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Abstract—In medical imaging tasks, such as cardiac imaging,
ultrasound acquisition time is crucial, however traditional high-
quality beamforming techniques are computationally expensive
and their performance is hindered by sub-sampled data. To
this end, we propose DeepFormer, a method to reconstruct high
quality ultrasound images in real-time on sub-sampled raw data
by performing an end-to-end deep learning-based reconstruc-
tion. Results on an in vivo dataset of 19 participants show
that DeepFormer offers promising advantages over traditional
processing of sub-sampled raw-ultrasound data and produces
reconstructions that are both qualitatively and visually equivalent
to fully-sampled DeepFormed images.

Index Terms—Ultrasound, Deep Learning, Beamforming,
Compressed Sensing

I. INTRODUCTION

Ultrasound (US) imaging is a well established imaging
modality that is used for a variety of applications due to
its low cost, lack of ionizing radiation and ease of use.
Beamforming is the process of generating and receiving sonic
tissue responses and transforming them into images of the
medium scanned which can be interpreted by the human eye.
The response, also called raw scan line (2D), is transformed
into a single radio frequency signal (RF, 1D), which makes up
a column of the ultrasound image. To create a complete image
of the target anatomy, an ensemble of neighboring scan lines
is collected and arranged to make up a 2D-image.

Currently, beamforming algorithms can be classified into
two groups, real-time, such as Delay and Sum [1] and offline
methods such as Delay Multiply and Sum and Minimum
Variance [2], [3]. The latter of the two classes offers higher
image fidelity, a narrower main lobe and reduced side lobes
at the expense of higher computational cost. This added com-
putational cost prohibits its wide acceptance by the medical

community, which has until now preferred the lower quality
and higher imaging rates of real-time methods.

It is well established that the frame rate of ultrasound
acquisitions depends on the number of scan lines and the
imaging depth of the image. The acquisition time ta can be
generally defined by the equation:

ta = (2× ct × di + td)× nsl (1)

where ct describes the speed of sound of the medium, di the
imaging depth of the scanner, td the idle time, and nsl the
number of scan lines.

In applications, such as cardiac ultrasound, high temporal
resolution is crucial to examine the anatomy during the entire
cardiac cycle [4]. Furthermore, it has been shown that tracking
the motion of the wall of the carotid artery can serve as
strong indicator of coronary artery disease [5]. A higher
temporal resolution allows for a more precise tracking of
this motion. In order to increase the frame rate of ultrasound
imaging and reduce the total acquisition time per frame, one
could reduce the number of acquired scan lines nsl. However,
using traditional beamforming techniques on sub-sampled data
would lead to significant decrease in the lateral resolution of
the captured frame [6].

Deep Convolutional Neural Networks (DCNN) have been
utilized recently for a plethora of applications in medical imag-
ing, providing state-of-the-art end-to-end solutions to tasks
such as segmentation [7], classification [8], retrieval [9] and
image reconstruction [10]. Their strong learning capabilities
enable them to capture the underlying structures of the data
successfully, even in cases where their amount is limited [11],
while they can operate in real-time due to their efficient
inference functionality.
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Fig. 1. Overview of the proposed framework, DeerFormer, and comparison
with traditional beamforming.

Additionally, a variety of ultrasound reconstruction ap-
proaches utilizing deep learning have been proposed. Nair
et al. [12] reconstruct ultrasound images from simulated raw
ultrasound data using a fully convolutional neural network,
Ortha et al. [4] reconstruct pre-delayed raw data for cardiac
imaging applications, while approaches such as those pre-
sented in [13], [14] improve conventional beamforming by
raw data pre-processing.

In this work, we propose an end-to-end framework, which
learns a mapping from a sparse collection of raw data scan
lines to a high quality Minimum Variance ultrasound image
leveraging a state-of-the-art fully convolutional network. The
proposed method, called DeepFormer, works towards enabling
the reconstruction of high-quality ultrasound images from sub-
sampled data, with significantly lower computational expense,
while maintaining a high lateral resolution. The overview of
our approach can be seen in Fig. 1. DeepFormer has been
thoroughly trained and evaluated on an in vivo dataset, as will
be further discussed in Section III-A.

II. METHODS

A. Sub-Sampled DeepFormer

Traditionally, scan line beamforming is performed by acti-
vating a sub-aperture of as elements of an array of at total
piezo elements, and recording the tissue response. Afterwards,
the sub-aperture is shifted a set number of elements s to
acquire the next neighboring scan line. Often, s < 0.5 × as
leads to a spacial overlap of tissue through which a sonic signal
is propagated.

The resulting mutual information between scan lines is
not taken into account during the beamforming process, even
though there is strong semantic correlation between the raw
data of neighboring scan lines. However, a fully convolu-
tional neural network can effectively capture and leverage this

correlation and be trained on even sub-sampled raw data to
interpolate skipped scan lines via inference of correlations in
neighboring ones [10].

B. Network Architecture and Optimization

The efficient fully convolutional network architecture
QuickNat [15] is employed for the reconstruction, due to its
improved gradient flow provided by the long- and short-term
skip connections between the encoder and decoder blocks.
Batch normalization and dropout are additionally utilized to
decrease the risk of overfitting. In order to improve the image
quality, a hybrid loss was employed using a combination of
the `1 loss and a differentiable formulation of the Multi-Scale
Structural Similarity Imaging Metric (MS-SSIM) proposed
in [16]. For an image P consisting of N pixels p, the `1 loss
function is calculated by:

L1(P ) =
1

N

∑
p∈P

|x(p)− y(p)|,

with x(p) and y(p) being the pixel intensity values in the
reconstructed image and the ground truth respectively. The
SSIM loss is calculated in windows of the images, where the
measure between two windows x and y is given by:

LSSIM = 1− 2µxµy + c1
µ2
x + µ2

y + c1
· 2σxy + c2
σ2
x + σ2

y + c2
= 1− l(p)· cs(p).

The variables µx and µy are the means of windows x and
y, σ2

x and σ2
y are their respective variances, σxy is their co-

variance. The constants c1, c2 ensure the numerical stability
of the division operations. The MS-SSIM loss is a multi-scale
version of the SSIM loss, calculated in a pyramid of M levels,
formulated as:

LMS-SSIM = 1− lM (p)·
M∏
j=1

csj(p).

The composite loss used for training DeepFormer is:

LDF = αLMS-SSIM + (1− α)L1,

where α is set to 0.84, as suggested by Zhao et al. in [17].

III. EXPERIMENTAL SETUP

A. Data acquisition

Ultrasound raw data acquisition was performed with
the publicly available GPU-based beamforming software
SUPRA [18] with a cQuest Cicada scanner (Cephasonics,
CA, USA) equipped with a 128 element linear transducer
(CPLA12876, 7 MHz). The imaging depth was 40 [mm], the
pulse frequency 7 MHz with single focus at 20 mm and a
dynamic range of 50 dB. Ground truth images were generated
offline with a Minimum Variance beamforming method [3]
also implemented in SUPRA.



TABLE I
COMPARISON OF BEAMFORMED AND DEEPFORMED IMAGES. FOR THIS

EVALUATION DEEPFORMER SUB-SAMPLED WAS COMPARED TO
DEEPFORMER FULLY-SAMPLED AND BEAMFORMED SUB-SAMPLED WAS

COMPARED TO BEAMFORMED FULLY-SAMPLED.

SSIM ± SD PSNR ± SD
Beamforming 0.7580 ± 0.0138 30.7719 ± 0.5098
DeepFormer 0.9452 ± 0.0058 34.6326 ± 0.9744

B. In Vivo Data

With the above mentioned parameters, a corpus of in vivo
US data was generated, comprised of data from 19 healthy
participants (age: 32 ± 13 y.o.). All scans were collected on
both sides (left, right) of the body and in both the longitudinal
and transverse orientation of the target anatomies, namely
common carotid artery, thyroid gland, bicep muscle fibers and
forearm. The scan duration was at least 10 seconds leading to
a minimum number of 19 frames per scan. Every scan consists
of an ultrasound sweep over the anatomy, in order to introduce
variability in the imaging plane. Acquisitions for the corpus
were performed free-hand. A patient-level split was introduced
to separate the data into a training set consisting of 14 subjects
and an independent test set of 5 subjects.

C. Network Training

DeepFormer has been implemented in PyTorch [19] and
trained until convergence on an NVIDIA Titan Xp GPU using
Stochastic Gradient Descent with momentum 0.9 and learning
rate set to 0.01, as suggested in [15].

IV. RESULTS AND DISCUSSION

A. Beamforming and DeepForming of sub-sampled data

Table I showcases the difference of image quality between
sub-sampled images and their fully-sampled counterparts us-
ing conventional beamforming and DeepFormer respectivly.
The sub-sampled DeepFormer achieved an SSIM score that
was 0.2 higher and displayed a 5 dB improvement over
conventionally sub-sampled Minimum Variance beamforming.
The consistency in DeepForming image quality not only on
full but also on sub-sampled data displays the strength of
the approach in ultrasound reconstruction and highlights its
suitability to be applied when a decreased number of scan
lines is acquired.

B. Effect of different loss functions

Choosing the proper loss function for a given reconstruction
can have a significant impact on the resulting reconstructed
images and is strongly dependent on the modality at hand.

Traditionally the `2 loss function is employed for recon-
struction tasks, however Zhao et al. [17] reported extensive re-
sults showcasing its poor convergence properties and stronger
sensitivity to outliers in the training data. On the contrary, their
experiments highlighted the superiority of the `1 loss function,
which we preferred to utilize in this paper. Exhaustive ablative
testing was performed to compare the efficacy of composite

TABLE II
ABLATIVE TESTING OF THE DIFFERENT DEEPFORMER LOSS FUNCTIONS.

SSIM ± SD PSNR ± SD
L1 Sub-sampling 0.5315 ± 0.0201 23.9067 ± 0.6419
LMS-SSIM Sub-sampling 0.5174 ± 0.0199 21.7697 ± 0.8644
L1 + LMS-SSIM Full 0.5554 ± 0.0227 26.5537 ± 0.8060
L1 + LMS-SSIM Sub-sampling 0.5550 ± 0.0228 26.3224 ± 0.8383

reconstruction losses as described by Zhao et al. [17], the
results of which can be seen in Table II. Our evaluation
metrics, namely SSIM and PSNR, showed that the composite
L1 + LMS-SSIM loss function outperformed other available
options.

Individually L1 and LMS-SSIM display lower performance,
which can be attributed to the lack of contrast in images
trained on L1 and the sensitivity of LMS-SSIM to changes in
local structures, which can be readily found in the ground
truth [17].

Furthermore, Table II highlights the fact that the recon-
struction difference in image quality of both fully- and sub-
sampled DeepFormed images is infinitesimal small (0.0004
SSIM, 0.2313 PSNR) and that the effect of excluding one
half of the input data before reconstruction is negligible.

C. Quality of the reconstructed images

Just as beamformed images display characteristic properties
that result from the reconstruction process, DeepFormed im-
ages offer distinct features that stem from the reconstruction
pipeline. As can be seen in Fig. 2, all major structures in
the ultrasound frame were successfully reconstructed. Whereas
traditional scan lines are beamformed independently from
one another, leading to an anisotropic image, DeepFormed
images are generated based on all captured raw data, leading
to higher coherence between neighboring scan lines and an
overall smoother lateral image texture.

Speckle, which results from the constructive and destructive
interference of propagating waves, contributes to the character-
istic texture of ultrasound images. However, the convolutional
filters and pooling layers of DeepFormer discard this high
frequency information in exchange for globally stable features,
leading to an even smoother resulting image.

Moreover, the utilized composite loss has been proposed for
applications involving smoothing and demosaicing of natural
images, where the ground truth does not suffer from significant
noise. In the case of DeepFormer, the ground truth itself
contains noise, which contributes to the smoothing of the
resulting reconstruction and values of SSIM, without however,
decreasing the usability of the information contained in the
image.

Ultimately, visual consistency between the fully- and sub-
sampled DeepFormed images displays DeepFormer’s capabil-
ity to successfully perform reconstruction with limited data.

V. CONCLUSION

In this work, DeepFormer was proposed as a highly effective
method to reconstruct ultrasound images from sub-sampled
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Fig. 2. Qualitative comparison between the original beamformed images using the Minimum Variance Method and the reconstructed images from DeepFormer,
utilizing all the scan lines, or a subset.

raw data. A composite loss function, consisting of L1 and
LMS-SSSIM was able to achieve the highest SSIM and PSNR
scores on an in vivo dataset of 19 participants on 4 different
anatomies. Our results showcase that sub-sampled ultrasound
acquisition using DeepFormer can allow for accelerated acqui-
sitions with comparable image quality. DeepForming is appli-
cable in a plethora of medical applications, such as cardiac
imaging, where acquisition speed and lower processing time
are critical. Future work includes exploring the performance of
DeepFormer on different levels of sub-sampling and evaluating
it in a more extensive clinical study.
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