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Relative Affine Structure: Canonical Model 
for 3D From 2D Geometry and Applications 

Amnon Shashua and Nassir Navab 

Abstract-We propose an affine framework for perspective views, captured by a single extremely simple equation based on a 
viewer-centered invariant we call relative affine structure. Via a number of corollaries of our main results we show that our 
framework unifies previous work-including Euclidean, projective and affine-in a natural and simple way, and introduces new, 
extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding 
applications. 

Index Terms-Structure from motion, visual recognition, alignment, reprojection, projective reometry, algebraic and geometric 
invariants. 

1 INTRODUCTION 
HE geometric relation between 3D objects and their T views is a key component for various applications in 

computer vision, image coding, and animation. For exam- 
ple, the change in the 2D projection of a moving 3D object is 
a source of information for 3D reconstruction, and for vis- 
ual recognition applications-in the former case the retinal 
changes produce the cues for 3D recovery, and in the latter 
case the retinal changes provide the cues for factoring out 
the effects of changing viewing positions in the recognition 
process. 

The introduction of affine and projective tools into the 
field of computer vision have brought increased activity in 
the fields of structure from motion and recognition in the 
recent few years. The emerging realization is that non- 
metric information, although weaker than the information 
provided by depth maps and rigid camera geometries, is 
nonetheless useful in the sense that the framework may 
provide simpler algorithms, camera calibration is not re- 
quired, more freedom in picture-taking is allowed-such as 
taking pictures of pictures of objects-and there is no need 
to make a distinction between orthographic and perspective 
projections. 

In this paper, we propose a unified framework that in- 
cludes by generalization and specialization the Euclidean, 
projective and affine frameworks. The framework, we call 
”relative affine,” gives rise to an equation that captures 
most of the spectrum of previous results related to 3D- 
from-2D geometry, and introduces new, extremely simple, 
algorithms for the tasks of reconstruction from multiple 
views, recognition by alignment, and certain image coding 
applications. For example, previous results in these areas- 
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such as affine structure from orthographic views, projective 
structure from perspective views, the use of the plane at 
infinity for reconstruction (obtaining affine structure from 
perspective views), epipolar-geometry related results-are 
often reduced to a single-line proof under the new frame- 
work (see Corollaries 1 to 4). 

The basic idea is to choose a representation of projective 
space in which an arbitrarily chosen reference plane be- 
comes the plane at infinity. We then show that under gen- 
eral, uncalibrated, camera motion, the resulting new repre- 
sentations can be described by an element of the affine 
group applied to the initial representation. As a result, we 
obtain an affine invariant, we call relative affzne structure, 
relative to the initial representation. Via several corollaries 
of this basic result we show, among other things, that the 
invariant is a generalization of the affine structure under 
parallel projection and is a specialization of the projective 
structure (projective structure can be described as a ratio of 
two relative affine structures). Furthermore, in computa- 
tional terms the relative affine result requires fewer corre- 
sponding points and fewer calculations than the projective 
framework, and is the only next general framework after 
projective when working with perspective views. Parts of 
this work, as it evolved, have been presented in the meet- 
ings found in [35], [381, and in [281. 

2 RELATED WORK 
The introduction of nonmetric reconstruction from a set of 
cameras was first introduced, under the special case of par- 
allel projection, by [181 and later work on various aspects of 
this framework can be found in [44l, [451,[341,[171,1331. 

The extension to the full projective framework was later 
introduced by [39], [9l, [13], [361 (see [91 for additional re- 
view) with a sample of other relevant work on the topic in 
[lo], t311, [251,[241, [411, PI. 

Independently of us [35], [381, Kumar and Anandan [191, 
Sparr 1401, and Sawhney [32] have developed the theory of 
representing projective space with reference to a planar 
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surface by a parallax term, also coined by Kumar and 
Anandan as ”plane + parallax.” 

3 NOTATION 
We consider object space to be the three-dimensional pro- 
jective space p, and image space to be the two-dimensional 
projective space F’. An object (or scene) is modeled by a set 
of points and let y c  denote a view (arbitrary) of the 
object. Given two views y and y’ with projection centers 
0, 0’ E 9, respectively, the epipoles are defined as the in- 
tersection of the line 00’ with both image planes. A set of 
numbers defined up to scale are enclosed by brackets, a set 
of numbers enclosed by parentheses define a vector in the 
usual way. Because the image plane is finite, we can assign, 
without loss of generality, the value 1 as the third homoge- 
neous coordinate to every observed image point. That is, if 
(x, y )  are the image coordinates of some point (with respect 
to some arbitrary origin-say the geometric center of the 
image), then p = [x, y, 11 denotes the homogeneous coordi- 
nates of the image plane. 

When only two views y’ are discussed, then points in 
y a r e  denoted by p,  their corresponding points in y’ are 
denoted by p’, and the epipoles are v E yand v’ E y’. The 
symbol = denotes equality up to a scale, GL, stands for the 
group of n x n matrices, and PGL, is the group defined up 
to a scale. 

A camera coordinate system is an Euclidean frame de- 
scribing the actual internal geometry of the camera 
(position of the image plane relative to the camera center). 
If p = (x, y, l)T is a oint in the projective coordinate repre- 
sentation, then IVT p represents the camera coordinates, 
where M is an upper-diagonal matrix containing the inter- 
nal parameters of the camera. When M is known the cam- 
era is said to be internally calibrated. The material pre- 
sented in this paper does not require further details of in- 
ternal calibration-such as its decomposition into the com- 
ponents of principle point, image plane aspect ratios and 
skew-only the mere existence of M is required for the re- 
mainder of this paper. We will refer to the coordinates 
p = [x, y, 11 as projective image coordinates, whereas M’p 
will be referred to as camera coordinates. 

J? 

4 PRELIMINARIES 
The classic equation of camera motion, taking into consid- 
eration the internal parameters of the cameras, can be de- 
scribed as follows. Let z and z’ be the depth of a point P 
with respect to the first and second camera positions. Let 
R, T be the rotational and translational components of cam- 
era displacement ( R  E O,’), and let M and M describe the 
internal camera parameters of the first and second cameras, 
respectively. Since zM’p represents the space coordinates 
of P with respect to the first camera frame, and z’M-’p’ are 
the coordinates of P with respect to the second camera 
frame, we obtain the following equation: 

z’M-’p’ = z x h l ‘ p  + T, 

or 
1 

p‘ z M’XM-’p + M‘T 

Often it is assumed that M = M ,  and, furthermore, that M = I ,  
otherwise M ,  M’ are recovered off-line during a calibration 
procedure. The location of the epipole v ’ in the second im- 
age plane is defined (up to scale) by M‘T (which in a cali- 
brated frame is simply the translational component of cam- 
era motion), and the epipole v in the first image plane is 
defined by MR’T. 

Part of what will be shown later in the paper is that 
R, M ,  M’ can be replaced by a single entity, a projective 
transformation (homography) due to some arbitrary plane 
captured by three point matches across the two views, and 
z is correspondingly replaced by a ”relative affine” invari- 
ant. We now describe the concept of a homography and its 
connection to 3D-from-2D geometry. 

Assume a coplanar configuration of points in space pro- 
jecting onto corresponding points p I ,  p:, i = 1, ..., n (n 2 4) 
across the two views. The fundamental theorem of plane 
projectivity states that the entire mapping from one view to 
the other is determined by four of the corresponding points 
(assuming a general configuration of the four points on the 
plane). The mapping is a projective transformation, a 
homography, described by a matrix A E PGL,. In other 
words, A p ,  = pl‘, i = 1, ..., n, and since A has eight parame- 
ters (set A,, = 1, for example), and each point match con- 
tributes two linear equations, we can recover A linearly 
using four point matches. 

In general, however, we would like to work with 3D 
point configurations rather than coplanar sets, and since the 
homography A will play a crucial role in the 3D-from-2D 
geometry, we must first find a general way to get around 
the problem of recovering A from a coplanar set of four 
points (in a 3D configuration, it is unlikely that four point 
matches are coming from a coplanar set in space). The fol- 
lowing proposition is the result of a simple observation that 
the epipoles can be used instead of a fourth pair of corre- 
sponding points, for establishing the homography due to 
any arbitrary plane in space. 

PROPOSITION 1. A projective transformation, A, which is deter- 
mined from three arbitrary, noncollinear, corresponding 
points and the corresponding epipoles, is a prolective 
transformation of the plane passing through the three object 
points which prolect onto the corresponding image points. 

The proof is straightforward and can be found in [36]. 
Given the epipoles, therefore, we need just three points to de- 
termine the correspondences of all other points coplanar with 
the plane passing through the three corresponding object 
points. Note that in a 3D configuration of points, the plane is a 
virtual plane, i.e., may not correspond to any physical planar 
facet of the object. We will address later how the epipoles can 
be obtained, and for now we assume they are given. 

The concept of the ”relative affine” framework described 
below is based on, first, connecting the matrix A 
(determined by three arbitrary point matches), the epipole 
71’ (translational component of motion) and a structure pa- 
rameter (Theorem l). Second, relating A to the parameters 
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R, T, M, M and the parameters of the virtual plane deter- 
mined by the three point matches (Theorem 2). Third, uni- 
fying by generalization and specialization of the two theo- 
rems most of the previous and current results related to 3D- 
from-2D geometry. 

5 RELATIVE AFFINE STRUCTURE 
For the sake of clarity, we describe the general result as one 
that naturally extends from affine structure under parallel 
projection. Koenderink and Van-Doorn [ 181 have described 
the 3D affine geometry resulting from two views obtained 
by parallel projection from the 3D object onto the 2D image 
plane. Their approach leads to a ”plane + parallax” para- 
digm, described as follows. 

Fig. 1. Affine structure under parallel projection is dld,. This can be 
seen from the similarity of trapezoids followed by the similarity of trian- 

Consider Fig. 1, and assume that three arbitrary (non- 
collinear) matching points were identified in both views y 
and y’, and let the plane n be the plane defined by the three 
corresponding object points in 3D. The triplet of matching 
image points define a unique affine transformation A (a 2 x 3 
matrix) mapping all points of n from image w to image y’. 
For any point p = (x, y )  E ylet p’ = Ap. Let P be some 3D 
point not lying on n and let 13 be at the intersection of the 
line of sight (the projecting ray) with n. Similarly, let Po E n: 
and Fo be some fixed point and its projection onto n, re- 
spectively. One can clearly see that the trapezoids 
P, P”, p’, p’ and Po, F0, p i ,  are similar. Hence the ratio, 

P’ - F 
Po - Po 

- jj’ 

- 
is measurable from the image planes and is equal to, 

which, in turn, is equal to (by similarity of triangles) to the 
ratio d /d ,  of the perpendicular distances of P and Po from the 
plane n. In other words, an affine invariant in space whose 
value is equal to d /d ,  is recovered from image measurements 
alone-three matching points to recover the affine transfor- 
mation associated with some plane, call it the ”reference 
plane” and a fourth point P, to set up a mutual scale. 

In the general perspective case, a projective invariant (or 
projective coordinates) can be measured from two views, 
but instead of a basis of four points, one would need five 
PI, [131, [361. 

In what follows, we approach the general perspective 
case via an intermediate structure representation, referred 
to as a ”relative affine structure,” which is a natural exten- 
sion of the affine construction we have seen above. We will 
continue to use the language of a homography matrix 
(which is the generalization of a 2D affine transformation) 
and a parallax term from some reference plane, but now the 
results will hold for perspective views. This approach has 
the advantage of unifying the affine and projective cases in 
a very simple an intuitive way, and produces a simple 
method for computing invariants from perspective views. 

THEOREM 1 (Relative Affine Structure). Let n be some arbi- 
trary plane and let Pl E n, j = 1,2,3 projecting onto p,, p; 
in views w’, respectively. Let p ,  E  and p i  E ly’ be 
projections of P o p  n. Let A E PGL, be a komograpky of 2” 
determined b y  the equations Ap, E p; ,  j = 1, 2, 3, and 
Av = v’, scaled to satisfy the equation p i  5 Apo + v’. 
Then,  for a n y  point P E 2.‘ projecting onto p E Wand p‘ E 

y‘, w e  have 

(1) 

The coefficient k = k ( p )  is independent of VI, i.e., is invari- 
ant  to the ckozce of the second view, and the coordinates of 
P are [x, y ,  1, kl . 

PROOF. We assign the coordinates (1, 0, 0, 01, (0, 1, 0, 01, 
(0, 0, 1, 0) to P,, P,, P,, respectively. Let 0 and 0’ be 
the projection centers associated with the views Wand 
ty’, respectively, and let their coordinates be (0, 0, 0, l), 
(1,1,1, l), respectively (see Fig. 2). This choice of repre- 
sentation is always possible because the two cameras 
are part of @. By construction, the point of intersection 
of the line 00’ with n has the coordinates (1,1,1,0). 

Let P be some object point projecting onto p, p’. The 
line intersects na t  the point (a, p, 0). The coor- 
dinates a, p, y can be recovered by projecting the im- 
age plane onto n, as follows. Given the epipoles v E w 
and v‘ E y‘, we have by our choice of coordinates that 
p,, p2, p,, and v are projectively (in 2“) mapped onto e, = 

(1, 0, 01, e, = (0, 1, O), e, = (0, 0, 11, and e4 = (1, 1, 11, re- 
spectively. Therefore, there exists a unique element A, 
E PGL, that satisfies Alpl = el, j = 1,2,3, and A,v = e,. 
Note that we have made a choice of scale by setting 
A,v to e4, this is simply for convenience as will be clear 
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later on. Let A l p  = (a, p, 9. 
Similarly, the line mintersects n at (a’, p’, y‘, 0). Let 
A, E PGL, be defined by A,p; = e,, j = 1, 2, 3, and 

A,u ’ = e4. Let A,p’ = (a’, /r, y’) .  Since P can be de- 
scribed as a linear combination of two points along 
each of the lines m, and o‘p , we have the following 
equation: 

from which it readily follows that k = s (i.e., the trans- 
formation between the two representations of @ is af- 
fine). Note that since only ratios of coordinates are 
significant in p, k is determined up to a uniform 
scale, and any point Po g x can be used to set a mutual 
scale for all views-by setting an appropriate scale for 
A, for example. The value of k can easily be deter- 
mined from image measurements as follows: we have 

Multiply both sides by Ai1 to obtain pp‘ = A p  + kv ‘, 
where A = Ai’A,. Note that A E PGL, is a homogra- 
phy between the two image planes, due to n, deter- 
mined by p ;  = Ap, , ] = 1, 2, 3, and Av = U ’ (therefore, 

can be recovered directly without going through A,, A*). 
Similar proofs that a homography of a plane can be 
recovered from three points and the epipoles are 
found in [361, [311. Since k is determined up to a uni- 
form scale, we need a fourth correspondence p,,pi ,  
and let A, or U’, be scaled such that p i  E A p ,  + U’. Fi- 
nally, [x, y, 1, k]  are the homogeneous coordinates rep- 
resentation of P, and the 3 x 4 matrix [A, U’] is a camera 
transformation matrix between the two views. U 

The key idea in Theorem 1 was to use both camera cen- 
ters as part of the reference frame in order to show that the 
transformation between an arbitrary representation of 
space as seen from the first camera and the representation 
R as seen from any other camera position, can be described 
by an element of the affine group. In other words, we have 
chosen an arbitrary plane n and made a choice of repre- 
sentation 2$ in which n is the plane at infinity (i.e., K was 
mapped to infinity-not an unfamiliar trick, especially in 
computer graphics). The representation Ro is associated 
with [x,  y, 1, k]  where k vanishes for all points coplanar with 
n, which means that nis the plane at infinity under the rep- 
resentation &. What was left to show is that nremains the 
plane at infinity under all subsequent camera transforma- 
tions, and therefore k is an affine invariant. Because k is in- 
variant relative to the representation % we named it 
”relative affine structure”; this should not be confused with 
the term ”relative invariants” used in classical invariant 
theory (invariants multiplied by a power of the transfor- 
mation determinant, as opposed to ”absolute invariants”). 

P 

Fig. 2. See proof of Theorem 1. 

In practical terms, the difference between a full projec- 
tive framework (like in [9], [13], [36]) and the relative affine 
framework can be described as follows. In a full projective 
framework, if we denote by f the invariance function acting 
on a pair of views indexed by a fixed set of five corre- 
sponding points, then f( w;, %) is fixed for all i, 1. In a relative 
affine framework, if we denote f o  as the invariance function 
acting on a fixed view yand an arbitrary view w; and indexed 
by a fixed set of four corresponding points, then fO(v w;) is 
fixed for all i. 

With comparison with the affine construction described 
in Fig. 1, we see that the same ingredients are used. A 
homography matrix of some plane K replaces the 2D affine 
transformation and a parallax term k replaces dld, ,  and the 
fixed point Po is used to set a mutual scale. The difference is 
that the invariance is with respect to the camera parameters 
of view y’ alone, and in order to compute the homography 
matrix we need in addition the epipolar points. The number 
of image matching points we use for a basis remains four. 
We will see the relationship to the projective invariance 
later in this section. 

To complete the geometric picture we derive next the 
value of the parallax term k as a function of distances from 
the reference plane n. 
THEOREM 2. Let n denote a reference plane and Po n be some 

fixed point, and P be a point whose corresponding points p,  p’ 
zn both views satisfy (1). Let d, d, denote the perpendicular 
distances of P and P, fvom n, and let z, z, denote the dis- 
tances of P and Po fvom the f irst  camera center 0. Then  the 
parallax t e rm k is :  

zo d 
all 

k = 

PROOF. Let M ,  M be the transformation matrices from cam- 
era coordinate systems to standard coordinates of first 
and second camera, respectively. Namely, z X ‘ p  and 
z’Mr’p’ are the Euclidean coordinates of the point P in 
the first and second camera frames. Let R, T be the ro- 
tational and translational components of the coordinate 
change between the two cameras, thus we have: 
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1 
p' G M'XM-'p + - M'T .  z 

In the case P E E, then n T ( z M ' p )  = d, where n (normal 
vector) and d, (scalar) are the parameters of z in the 
first camera coordinate system. We obtain, 

1 1  
p' G M'lUC'p + --M''T(znTM-'p) 

d, 

= M' R + -TnT M-'p = Ap ( 1 
In other words, the homography matrix associated 
with xis 

-, 

A ~ M '  R+-  M-', [ t'J 
which is the generalization of the classical motion of 
planes in the calibrated case [ll], [421. 
Let v' = M'T, then for a general point P we have: 

1 
p' E MXM- 'p  + -v' z 

where d = d, - n T ( z M 1 p )  the (perpendicular) signed 
distance from P to n. Since the value of the parallax 
term k in (1) is normalized by the parallax term of Po 
(by appropriately scaling v'), then d, drops out and 
we are left with, 

k = - -  zo d 
z do '  

where do is the (perpendicular) signed distance of Po 
from z (see Fig. 3a). 0 

With the corollaries below we put the relative affine 
framework within the familiar context of affine structure 
under parallel and perspective projections, Euclidean 
structure and projective structure. 
COROLLARY 1. Relative affine structure k approaches affine 

structure under parallel projection when 0 goes to in- 
finity, i.e., k + when 0 + -. 

PROOF. When 0 + w, then z, z, -+ 00, and $ tends to 1. Thus 

k = 3 A  + (see Fig. 1). 0 = 4 
COROLLARY 2. When the plane n is at infinity (with respect to 

the camera coordinate frame), then relative affine structure 
k is afine structure under perspective k = z, /z ,  A = 

MM', and, if in addition, the cameras are internally 
calibrated as M = MI = I, then A = R. 

tends to PROOF. When z is at infinity, then d, do + 00, and 

1. Thus k = L d + : .  Also, d, + 00, thus A + 
d o  

MM' (see Fig. 3b). 0 

In Theorem 2, the homography A due to the plane z is 
described (by (2)) as a product of the rigid camera motion 
parameters, the parameters of n, and the internal camera 
parameters of both cameras. This result is a natural exten- 
sion of the classical motion of planes found in [ll], [42], and 
also in [24]. Equation (2) also implies that any homography 
matrix A can be described by some other homography ma- 
trix, the epipole and four parameters: 

1 
A = A, + -v'nT, d 

where A, is a homography matrix associated with some 
plane n, and n, d are the parameters describing the plane 
associated with the homography A. A similar form of this 
equation was shown also in [141. 

The relative affine structure k is described as a product 
of the affine structure under parallel projection @/do) and a 
term that contains the location of the camera center of the 
reference view. Geometrically, k is the product of two ra- 
tios, the first being the ratio of the perpendicular' distance 
of a point P to the plane nand the depth z to the reference 
camera, and the second ratio is of the same form but ap- 
plied to a fixed point Po which is used to set a uniform scale 
to the system. Therefore, when the depth goes to infinity 
(projection approaches orthography), then k approaches the 
ratio of the perpendicular distances of P from z and the 
perpendicular distance of Po from n-which is precisely the 
affine structure under parallel projection we saw earlier in 
this section. Thus, relative affine structure is a generaliza- 
tion in the sense of including the center of projection of an 
arbitrary camera, and when the camera center goes to in- 
finity we obtain an affine structure which becomes inde- 
pendent of the reference camera. 

Another specialization of relative affine structure was 
shown in Corollary 2 by considering the case when n is at 
infinity with respect to our Euclidean frame (i.e., really at 
infinity). In that case k is simply inverse depth (up to a uni- 
form scale factor), and the homography A is the familiar 
rotational component of camera motion (orthogonal matrix 
R)  in the case of calibrated cameras, or a product of R with 
the internal calibration parameters. In other words, when E 
is at infinity with respect to our camera coordinate frame, 
then relative affine becomes affine (the plane at infinity is 
preserved under all representations). Notice that the rays 
towards the plane at infinity are parallel across the two 
cameras (see Fig. 3b). Thus, there exists a rotation matrix 
that aligns the two bundles of rays, and following this line 
of argument, the same rotation matrix aligns the epipolar 
lines (scaled appropriately) because orthogonal matrices 
commute with cross products. We have therefore the algo- 

1. Note that the distance can be measured along any fixed direction. We 
use the perpendicular distance because it is the most natural way of de- 
scribing the distance between a point and a plane. 
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rithm of [21] for determining the rotational component of 
standard calibrated camera motion, given the epipoles. In 
practice, of course, we cannot recover the homography due 
to the plane at infinity unless we are given prior informa- 
tion on the nahre of the scene structure 1301, or the camera 
motion is purely translational [26]. Thus in the general case, 
we can realize either the relative affine framework or the 
projective framework. 

p\ 

(4 

Fig. 3. (a) Relative affine Structure: k = 5L. (b) Affine structure = d o  

under perspective (when x is at infinity). Note that the rays % and 
O‘c are parallel, thus the homography is the rotational component of 
motion. 

__ 

COROLLARY 3. The projective structure of the scene can be de- 
scribed as the ratio of t w o  relative affine structures each 
with respect to  a distinct reference plane n, 2 ,  respectively, 

which in t u r n  can be described as the ratio of affine struc- 
tures under parallel proiection with respect t o  the same t w o  
planes. 

PROOF. Let k, and k,  be the relative affine structures with 
respect to planes n and 2 ,  respectively. From Theo- 
rem 2 we have that k = 2d and kA = 24. The ra- 

tio k,lk, removes the dependence on the projection 

center 0 ( z / z ,  cancels out) and is therefore a projec- 
tive invariant (see Fig. 4). This projective invariant is 
also the ratio of cross-ratios of the rays 
with their intersections with the two planes n and k ,  
which was introduced in [36] as ”projective depth.” It 
is also the ratio of two affine structures under parallel 
projection (recall that d / d ,  is the affine structure; see 

The connection between the relative affine structure and 
projective structure is shown in the corollary above. Projec- 
tive invariants are necessarily described with reference to 
five scene points [ 9 ] ,  or equivalently, with reference to two 
planes and a point laying outside of them both [36]. Corol- 
lary 3 shows that by taking the ratio of two relative affine 
structures, each relative to a different reference plane, then 
the dependence on the camera center (the term z , / z )  drops 
and we are left with the projective invariant described in 
1361, which is the ratio of the perpendicular distance of a 
point to two planes (up to a uniform scale factor). 
COROLLARY 4. The ”essential” matrix  E = [v ‘IR is a particular 

case of a generalized matrix  F = [v ’]A. The  matrix  F, re- 
ferred to  as ”fundamental” matrzx in [8] ,  is unique and 
does not  depend o n  the plane n. Furthermore, Fv = 0 and 
FTv’ = 0. 

PROOF. Let p E p’ E I/ be two corresponding points, and let 
I ,  1‘ be their corresponding epipolar lines, i.e., 1 = p x v 
and I‘ p‘ x U ’. Since lines are projective invariants, 
then any point along 1 is mapped by A to some point 
along 1‘. Thus, 1’ v ’ x Ap, and because p’ is incident 
to 1’, we have p”(v ’ x A p )  = 0, or equivalently: 
~ ’ ~ [ v ’ ] A p  = 0, or p’TFp = 0, where F = [u’IA. From Cor- 
ollary 2, A = R in the special case where the plane n is 
at infinity and the cameras are internally calibrated as 
M = M = I ,  thus E = [v ’ ] X  is a special case of F. The 
uniqueness of F follows from substitution of A with 
(2 )  and noting that [U ’IT = 0, thus F = [v ’IMRM’. Fi- 
nally, since Av U’, [v’]Av E [v‘lv’ = 0, thus Fv = 0, 

0 

Corollary 4 unifies previous results on the nature of 
what is known by now as the ”fundamental matrix” [9] ,  [8] ,  
[lo]. It is shown, that for any plane nand its corresponding 
homography A we have F = [u’IA. First, we see that given a 
homography, the epipole U’ follows by having two corre- 
sponding points coming from scene points not coplanar 
with n-an observation that was originally made by [21]. 
Second, F is fixed, regardless of the choice of n, which was 
shown by using the result of Theorem 2. As a particular 
case, the product [v’]X remains fixed if we add to R an ele- 
ment that vanishes as a product with [v’l-an observation 

n 2 a, n = d, 

and 

Fig. 1). 0 

and AT[v’lTv’ = -AT[v’lv’ = 0, thus FTv’ = 0. 
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that was made previously by [15]. Thirdly, the ”essential” 
matrix [22], E = [v’]X, is shown to be a specialization of F in 
the case n is at infinity with respect to the world coordinate 
frame and the cameras are internally calibrated as A4 = 111’ = I. 

y 
’0 

Fig. 4. Projective-depth [36] is the ratio of two relative affine structures, 
each with respect to a distinct reference plane, which is also the ratio 
of two affine structures (see Corollary 3 for more details). 

Fig. 5. (a, b): Views, out of a sequence of ten views, of a sneaker. The 
frames shown here are the first, and tenth of the sequence. The over- 
layed squares mark the corresponding points that were tracked and 
subsequently used for our experiments. (c, d): The first and last views 
of the sequence of six views of a cube. These were the pair of views 
used for our second set of reconstruction results. Corresponding points 
are marked by squares, and points on the reference plane are marked 
by overlaid crosses. 

5.1 Application I: Reconstruction 
Taken together, the results above demonstrate the ability to 
compute relative affine structure using many points over 

two views (more than two views can be accommodated 
easily in this framework, but we do not address this here). 
At minimum we need two views and four corresponding 
points and the corresponding epipoles to recover k for all 
other points of the scene whose projections onto the two 
views are given. Let pl, and pl’ i = 0, ..., n denote the ith im- 
age point on frame wand w‘. Let A denote the homography 
from frame to frame 1J, v, v’ the corresponding epipoles 
such that Av v’, and let k, denote the relative affine 
structure of point i. We follow these steps: 

Compute epipoles v, v’ using the relation piTFp, = 0, 
over all i. Eight corresponding points are needed for a 
linear solution, and a least-squares solution is possible 
if more points are available. In practice the best re- 
sults were obtained using the non-linear algorithm of 
[61. The epipoles follow by F,v, = 0 and FT$ = 0 181. 
The latter readily follows from Corollary 4 as 
Iv’IA I 1 1 -  ‘U = [v;Iv; = 0 and A:[v;lTv; = -A:Lv;lv; = 0 .  
Compute A from the equations Ap, = p,’, i = 1, 2, 3, 
and Av U’. This leads to a linear set of eight equa- 
tions for solving for A up to a scale. A least squares 
solution is available from the equation p,’[v’]Ap, = 0 
for all additional points (Corollary 4). Scale A to sat- 
isfy p: = Ap, + v’. 
Relative affine structure k, is given by p: E Ap, + k,v’ . 
The projective coordinates of the scene are given by 
[x,, y!, 1, k,] and the camera transformation matrix is 
[A, v‘l. 

5.2 Application II: Recognition by Alignment 
The relative affine invariance relation, captured by Theo- 
rem 1, can be used for visual recognition by alignment ([43], 
[16], and references therein). In other words, the invariance 
of k can be used to “reproject” the object onto any third 
view p”, as follows. Given two ”model” views in full corre- 
spondence p, ++ pi, i = 1, ..., n, we recover the epipoles and 
homography A from Ap, E pi, i = 1,2,3, and Av U’. Then 
the corresponding points pz” in any third view satisfy p” 
B p  + kv”, for some matrix B and epipole U”. One can solve 
for B and v“ by observing six corresponding points between 
the first and third view. Once B, U’’ are recovered, we can 
find the estimated location of pl“ for the remaining points 
p,,  i = 7, ..., 12, by first solving for k, from the equation 
pi E Ap, + k,v’, and then substituting the result in the 
equation f?:z Bp, + k,v”. Recognition is achieved if the dis- 
tance between p: and f?:, i = 7, ..., n, is sufficiently small. 
Other methods for achieving reprojection include the 
epipolar intersection method (cf. [27], [5] ,  [12]), or by using 
projective structure instead of the relative affine structure 
1361 In all the above methods the epipolar geometry plays a 
key and preconditioned role. More direct methods, that do 
not require the epipolar geometry can be found in [37]. 

5.3 Application 111: Image Coding 
The reprojection paradigm, described in the previous sec- 
tion, can serve as a principle for model-based image com- 
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pression. In a sender/receiver mode, the sender computes 
the relative affine structure between two extreme views of a 
sequence, and sends the first view, the relative affine sca- 
lars, and the homographies and epipoles between the first 
frame and all the intermediate frames. The intermediate 
frames can be reconstructed by reprojection. Alternatively, 
the sender send the two extreme views and the homogra- 
phies and epipoles between the first and all other interme- 
diate views. The receiver recovers the correspondence field 
between the two extreme views, and then synthesizes the 
remaining views from the received parameters of homo- 
graphies and epipoles. In case the distance between the two 
extreme views is "moderate," we found that optical flow 
techniques can be useful for the stage of obtaining the cor- 
respondence field between the views. Experiments can be 
found later in the text, and more detailed experiments con- 
cerning the use of optical flow in full registration of images 
for purposes of model-based image compression can be 
found in [4]. 

(b) ( 4  
Fig. 6. Results of 3D reconstruction of the collection of sample points. 
(a) The sudace of the shoe reconstructed (relative affine) from around 
100 points followed by a membrane interpolation (b), and (c) Two ex- 
treme views of the reconstructed (relative aTTlne) cube. Note that the 
cube appears stretched because the reconstruction is up to a projec- 
tive transformation from the Euclidean structure. 

EXPERIMENTAL RESULTS 
The following experiments were conducted to illustrate the 
applications that arise from the relative affine framework 
(reconstruction, recognition by alignment, and image coding) 
and to test the algorithms on real data. The performance un- 
der real imaging situations is interesting, in particular, be- 
cause of the presence of deviations from the pin-hole camera 
model (radial distortions, decentering, and other effects), and 
due to errors in obtaining image correspondences. 

Fig. 7. Graphic comparison between the true and reconstructed struc- 
ture (see text). 

We have selected two objects for experiments. The first 
object is a sneaker (shown in Fig. 5a, b) with added texture 
to facilitate the correspondence process. The sneaker is a 
challenging object because of its complexity, i.e., it has a 
shape of a natural object and cannot easily be described 
parametrically (as a collection of planes or algebraic sur- 
faces). However, we do not have ground-truth data of the 
sneaker, hence the performance of the reprojection and im- 
age coding tasks can be appreciated at a quantitative level, 
whereas the performance of the reconstruction method can 
be appreciated only at a qualitative level. 

The second object is a cube (shown in Fig. 5c, d). The se- 
quence, with correspondences and true 3D data, is available 
from the computer vision group at the University of Massa- 
chusetts at Amherst. Hence, one can measure the perform- 
ance of reconstruction at a quantitative level. Reconstruc- 
tion results on this set by other approaches can be found in 
[71,[291, [201, [451,[11. 

On the sneaker images, a set of points were manually 
selected on one of the frames, referred to as the first frame, 
and their correspondences were automatically obtained 
along all other frames used in this experiment 
(corresponding points are marked by overlapping squares 
in Fig. 5). The correspondence process is based on an im- 
plementation of a coarse-to-fine optical-flow algorithm 
based on 1231 and described in [31. The surface was recon- 
structed with respect to the ground plane (that served as a 
reference plane) and transformed to a camera coordinate 
system by assuming that the ground plane is parallel to the 
image plane (it is actually not). Fig. 6a shows the recon- 
structed surface followed by a membrane interpolation. For 
better surface fitting, around 100 matching points were 
used. The reconstructed surface appears faithful to the true 
structure of the sneaker. 

Epipoles were recovered by either one of the following 
two methods. First, by using the four ground points to re- 
cover the homography A, and then by Corollary 4 to com- 
pute the epipoles using all the remaining points in a least 
squares manner. Second, using the non-linear algorithm 
proposed by [61. The two methods gave rise to very similar 
results for reconstruction, and slightly different results for 
reprojection (see later). 

For the cube object, a face of the cube was selected as a 
reference plane (the face marked by overlaid crosses). The 
homography A was recovered using four coplanar points or 
from three corresponding points and the epipoles 
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(a) (b) 
Fig. 8. Results of reprojection onto the tenth frame. Epipoles were 
recovered using the ground plane homography (see text). The re- 
projected points are marked by crosses, and should be in the center of 
their corresponding square for accurate reprojection. (a) Structure was 
recovered between the first and fifth frames, then re-projected onto the 
tenth frame (large base-line). Average error is 1.1 pixels with std of 
0.98. (b) Structure was recovered between the first and second frames 
(small base-line situation) and then re-projected onto the tenth frame. 
Average error is 7.81 pixels with std of 6.5. 

(Proposition 1). In the latter case, the epipoles were recov- 
ered by the implementation described in 161. 

Relative affine structure was recovered using the two 
views displayed in Fig. 5c, d. For purposes of display of the 
relative affine reconstructed 3D points of the cube, we as- 
sumed that M = M = I and that the reference plane is par- 
allel to the image plane, and then with a simple calculation 
transformed k into z (depth). Since these assumptions are 
not completely met, the reconstructed cube is slightly 
stretched and sheared (the reconstruction cannot be worse 
than some projective transformation of the cube), as seen in 
Fig. 6b, c. The reconstructed points are shown from extreme 
views from which errors in reconstruction would clearly 
show up in display. As can be seen, the points are situated 
reasonably well on the three faces of the cube. The lines in 
the display were added for convenience and were com- 
puted by the intersection of the least-squares approxima- 
tion to the three reconstructed faces of the cube. 

For a more quantitative evaluation of accuracy we recov- 
ered the 3D projective transformation that maps [x, y, 1, k] to 
[X, Y, Z,  11. In general this can be done by having at least five 
ground points (points whose X, U, Z coordinates are known), 
or by employing constraints such as coplanarity, perpendicu- 
lar lines and planes in the scene, and known distances be- 
tween points in the scene (the latter constraint is non-linear). 
Since the true 3D data is provided with the sequence we chose 
the former method. To compare our results with those re- 
ported in [7], [29], [ZO], [45], [l], the level of error was calcu- 
lated as the ratio of the average mean square error in depth 
with the overall average depth of the cube. The average depth 
values of the sample points on the cube is 626.48 units. The 
average error we found between the the given depth values 
and the reconstructed values is 1.43 (std 1.99), which provides 
a 0.2% level of relative error. The range of error levels reported 
in [71, 1291, [20], 1451, [1] was 0.2-0.7%. In other words, the ac- 
curacy level we obtained with the gven data is on average 
1 /500 of the extent of the object from the camera. It should be 
noted that these measures of performance are not complete 
because the level of accuracy on obtaining the corresponding 
feature points was not provided with the data. 

Finally, a graphic comparison between the true and re- 
constructed structure of the cube is shown in Fig. 7 by dis- 
playing a view of the cube in which both the true and re- 
constructed structure are overlaid. 

In the reprojection application (see Section 5.21, relative 
affine structure was recovered using the first and in- 
between views, and re-projected onto the last view of the 
sequence. Note that this is an extrapolation example, 
thereby performance is expected to be poorer than interpo- 
lation examples, i.e., when the re-projected view is in- 
between the model views. The interpolation case will be 
discussed in the next section, where relevance to image 
coding applications is argued for. 

In general, the performance was better when the ground 
plane was used for recovering the epipoles (i.e., first the 
homography matrix due to the ground plane was recov- 
ered, and then used to recover the epipoles, rather than first 
recovering the fundamental matrix). When the intermediate 
view was the fifth in the sequence (Fig. 5c), the average er- 
ror in reprojection was 1.1 pixels (with standard deviation 
of 0.98 pixel). When the intermediate view was the second 
frame in the sequence (Fig. 5b), the results were poorer (due 
to small base-line and large extrapolation) with average 
error of 7.81 pixels (standard deviation of 6.5). These two 
cases are displayed in Fig. 8. The re-projected points are 
represented by crosses overlayed on the last frame (the re- 
projected view). 

When the epipoles were recovered directly from the 
fundamental matrix, the results were as follows. With the 
fifth frame, the average error was 1.62 pixels (standard de- 
viation of 1.2); and with the second frame (small base-line 
situation) the average error was 13.87 pixels (standard de- 
viation of 9.47). Note that because all points were used for 
recovering the epipoles, the reprojection performance only 
indicates the level of accuracy one can obtain when all the 
information is being used. In practice we would like to use 
much fewer points from the reprojected view, and there- 
fore, reprojection methods that avoid the epipoles all to- 
gether would be preferred-an example of such a method 
can be found in [371. 

For the image coding paradigm (see Section 5.31, relative 
affine structure of the 34 sample points were computed 
between the first and last frame of the 10 frame sequence 
(Fig. 5a, d). Fig. 5a shows a graph of the average reprojec- 
tion error for all the intermediate frames (from second to 
ninth frames). Fig. 5b shows the relative error normalized 
by the distance between corresponding points across the 
sequence. We see that the relative error generally goes 
down as the reprojected frame is farther from the first 
frame (increase of base-line). In all frames, the average error 
is less than one pixel, indicating a relatively robust per- 
formance in practice. 

7 SUMMARY 
The framework of ”relative affine” was introduced and 
shown to be general and sharper (in the sense of requiring 
four rather than five basis points) than the projective results 
for purposes of 3D reconstruction from two views and for 
the task of recognition by alignment. One of the key ideas 
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and tools than those used here and in [35], [38]. 
This "middle ground approach has several advantages. 

First, the results are sharper than a full projective recon- 
struction approach ([8] ,  [15], [361) where five scene points 
are needed. The increased sharpness translates to a re- 
markably simple framework captured by a single equation 
(1). Second, the manner in which the results were derived 
provides the means for unifying a wide range of other pre- 
vious results, thus obtaining a canonical framework. Fol- 
lowing Theorem 2, the corollaries show how this "middle 
ground reduces back to full affine structure and extends 
into full projective structure (Corollaries 1 and 3). The cor- 
ollaries also show how the "plane at infinity" is easily ma- 
nipulated in this framework, thereby making further con- 
nections among projective affine and Euclidean results in 
general and less general situations. The corollaries also 
unify the various results related to the epipolar geometry of 
two views: the Essential matrix of [22], the Fundamental 
matrix of [8] ,  and other related results of 1151 (Corollary 4). 
All the above connections and results are often obtained as 
a single-line proof and follow naturally from the relative 
affine framework. 
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Fig. 9. Error in reprojection onto the intermediate frames (2-9). Struc- 
ture was computed between frames one and ten. (a) average error in 
pixels, (b) relative error normalized by the displacement between cor- 
responding points. 

in this work is to define and recover an invariant that 
stands in the middle ground between affine and projective. 
The middle ground is achieved by having the camera center 
of one arbitrary view as part of the projective reference 
frame (of five points), thus obtaining the first result de- 
scribed in Theorem l (originally in [35]) .  The result simply 
states that under general uncalibrated camera motion, the 
sharpest result we can obtain is that all the degrees of free- 
dom are captured by four points (thus the scene may un- 
dergo at most 3D affine transformations) and a single un- 
known projective transformation (from the arbitrary 
viewer-centered representation R, to the camera coordinate 
frame). The invariants that are obtained in this way are 
viewer-centered since the camera center is part of the refer- 
ence frame and are called "relative affine structure." This 
statement, that all the available degrees of freedom are 
captured by four points and one projective transformation, 
was also recently presented in [401 using different notations 
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