

Ga-PSMA) Positron 

Emission Tomography (PET) was introduced that, in 

conjunction with MRI, provides combined molecular 

and structural information for the detection of Prostate 

Cancer (PCa) [1]. Hence, we developed an open source 

framework [2] that combines the preoperative PET/MRI 

images with TRUS and provides multimodal image 

guidance for targeted biopsy. In this paper, we present 

the technical challenges in the development of 

multimodal image guided prostate biopsy, especially in 

3D TRUS acquisition and multimodal image 

registration. Further, we explain the steps to address 

these specific challenges and some unsolved problems. 

Finally, we discuss the clinical evaluation of the system.   

 

MATERIALS AND METHODS 

The multiparametric MRI and 
68

Ga-PSMA PET were 

acquired on a combined PET/MR system (Siemens 

mMR) with 3T magnetic field strength. The 3D TRUS 

acquisition and biopsy were carried out in the urology 

department of our university hospital. We used a US 

system (Hitachi AVIUS) with a 2D front fire trans-

rectal probe. However, our system is independent of the 

US machine as we are using a video frame grabber 

(StarTech) for image acquisition in HD (1280 × 1024 

pixel). The US probe is tracked by an optical tracking 

system (NDI Polaris). We use a workstation with 2 Intel 

Xeon processors running at 2.13 GHz with 32GB RAM 

and a graphics card (Nvidia GeForce GTX Black Titan). 

 

The clinical workflow has three steps – (i) pre-

interventional 
68

Ga-PSMA PET-MRI image acquisition, 

(ii) TRUS acquisition, 3D reconstruction and image 

registration, and (iii) biopsy as shown in Fig. 1. The 

acquisition of 
68

Ga-PSMA PET-MRI for prostate cancer 

imaging is explained in [1].  

 

 

 
 

Fig. 1 Steps in clinical workflow. 

 

3D TRUS acquisition 

The challenges in 3D TRUS acquisition are precise 

tracking of the 2D US probe, accurate spatial calibration 

of the US probe for different depth settings, and reliable 

3D compounding in the standard anatomical axes.   

 

The spatial calibration of the ultrasound probe, 

acquisition of tracked ultrasound, and 3D compounding 

are done by the fCal application available in PLUS 

framework [3]. We use a reference target attached to the 

biopsy chair, as described in [2], that facilitates the free 

movement of tracking camera and reorientation of the 

3D TRUS volume along the standard anatomical axes. 

 

Multimodal image registration 

The accurate modelling of the prostate deformation 

within clinically acceptable time limits is the main 

challenge for image registration and successfully 

targeting suspicious lesions. The review of various 

commercially available fusion devices is available in 

[4]. Most of these commercial devices use rigid image 

registration. The state of the art research on TRUS/MRI 

image registration is summarized in [5], wherein the 

typical approaches are either surface- or model-based. 

We use surface based deformable registration using 

Coherent Point Drift (CPD) algorithm [6] and compare 

it with rigid anatomical landmark based registration.  
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RESULTS 

Phantom studies  

For the evaluation of surface based elastic registration, 

we acquired MRI and TRUS images of a multimodality 

prostate phantom (model 053-MM, CIRS) that has 

visible structures such as urethra (7 mm) and three 

randomly placed lesions of approximately 5-10 mm. Six 

landmarks were annotated by an expert on images from 

both modalities. 

 

The mean landmark registration errors (LRE) for 

surface based CPD method and rigid registration were 

1.14 mm and 1.87 mm, respectively. The comparison of 

registration by both methods in the form of axial and 

coronal views is shown in Fig. 2. 
 

 
Fig. 2 Surface based elastic algorithm shows better alignment 

compared to rigid registration in phantom studies. 

 

Retrospective study on patient dataset 
 

 
Fig. 3 Surface based elastic algorithm shows better alignment 

compared to rigid registration in patient data. 

 

The 3D TRUS and 
68

Ga-PSMA PET-MRI images were 

acquired as per the method described earlier. The expert 

performed manual segmentation on MRI and TRUS 

images for surface extraction and annotated four pairs of 

anatomical landmarks in each case for the evaluation of 

registration. 

 

We evaluated our registration method on five patient 

datasets. The mean LRE for surface based elastic 

registration was 2.49 mm in comparison to 4.63 mm for 

rigid registration. The outcome of both registration 

approaches for two patient cases is shown in Fig. 3. 

 

Exemplary clinical case  

After validation of the system, we used it in one 

multimodal image-guided biopsy. A 65 year-old patient 

with previous negative biopsy and rising PSA was 

referred for 
68

Ga-PSMA PET-MRI examination and 

follow-up biopsy. In addition to the 10-core systematic 

biopsy, two targeted biopsy were taken from a 

suspicious region in the left apical zone under 

multimodal image guidance. 

 

The histology confirmed significant PCa with a Gleason 

score of 3 + 4 = 7. The targeted biopsy cores showed the 

highest percentage (90%) in pathological tissue. 

DISCUSSION 

The multimodal image guidance shows a value in the 

detection of significant PCa, especially in men with 

previous negative biopsy and rising PSA. Though we 

tried to address some of the challenges in 3D TRUS 

acquisition and multimodal image registration that can 

be done online within short time ~5 min, some other 

issues in the tracking and image registration still need 

further work. The tracking corruption can be improved 

by the preprocessing of tracking stream with kalman 

based estimation. The image based deformation models 

can improve the registration in comparison with surface 

based methods.  
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