
SDF-2-SDF:
Highly Accurate 3D Object Reconstruction

Miroslava Slavcheva1,2, Wadim Kehl1, Nassir Navab1, Slobodan Ilic1,2

1 Technische Universität München, Munich, Germany
2 Siemens AG, Munich, Germany

{mira.slavcheva,nassir.navab}@tum.de, {kehl,slobodan.ilic}@in.tum.de

Abstract. This paper addresses the problem of 3D object reconstruc-
tion using RGB-D sensors. Our main contribution is a novel implicit-
to-implicit surface registration scheme between signed distance fields
(SDFs), utilized both for the real-time frame-to-frame camera tracking
and for the subsequent global optimization. SDF-2-SDF registration cir-
cumvents expensive correspondence search and allows for incorporation
of multiple geometric constraints without any dependence on texture,
yielding highly accurate 3D models. An extensive quantitative evaluation
on real and synthetic data demonstrates improved tracking and higher
fidelity reconstructions than a variety of state-of-the-art methods. We
make our data publicly available, creating the first object reconstruction
dataset to include ground-truth CAD models and RGB-D sequences from
sensors of various quality.

Keywords: object reconstruction, signed distance field, RGB-D sensors

1 Introduction

The persistent progress in RGB-D sensor technology has prompted exceptional
focus on 3D object reconstruction. A key research goal is recovering the geom-
etry of a static target from a moving depth camera. This entails estimating the
device motion and fusing the acquired range images into consistent 3D models.
Depending on the particular task, methods differ in their speed, accuracy and
generality. Most existing solutions are SLAM-like, thus their applications lie in
the field of robotic navigation where precise reconstructions are of secondary im-
portance. In contrast, the growing markets of 3D printing, reverse engineering,
industrial design, and object inspection require rapid prototyping of high quality
models, which is the aim of our system.

One of the most influential works capable of real-time reconstruction is
KinectFusion [24,12]. It conveniently stores the recovered geometry in an incre-
mentally built signed distance field (SDF). However, its frame-to-model camera
tracking via iterative closest points (ICP [1,6]) limits it to objects with distinct
appearance and to uniform scanning trajectories. Other techniques use a point-
to-implicit scheme [5,3] that avoids explicit correspondence search by directly
aligning the point clouds of incoming depth frames with the growing SDF. Such
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Fig. 1. SDF-2-SDF reconstructions of the proposed dataset objects. Colors vary due to
difference between synthetic rendering and 3D-printed models, and camera radiometrics

registration has proven to be more robust than ICP, but becomes unreliable when
range data is sparse or once the global model starts accumulating errors. Dense
visual odometry (DVO) [15] is a SLAM approach that combines image intensities
with depth information for warping between RGB-D frames in a Lucas-Kanade-
like fashion [20]. Although it is susceptible to drift on poorly textured scenes,
DVO achieves impressive accuracy in real time and has been incorporated as
the tracking component of the object reconstruction pipeline of Kehl et al. [13].
The final step of the latter is a g2o pose graph optimization [17] to ensure opti-
mal alignment between all views. While it leads to improved model geometry, it
might become prohibitively expensive for a larger amount of keyframes.

Addressing these limitations, we present SDF-2-SDF, a highly accurate 3D
object reconstruction system. It comprises online frame-to-frame camera track-
ing, followed by swift multi-view pose optimization during the generation of
the output reconstruction. These two stages can be used as completely stand-
alone tools. Both of them employ the SDF-2-SDF registration method, which
directly minimizes the difference between pairs of SDFs. Moreover, its formula-
tion allows for integration of surface normal information for better alignment. In
addition to handling larger motion and no dependence on texture, our frame-to-
frame tracking strategy avoids drift caused by errors in the global model. Finally,
our global refinement is faster than the pose graph optimization used in other
pipelines [17,10,13]. Tackling the lack of a dataset combining ground-truth CAD
models and RGB-D sequences with known camera trajectories, we have created
a 3D-printed object dataset, which we make publicly available (cf. Section 5.1
for details). We highlight our contributions below:

– precise implicit-to-implicit registration between SDFs for online frame-to-
frame camera tracking,
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– introduction of a global pose optimization step, which is elegantly interleaved
with the model reconstruction,

– improved convergence via incorporation of surface orientation constraints,
– the first object reconstruction dataset including both ground-truth 3D mod-

els and RGB-D data from sensors of varying quality.

Our parallel tracking implementation runs in real-time on the CPU. While pose
refinement is only essential for low-quality depth input, it is interleaved with
the final model computation, adding just a few seconds of processing. Sample
outputs of our pipeline are displayed in Figure 1.

We performed exhaustive evaluation on synthetic and real input. Moreover,
the tracking precision of SDF-2-SDF without refinement was compared with
Generalized-ICP [33], KinectFusion [24], point-to-implicit methods [5,3] and
DVO [15]. The fidelity of the non-optimized model was assessed against Kinect-
Fusion, while the refined reconstruction was compared to that of Kehl et al.’s
pipeline [13] that includes posterior optimization.

2 Related Work

Fully automatic object reconstruction requires knowing the precise 6 degrees-of-
freedom camera poses from which the RGB-D views were obtained. Arguably,
the most widespread strategy for aligning depth data is ICP [1,6,31]. Although
it is simple and generic, the method performs poorly in the presence of gross
statistical outliers and large motion. Moreover, it is rather costly because it
involves recomputing point correspondences in every iteration.

KinectFusion [24,12] employs an implicit surface representation (an SDF)
for the continuously incremented reconstruction, but ray traces it into a point
cloud on which a multi-scale point-to-plane ICP is used for frame-to-model reg-
istration. Thus, it suffers from the related drawbacks. Through a comparison to
PCL’s implementations of GICP [33] and KinFu [27], we show that SDF-2-SDF
can handle cases where ICP fails.

Several authors [5,3,16,30,26,22,7,39] report superior registration using im-
plicit surface representations. Notably, Bylow et al. [3] and Canelhas et al. [5]
directly project the points of a tracked frame onto a global cumulative SDF and
reduce the registration problem to solving an inexpensive 6× 6 equation system
in every iteration. Similar to [36] who leverage point-to-NDT (normal distribu-
tion transform) to NDT-to-NDT, we extend the point-to-implicit strategy to
aligning pairs of SDFs. Comparisons indicate higher precision of SDF-2-SDF
thanks to reduced effect of the noise inherent to explicit point coordinates.

A fast and powerful tracking system that works well on textured scenes is
DVO [35,15]. It employs a photo-consistency constraint to find the best align-
ment between two RGB-D frames. Despite requiring a polychromatic support
for the object of interest, visual odometry is used in the reconstruction pipelines
of Dimashova et al. [10] and Kehl et al. [13]. These two works then execute a g2o
pose graph optimization [17], which undoubtedly yields higher quality meshes,
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but is rather costly. When used in dense scene reconstruction applications, graph-
based optimization may last hours to days [43]. We propose improving the esti-
mated trajectory via global implicit-to-implicit optimization. Selected keyframes
are re-registered to a global SDF weighted average, which can be readily used
as output reconstruction, making our refinement significantly faster.

Industrial scanning scenarios often do not permit augmenting the scene with
textured components that aid tracking. Therefore we have designed an entirely
photometry-independent system. Nevertheless, our energy formulation allows for
combining a multitude of geometric constraints. Masuda [22] uses the difference
between normal vectors to robustify SDF registration. Instead, we take the dot
product as a more accurate measure of surface orientation similarity. While our
approach works well without these additional constraints, they are straightfor-
ward to integrate into the SDF-2-SDF framework and lead to faster convergence.

A thorough evaluation of our system requires both ground-truth trajectories
and object models. The TUM RGB-D benchmark [37] includes an ample set of
sequences with associated poses, while the ICL-NUIM dataset [11] provides the
synthetic model of one scene. However, both are intended for SLAM applica-
tions and feature large spaces rather than smaller-scale objects. Similarly, point
cloud benchmarks [28,29] cannot be used directly by methods designed for range
image registration. Existing RGB-D collections of household items, such as that
of Washington University [18] and Berkeley’s BigBIRD [34], either lack noiseless
meshes or complete 6 DoF poses [23]. Therefore we 3D-printed a selection of ob-
jects with different geometry, size and colors, and contribute the first, to the best
of our knowledge, object dataset with original CAD models and RGB-D data
from various quality sensors, acquired from externally measured trajectories.

3 Geometric Preliminaries

This section describes the specifics of the SDF generation approach we used.

3.1 Mathematical Notation

An RGB-D sensor delivers a pair consisting of a depth map D : N2 → R and a
corresponding color image I : N2 → R3. Given a calibrated device, the projection
π: x = π(X) maps a 3D point X = (X,Y, Z)> ∈ R3 onto the image location
x = (x, y)> ∈ N2. The inverse relation π−1 determines the 3D coordinates X
from a pixel x with depth value D(x) in a range image: X = π−1(x, D(x)).

The registration problem requires determining the rigid body transformation
between the camera poses from which a pair of images were acquired. This 6
degree-of-freedom motion consists of a rotation R ∈ SO(3) and a translation t ∈
R3. We use twist coordinates from the Lie algebra se(3) of the special Euclidean
group SE(3), as they provide a minimal representation of the motion [21]:

ξ = (u ωωω)> = (u1, u2, u3, ω1, ω2, ω3)> , (1)

where ωωω ∈ R3 corresponds to the rotational component and u ∈ R3 stands for
the translation. We denote the motion of any 3D point X in terms of ξ as X(ξ).
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3.2 Signed Distance Fields

An SDF in 3D space is an implicit function φ : Ω ⊆ R3 → R that associates each
point X ∈ R3 with the signed distance to its closest surface location [25]. Points
within the object bounds have negative signed distance values, while points
outside have positive values. Their interface is the object surface, which can be
extracted as the zeroth level-set crossing via marching cubes or ray tracing. As
implicit functions, SDFs have smoothing properties that make them superior to
explicit 3D coordinates in many applications, as we will see in the comparison
between point-to-implicit and implicit-to-implicit registration.

Registration is done by aligning projective truncated SDFs. First, the bound-
ing volume is discretized into cubic voxels of predefined side length l.

A point X belongs to the voxel with index vox : R3 → N3:

vox(X) = int
(
1/l(X−C)− (1/2, 1/2, 1/2)>

)
, (2)

where int rounds to integers, and C is the lower-left corner of the volume. All
points within the same voxel are assigned the properties of its center

V(X) = l(vox(X) + (1/2, 1/2, 1/2)>) + C , (3)

so we use V to denote the entire voxel. As a range image only contains measure-
ments of surface points, the signed distance is the difference of sensor reading
for the voxel center projection π(V) and its depth VZ :

φtrue(V) = D(π(V))−VZ (4)

φ(V) =

{
sgn(φtrue(V)) , if |φtrue(V)| ≥ δ
φtrue(V)/δ , otherwise

(5)

ω(V) =

{
1 , if φtrue(V) > −η
0 , otherwise

(6)

ζ(V) = I(π(V)) . (7)

The true signed distance value φtrue is usually scaled by a factor δ (related to
the sensor error; we used 2 mm) and truncated into the interval [−1, 1] (Eq. 5).

Binary weights ω are associated to the voxels in order to discard unseen areas
from computations. All visible locations and a region of size η behind the surface
(reflecting the expected object thickness) are assigned weight one (Eq. 6).

Finally, in order to be able to assign colors to the output mesh, we store a
corresponding RGB triple for every voxel in an additional grid ζ of the same
dimensions as φ (Eq. 7).

This approach of SDF generation from a single frame creates beams on the
interface formed by the camera ray through the surface silhouette: voxels outside
the object have signed distance 1 and neighbour with voxels behind the surface
with value -1 (cf. Fig. 2). Beams cancel out when SDFs from multiple viewpoints
are fused, and are easily omitted from calculations on projective SDFs, since
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Fig. 2. Single-frame projective truncated SDF: marching cubes rendering, exhibiting
viewpoint-dependent interface beams (left); cross-section along the x-y plane of the
TSDF volume, identifying specialized regions (middle, right)

all voxels behind the surface have not been observed and have weight zero.
However, beam voxels have faulty gradient values, but are easily excluded as
well: a gradient computed via central differences will have at least one component
with absolute value 1. We will often use SDF gradients, since the normalized 3D
spatial gradient ∇Xφ equals the normals n at surface locations [25].

An important Jacobian that will be needed in the numeric schemes is ob-
tained when deriving point coordinates X ∈ R3 with respect to a pose ξ. After
applying the chain rule ∇ξφ(X(ξ)) = ∇Xφ(X)∂X∂ξ , the following holds:

∇ξφ(X) = ∇Xφ(X)
(
I3×3 | −(X(ξ−1))×

)
∈ R1×6 . (8)

Once the camera poses have been determined, their SDFs can be fused into
a common model Φ via the weighted averaging scheme of Curless and Levoy [9]:

Φt+1(V) =
Wt(V)Φt(V) + ωt+1(V)φt+1(V)

Wt(V) + ωt+1(V)
,

Wt+1(V) = Wt(V) + ωt+1(V) .

(9)

Each color grid channel is averaged similarly. The color weights at every voxel
equal the product of ω and the cosine of the viewing ray angle, so that points
whose normal is oriented towards the camera have stronger influence [3].

Note that color and normals are only valid at surface locations, defined as
the ca. 1-5 voxel-wide narrow band of non-truncated voxels (cf. Fig. 2). This is
an apt surface approximation permitting fast binary checks: |φ(V)| < 1.

4 SDF-2-SDF Registration

Our system takes a stream of RGB-D data and pre-processes it by masking the
object of interest as done in [13,32] and optionally de-noising the depth images
via anisotropic diffusion [40] or bilateral filtering [38]. The frame bounding vol-
ume is automatically estimated by back-projection of all depth map pixels, as
opposed to model-based methods that require manual volume selection. The vol-
ume is then slightly padded and used for the generation of both SDFs that are
currently being aligned.
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These steps are applied to each input image fed to our tracking method which
performs frame-to-frame SDF-2-SDF registration, thus avoiding error accumu-
lation and allowing for a moving volume of interest. Once tracking is complete,
a predefined number of keyframes are globally SDF-2-SDF-registered to their
weighted average. This refinement follows a coarse-to-fine scheme over voxel size.
Finally, a colored surface mesh is obtained via the marching cubes algorithm [19].

4.1 Objective Function

We propose a simple scheme for implicit-to-implicit registration, whereby the
direct difference of two SDFs is iteratively minimized. To achieve best alignment
between frames, their per-voxel difference has to be minimal: truncated voxels
have the same values, while the near-surface non-truncated voxels from both
grids steer convergence towards surface overlap. Registration is facilitated by
the fact that both SDFs encode the distance to the common surface. In the
experimental evaluation we will demonstrate that this leads to more accurate
results than when one frame is explicitly represented by its 3D cloud.

In the following φref is the reference, while φcur(ξ) is the SDF of the current
frame, whose pose ξ∗ we are seeking. Since all voxels V are affected by the same
transformation, their contributions can be straightforwardly added up. To ease
notation, when summing over all voxels, we will omit the coordinates, e.g. we
will write φref instead of φref (V) in sums. The main signed distance energy
component is Egeom, to which surface normal constraints Enorm can be added,
yielding the SDF-2-SDF objective function ESDF :

ESDF (ξ) = Egeom(ξ) + αnormEnorm(ξ) , (10)

Egeom(ξ) =
1

2

∑
voxels

(
φrefωref − φcur(ξ)ωcur(ξ)

)2

, (11)

Enorm(ξ) =
∑

surface voxels

(
1− nref · (ncur(ξ))

)
. (12)

The influence of Enorm is adjusted through its weight. By default it is not
used in order to ensure optimal speed. For the tests with curvature constraints,
we empirically found values in the range (0, 1] to be reliable for αnorm.

4.2 Camera Tracking

Frame-to-model tracking can be detrimental in object reconstruction, since er-
rors in pose estimation can introduce incorrect geometry when fused into the
global model and adversely affect the subsequent tracking. Therefore we favor
frame-to-frame camera tracking on single-frame SDFs.

We determine the relative transformation between two RGB-D frames by
setting the pose of the first one to identity and incrementally updating the other
one. The tracking minimization scheme for the geometry term is based on a first-
order Taylor approximation around the current pose estimate ξk (Eq. 13, 14, 15).
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Like several related approaches, it leads to an inexpensive 6 × 6 linear system
(Eq. 16). Weighting terms have been omitted from formulas for clarity. In order to
avoid numerical instability, we take a step of size β towards the optimal solution
(Eq. 17). In each iteration φcur is generated from the current pose estimate. We
terminate when the translational update falls below a threshold [37].

A =

∑
voxels

∇>ξ φcur
(
ξk
)
∇ξφcur

(
ξk
)

(13)

b =

∑
voxels

(
φref − φcur

(
ξk
)

+∇ξφcur
(
ξk
)
ξk
)
∇>ξ φcur

(
ξk
)

(14)

dEgeom
dξ

= Aξ − b (15)

ξ∗ = A−1b (16)

ξk+1 = ξk + β
(
ξ∗ − ξk

)
(17)

As stated in the preliminary section, the normals of the SDF equal its spatial
gradient. Therefore, the surface orientation term imposes curvature constraints,
whose derivation is mathematically equivalent to a second-order Taylor approx-
imation of Egeom. Thus the objective remains the same, but convergence is
speeded up. We obtain the following formula for the derivative of Enorm with
respect to each component j of the twist coordinates:

dEnorm
dξj

=
∑

surface voxels

−nref ·
((
∇xncur(ξ)

) (
I3×3 | −(V(ξ−1))×

)
δj

)
, (18)

where δj is a 6-element vector of zeros with j-th component 1.

4.3 Global Pose Optimization

After tracking, a predefined number of regularly spaced keyframes are taken
for generation of the final reconstruction. The weighted averaging provides a
convenient way to incorporate the information from all of their viewpoints into
a global model. However, when using noisy data the estimated trajectory might
have accumulated drift, so the keyframes’ poses need to be refined to ensure
optimal geometry. For this task we propose a frame-to-model scheme based on
the SDF-2-SDF registration energy, in which each pose ξp is better aligned with
the global weighted average model. In effect, the optimization is interleaved
with the computation of the final reconstruction, and only takes less than half a
minute. The linearization of the energy follows a gradient descent minimization:

dEgeom
dξ

=
∑
voxels

(
φcur (ξ)− φavg

)
∇ξφcur(ξ) , (19)

ξk+1
p = ξkp − α

dEgeom(ξkp )

dξ
. (20)
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The pose of the first camera is used as a reference and is fixed to identity
throughout the whole optimization. In each iteration, the pose updates of all
others are determined relative to the global model, after which they are simulta-
neously applied. The weighted average is recomputed every couple of iterations
(10 in our case), so that the objective does not change in the meantime. Fur-
thermore, this is done in a coarse-to-fine scheme over the voxel size to ensure
that larger pose deviations can also be recovered.

5 Experimental Evaluation

In the following we compare our method to state-of-the-art approaches on data
acquired with different RGB-D sensors. In all scenarios we assume a single rigid
object of interest. Since the two stages of our pipeline can be used stand-alone,
we assess tracking and reconstruction separately. The presented results employ
solely the geometric component of the objective function, unless stated otherwise.

5.1 Test Set-up and Dataset

In order to thoroughly assess our system, we selected a set of 5 CAD models of
objects exhibiting various richness of geometry and texture (shown in Figure 1):
uni-colored (bunny), colored in patches (teddy, Kenny), densely colored (leop-
ard, tank); thin (leopard), very small (Kenny), very large (teddy), with spherical
components (teddy, Kenny). 1 They were 3D printed in color with a 3D Systems
ZPrinter 650, which reproduces details of resolution 0.1 mm [42]. In this way
we ensure that the textured groundtruth models are at our disposal for evalua-
tion, and eliminate dependence on the precision of a stitching method or system
calibration that existing datasets entail.

We acquired 3 levels of RGB-D data accuracy for each of these models:
noise-free synthetic rendering in Blender [2], industrial phase shift sensor of res-
olution 0.13 mm, and a Kinect v1. We followed 2 scanning modes: turntable
and handheld for synthetic and Kinect data. Each of the synthetically gener-
ated trajectories has radius 50 cm and includes 120 poses, the handheld one is
a sine wave with frequency 5 and amplitude 15 cm. The camera poses for the
Kinect are known through a markerboard placed below the object of interest.
The industrial sensor takes 4 seconds to acquire an RGB-D pair, permitting us
to only record turntable sequences. Due to its limited field of view, we could not
place a sufficiently large markerboard, so we will only use it for evaluation of
model accuracy. In all cases the object of interest is put on a textured support
that ensures optimal conditions for visual odometry.

Summing up, we aimed to cover a wide range of object scanning scenarios
with this evaluation setup. The used RGB-D sequences for every object, sensor
and mode, together with the respective ground-truth CAD models and camera
trajectories are available at http://campar.in.tum.de/personal/slavcheva/
3d-printed-dataset/index.html.

1 The bunny is from The Stanford Repository, the tank is from the 3D Warehouse,
and all other models - from Archive3D. Object sizes are listed in the suppl. material.

http://campar.in.tum.de/personal/slavcheva/3d-printed-dataset/index.html
http://campar.in.tum.de/personal/slavcheva/3d-printed-dataset/index.html
http://graphics.stanford.edu/data/3Dscanrep/
https://3dwarehouse.sketchup.com/index.html
http://archive3d.net/
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5.2 Trajectory Accuracy

SDF-2-SDF tracking was compared with the following:

– ICP-based approaches: PCL’s [27] frame-to-frame generalized ICP [33]
(GICP) and frame-to-model KinectFusion [24] (KinFu);

– point-to-implicit methods: frame-to-model [5] (FM-pt-SDF, available as
a ROS package [4]) and our frame-to-frame modification (FF-pt-SDF );

– visual odometry: DVO [15] (available online [14]) only on the object (DVO-
object) and on the object and its richly textured background (DVO-full).

We evaluate the relative pose error (RPE) [37] per frame transformation
and take the root-mean-squared, average, minimum and maximum:

RPEi→i+1 = (Pi
−1Pi+1)−1(Qi

−1Qi+1), (21)

where i is the frame number, {Q1...n} is the groundtruth trajectory and {P1...n}
is the estimated one. It evaluates the difference between the groundtruth and
estimated transformations, and equals identity when they are perfectly aligned.

In addition, we report the average, minimum and maximum angular error per
transformation. All errors are also evaluated for the absolute poses. Note that
while our relative metric is equal to the RGB-D benchmark RPE per frame, our
absolute metric is, in general, more severe than its absolute trajectory error [37].
This is because the ATE targets SLAM and first finds the best alignment between
trajectories, while we use the same initial reference pose for both trajectories,
since this directly influences the way frames are fused into meshes. To economize
on space, we plot only the average errors, which we found to be most conclusive,
and refer the reader to the supplementary material for a full tabular overview.

Synthetic data As a proof of concept, we run tests on synthetic data, the de-
tails of which can be found in the supplementary material. SDF-2-SDF clearly
outperforms the other methods with an average relative drift below 0.4 mm and
angular error below 0.06°. The average absolute pose error of 2 mm corresponds
to the used voxel size and suggests that given good data, only the grid resolu-
tion limits our tracking accuracy. Notably, it performs equally well regardless of
object geometry and yields a negligible error with respect to the trajectory size.

Kinect sequences Figure 3 indicates that GICP and DVO using only the object
perform worst, while DVO using the object and its background performs best.
SDF-2-SDF outperforms the remaining methods and is even more precise than
DVO-full on turntable bunny, teddy, tank and handheld teddy, despite using only
geometric constraints on the object of interest. KinFu and the two pt-SDF strate-
gies perform similar to each other. In most cases KinFu is more accurate than
pt-SDF, while frame-to-frame is slightly better than the frame-to-model pt-SDF
variant. A notable failure case for FM-pt-SDF was the turntable teddy, where
symmetry on the back caused drift from the middle of the sequence onwards,
which lead to unrepairable errors in the global model and consequently flawed
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Fig. 3. Comparison of tracking errors on Kinect data

tracking. Similarly, FM-pt-SDF performed poorly on the turntable Kenny due
to its fine structures, while FF-pt-SDF did not suffer from error build-up and
was most accurate. These observations lead to the conclusion that a frame-to-
frame strategy is better for object reconstruction scenarios, where, as opposed
to SLAM, there is no repeated scanning of large areas that could aid tracking.
Thus, we also chose a frame-to-frame tracking mode for SDF-2-SDF, and achieve
higher precision than pt-SDF due to the denser formulation of our error function.

In the presence of severe Kinect-like noise, the sparse point clouds of objects
in the scene tend to become too corrupted and degrade registration accuracy. On
the contrary, SDF-2-SDF is more precise than cloud-based KinFu and pt-SDF
because the inherent smoothing properties of volumetric representations handle
noise better. Moreover, SDF-2-SDF relies on a denser set of correspondences:
on average, the used clouds consist of 8 · 103 data points, while the SDFs have
386 · 103 voxels. Thus the problem is constrained more strongly, making our
proposed registration strategy more suitable for object reconstruction.

Contribution of surface orientation constraints As Enorm is a second-order en-
ergy term, it does not significantly influence accuracy, but rather convergence
speed. With αnorm = 0.1 registration is 3-6% more precise and takes 1.5-2.2
times less iterations. However, processing normals increases the time per itera-
tion by 30-45%. Thus Enorm is beneficial for objects of distinct geometry, where
normals can be reliably estimated, or when a low-noise sensor is used. For con-
sistency and real-time speed, elsewhere in the paper we evaluate only on Egeom.

Convergence Analysis We empirically analyzed the convergence basin of the
available registration methods. To mimic initial conditions where the global min-
imum is further away, we tested by skipping frames from the Kinect turntable
sequences. Figure 4 (left) contains the averaged results. The error of SDF-2-SDF
grows at the slowest rate, indicating that thanks to its denser set of correspon-
dences, it can determine an accurate pose from a much larger initial deviation
(up to ca. 15°), i.e. it can cope with smaller overlap. Notably, when taking every
third frame or fewer, SDF-2-SDF is considerably more precise than DVO-full.



12 M. Slavcheva et al.

Fig. 4. Convergence analysis of registration methods with respect to frame distance
(left). Estimated trajectories on the TUM RGB-D benchmark [37] (right)

Other Public Data While our goal is object reconstruction rather than SLAM,
we also evaluated the tracking component of our system on several sequences
of the 3D Object Reconstruction category of the TUM RGB-D benchmark [37].
They contain moderately cluttered scenes, unconstrained camera motion and
occasionally missing depth data due to close proximity to the sensor. The whole
images were used for DVO and GICP, while all other methods tracked solely
using the bounding volume of the object of interest. Nevertheless, our SDF-2-
SDF was the most precise method on fr1/plant and fr3/teddy, and was only
slightly less accurate than FM-pt-SDF on fr2/flowerbouquet. The reason is that
its leaves have no effective thickness, therefore the SDFs lose their power in
discerning inside from outside and, depending on parameters, might oversmooth
and become inferior to point cloud registration. This effect can be mitigated by a
finer voxel size, at the cost of slower processing. Figure 4 (right) summarizes the
results, while numerical details can be found in the supplementary material.

5.3 3D Model Accuracy

As our ultimate goal is highly accurate 3D reconstruction, we assess the fidelity of
output meshes against their CAD models. We report the cloud-to-model absolute
distance mean and standard deviation, measured in CloudCompare [8].

First, the mesh obtained at the end of tracking is compared with that of
KinFu, juxtaposing two real-time methods that do not employ posterior pose
optimization (blue rows in Table 1).

Next, the mesh yielded after global refinement is compared to the method
of Kehl et al. [13], which tracks by DVO [15], detects loop closure, optimizes
the poses of 30 keyframes via g2o [17], and integrates them via Zach et al. [41]’s
TV-L1 scheme. The code was kindly provided to us by the authors. To highlight
the dependence of odometry on texture, we evaluated both on the object with
its textured support (Kehl et al. full) and on the object only (Kehl et al. object).

The results in Table 1 indicate that SDF-2-SDF reconstructions are the best
for high quality data, regardless whether refinement is carried out. In fact, for
most objects the global optimization brings just a small improvement and is
therefore not necessary on data with little noise. The mean errors of below 0.3
mm on synthetic and sub-millimeter on industrial are evidence for the high ac-
curacy of SDF-2-SDF meshes. On the contrary, the posterior refinement leads to
a considerable (up to 2.5 times) decrease in model error on Kinect data, yielding
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Table 1. CloudCompare evaluation of the absolute cloud-to-model reconstruction error

object method
error [mm]

synth. circle synth. wave industr. turntab. Kinect turntable Kinect handheld
mean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev.

bunny

KinFu 0.544 0.677 0.787 0.988 0.664 0.654 3.800 2.840 4.101 3.716
ours (no refinement) 0.135 0.139 0.133 0.134 0.656 0.438 2.586 1.869 1.770 1.733

bunny Kehl et al. object 1.459 1.220 4.885 3.732 2.149 2.869 5.156 4.115 8.274 6.013
Kehl et al. full — — — — 0.838 0.860 1.134 1.243 1.124 1.095

ours (with refin.) 0.130 0.137 0.131 0.133 0.541 0.436 0.953 0.843 0.996 0.853

teddy

KinFu 0.370 0.275 0.418 0.285 0.998 0.807 1.271 1.045 2.355 1.447
ours (no refinement) 0.161 0.179 0.146 0.142 0.930 0.588 1.078 0.890 1.589 1.537

teddy Kehl et al. object 0.358 0.303 0.257 0.193 1.028 0.892 2.306 1.862 2.287 1.826
Kehl et al. full — — — — 4.828 4.215 1.221 0.858 3.066 2.380

ours (with refin.) 0.157 0.166 0.146 0.142 0.910 0.584 0.722 0.542 0.990 0.841

Kenny

KinFu 0.418 0.311 0.440 0.359 1.650 1.451 1.511 1.387 2.874 2.727
ours (no refinement) 0.154 0.151 0.147 0.154 0.363 0.391 1.295 1.311 2.415 2.051

Kenny Kehl et al. object 0.948 0.736 1.931 1.965 1.816 1.710 3.181 3.238 failed failed
Kehl et al. full — — — — 2.553 2.644 1.263 0.850 2.282 1.381

ours (with refin.) 0.152 0.146 0.146 0.150 0.315 0.336 1.276 1.128 2.358 1.960

leopard

KinFu 0.525 0.758 0.540 0.734 1.785 1.299 4.445 2.430 1.886 3.292
ours (no refinement) 0.226 0.264 0.237 0.268 0.760 0.830 2.692 1.882 1.321 1.220

leopard Kehl et al. object 0.330 0.324 0.260 0.268 1.018 1.378 5.693 5.050 failed failed
Kehl et al. full — — — — 3.626 3.705 1.907 1.218 1.281 1.218

ours (with refin.) 0.225 0.263 0.233 0.266 0.652 0.614 1.308 1.154 1.263 1.111

tank

KinFu 0.900 0.708 1.274 0.911 1.390 1.315 1.561 1.453 2.579 2.265
ours (no refinement) 0.270 0.204 0.289 0.263 0.953 0.740 1.336 1.188 2.042 2.404

tank Kehl et al. object 0.384 0.506 3.929 3.961 1.573 2.250 1.192 1.009 2.340 2.062
Kehl et al. full — — — — 2.617 2.571 1.064 0.872 0.946 0.806

ours (with refin.) 0.267 0.199 0.285 0.263 0.466 0.416 0.911 0.745 1.508 1.760
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Fig. 5. Qualitative comparisons: Kinect data (top) and industrial sensor (bottom).
Symmetry (teddy ’s and Kenny ’s backs) and thin structures (tank ’s gun, leopard ’s tail
and legs) degrade the performance of cloud registration, causing misalignment artifacts
(red ellipses), while SDF-2-SDF succeeds (see supplementary for magnified figures)

sub-millimeter precision for many of the objects. Moreover, the error is always
below 2 mm, corresponding to the device uncertainty, once again indicating that
our method is only limited by the sensor resolution and the chosen voxel size.

Further, the results on Kinect data demonstrate odometry’s heavy depen-
dence on texture. Kehl et al.’s pipeline even fails for smaller objects such as
leopard and Kenny in the absence of textured surroundings. Not all tests with
the industrial sensor followed the same trend, because the provided implementa-
tion required resizing the original 2040×1080 images to VGA resolution, leading
to increased error when processing areas near the image border, where the tex-
tured table is located. The results of KinFu and SDF-2-SDF did not change for
VGA and the original size, indicating lower sensitivity of volumetric approaches
to such issues. Moreover, the speed of SDF-2-SDF remained unaffected, as it only
depends on the voxel resolution, and not on image or point cloud size. Thus our
system generalizes well not only for various object geometry, but also for any
device. Figure 5 shows examples where our denser SDF-2-SDF succeeds, while
other methods suffer, both on Kinect and on high-quality data.
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Table 2. SDF-2-SDF runtime: average/ fastest/ slowest

tracking [milliseconds per frame] refinement [total seconds]

pre- reference SDF minimization weighted optimizing marching
process generation iterations averages poses cubes

1.7/ 1.6/ 1.8 2.6/ 1.7/ 3.8 45.3/ 41.4/ 54.9 1.9/ 0.4/ 6.8 6.1/ 0.3/ 20.2 0.6/ 0.2/ 1.3

total 49.6/ 44.7/ 60.5 ms = 20/ 22/ 17 FPS total 8.6/ 0.9/ 28.3 s

5.4 Implementation Details

We carried out our experiments on an 8-core Intel i7-4900MQ CPU at 2.80
GHz. As tracking at a voxel size finer than the sensor resolution is futile, we
used 2 mm for all tests. SSE instructions aid efficient SDF generation, leaving the
computation of each voxel’s contribution to the 6×6 system as the bottleneck. To
speed it up, we do not process voxels which would not have a significant influence,
similar to a narrow-band technique: locations with zero weight in either volume
and voxels with the same signed distance are disregarded. Thus runtime is not
linear in object size, but depends on its geometry. The SDF of an object with
bounding cube of side 50 cm requires only 61 MB, so memory is not an issue.

We execute the computations in parallel on the CPU, thereby achieving real-
time performance between 17 and 22 FPS. Table 2 lists the time taken for each
major step of our pipeline as average over all sequences, as well as the fastest
(achieved on synthetic Kenny) and slowest (on Kinect leopard) runs.

On the other hand, the pose refinement has a simpler mathematical formu-
lation, whereby only a 6-element vector is calculated in every gradient descent
step. It requires at most 40 iterations on each voxel resolution level (4 mm, 2 mm,
optionally 1 mm), taking up to 30 seconds to deliver the reconstruction, which
is generated via marching cubes from the final field. In comparison, Kehl et al.’s
pose graph optimization took 196.4 s on average (min 53 s, max 902 s) for the
same amount of keyframes. Table 2 shows that our refinement is much faster.

6 Conclusions

We have developed a complete pipeline that starts with raw sensor data and
delivers a highly precise 3D model without any user interaction. The underly-
ing novel implicit-to-implicit registration method is dense and direct, whereby
it avoids explicit correspondence search. The global refinement is an elegant
and inexpensive way to jointly optimize the poses of several views and the re-
constructed model. Experimental evaluation has shown that our reconstructions
are of higher quality than those of related state-of-the-art systems.
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