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Abstract

The level set framework is widely used in geometry pro-
cessing due to its ability to handle topological changes and
the readily accessible shape properties it provides, such as
normals and curvature. However, its major drawback is the
lack of correspondence preservation throughout the level
set evolution. Therefore, data associated with the surface,
such as colour, is lost. The objective of this paper is a vari-
ational approach for signed distance field evolution which
implicitly preserves correspondences. We propose an en-
ergy functional based on a novel data term, which aligns
the lowest-frequency Laplacian eigenfunction representa-
tions of the input and target shapes. As these encode infor-
mation about natural deformations that the shape can un-
dergo, our strategy manages to prevent data diffusion into
the volume. We demonstrate that our system is able to pre-
serve texture throughout articulated motion sequences, and
evaluate its geometric accuracy on public data.

1. Introduction

Real-world scenes contain shapes that move and interact
non-rigidly over time, i.e. they inhabit a 4D spatio-temporal
domain. Multi-camera systems are able to recover com-
plete, but independent 3D models of the scenes at isolated
time instances [29]. However, these are not consistent over
time, lacking motion information. Thus in order to enable
tasks such as performance capture, primitives on a template
3D surface have to be tracked across frames of such mo-
tion sequences, following a deformation model. This chal-
lenging problem has numerous applications, among which
virtual reality, 3D avatar animation and special effects.

One major difficulty is capturing non-rigid motion in-
volving topological changes, e.g. when subjects interact, or
when loose clothing touches or splits from other surfaces.
While triangular meshes have become a common discrete
surface representation for motion capture, they require te-
dious handling for such situations [38].

On the other hand, level set methods [20, 21] inherently
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Figure 1: Example of colour-preserving SDF evolution on
frames 30 and 31 from the Swing sequence of [35]. Mainly
the left leg and the body move. (a) Reference shape and
texture. (b) Warped shape using standard level set evolution.
Colour diffusion is clearly identifiable on the moving parts.
(c) Warped shape using the proposed evolution modification
with Laplacian eigenfunction term. The original texture is
preserved, while the geometric error remains at the same
order of magnitude as for the classical approach.

manage changing topology without need for additional pro-
cessing. They are widely used in shape analysis due to the
ease they provide for calculating geometric properties, such



as derivatives, normals and curvature, over a fixed Carte-
sian grid without parameterization. However, the underly-
ing level set evolution involves an incremental iterative nu-
merical scheme, in which correspondences are lost [22, 37].
This limits applications to reconstruction and modelling,
but prevents tasks that require tracking data associated with
the surface, such as texture mapping and identity transfer.

To remedy this discrepancy, researchers have investi-
gated hybrid structures combining the advantages of both
meshes and level sets. For instance, SpringLS [13, 14] pro-
vide interoperability between the two representations, al-
lowing the user to interpret geometry in the form that is
more beneficial at the current step of an algorithm.

Other authors adhere to the mesh representation and use
spectral methods based on the Laplace-Beltrami operator
to calculate volumetric descriptors, which are matched to
identify corresponding interest points across shapes. These
include the volumetric heat kernel signature [23] and its
scale-invariant follow-up versions [12].

Other approaches favour the level set framework. The
Particle Level Set [6] and the Marker Level Set [16, 17]
methods apply the estimated motion not only to the vol-
umetric grid, but also to a set of particles attached to the
surface, and subsequently correct for their locations. Simi-
larly, Pons et al. [22] maintain explicit backward correspon-
dences to the reference shape and advect them using a sys-
tem of coupled Eulerian partial differential equations.

While some of these techniques demonstrate successful
results on synthetic examples or in scenarios where the level
set equations are analytically defined, they all entail some
overhead for representation conversion, descriptor match-
ing, or additional equation handling. To the best of our
knowledge, no method has managed to integrate correspon-
dence tracking within the level set equation itself. This is
largely due to the conflicting objectives of an evolving level
set energy versus direct explicit correspondence matching.

The objective of our work is to develop a variational
framework for 3D signed distance field (SDF) evolution,
which allows to propagate volumetric correspondences.
More specifically, we propose a novel energy term directly
in the evolution equation. It is based on the intuition that
shapes do not deform absolutely randomly, but follow some
natural patterns, which are reflected through their Laplacian
eigenfunctions [8, 15, 25, 28]. Our energy imposes simi-
larity between the Laplacian eigenfunction representations
of the reference and target shapes. As a result, our frame-
work yields implicit correspondences between the SDF rep-
resentations of the shapes. We demonstrate this through the
application of colourful SDF evolution, in which we man-
age to preserve surface texture during the evolution process.
Moreover, we quantitatively evaluate the geometric error on
public 4D sequences, showing that it remains at the same or-
der of magnitude as with the standard level set framework.

2. Related Work

Deformable models are commonly used for 3D recon-
struction, registration, simulation, animation and motion
tracking [14]. Meshes and level sets are the two representa-
tions that are most often employed for manipulating the 3D
data at hand. Each has advantages in certain applications,
e.g. meshes are more suitable for registration, where corre-
spondences between vertices need to be estimated [2, 3, 33],
while level sets are more often utilized in segmentation,
where the boundary of a particular structure is determined
by a propagating front [20]. However, for tasks which need
to combine the two representations, there either has to be
an explicit structure that can be cast into either a mesh or a
level set [14], or the solution needs to implicitly provide the
data associated with the other representation.

Spectral descriptors Spectral decomposition methods
based on the Laplace-Beltrami operator on meshes have
achieved remarkable results for non-rigid full and partial
shape matching [4, 10, 11, 26, 32]. They model defor-
mations as approximate isometries of the object boundary,
i.e. its surface. Inspired by this success, researchers have
looked into volume isometries, which are more natural to
be preserved during motion. This brought about the vol-
umetric heat kernel signatures [23], volumetric maximally
stable extremal regions [12], and a variety of other signa-
tures based on Laplace-Beltrami eigendecomposition [24,
27, 28]. They typically take an arbitrarily big subset of the
operator eigenfunctions in order to build a descriptor. Sub-
sequently, quantization and matching are required in order
to determine corresponding regions for the applications of
non-rigid shape retrieval and classification. However, ex-
amples are limited to mainly synthetic noise-free meshes.

Hybrid structures While the spectral descriptors are
computed from a mesh representation of the shape, some
authors avoid it due to the difficulty of discretizing equa-
tions on polygonal grids and the tedious calculation of pro-
jections onto the discretized surface for handling proper-
ties such as gradients [1]. Instead, they prefer to use the
level set framework [21, 30, 34]. It, however, does not pre-
serve correspondences and is therefore ill-suited for tasks
such as surface registration and motion tracking. Pons et
al. [22] were among the first to propose a way to maintain
correspondences during the level set evolution. They use
a system of coupled PDEs in order to track backward cor-
respondences to the initial surface position. Their frame-
work handles large deformations and topological changes,
but is based on analytically defined motion equations of
curvature-dependent speed.

The Particle Level Set method [6] provides a similar
scheme, in which a set of particles are associated with the



initial surface. They are advected together with the level
set evolution, and then processed for addition and deletion
where topological changes occurred. Moreover, at each it-
eration, a correction step has to be done to ensure that the
particles are still aligned with the surface. This is a com-
plicated procedure, which might take hundreds of seconds.
Therefore, speedups and modifications followed, such as
the Marker Level Set [16, 17], which is still far from in-
teractive frame rates.

More recently, SpringLS have been proposed to offer di-
rect interoperability between meshes and level sets [13, 14].
They define a level set as a constellation of triangular sur-
face elements, which are loosely connected via structures
with the physical properties of springs, so that rigidity con-
straints can be applied. However, the processing speed still
remains at the order of several minutes, while accuracy is
only slightly better than that of Pons et al. [22].

3. Overview

Having experienced issues with selecting appropriate
step sizes for particle-based level set approaches (which is
an issue addressed by the authors themselves [14]), we set
out to develop a framework which is entirely based on level
set evolution, and maintains correspondences in an implicit
way. We take inspiration in part by the Laplace-Beltrami
operator, whose spectrum is an isometry invariant of the
shape, independent of its spatial position or parameteriza-
tion, and is even dubbed to ”understand” geometry [8, 25].
In analogy to physical vibration models, it is indicative of
the trajectories in which a surface is able to deform [8].

The Laplace-Beltrami is an operator associated with the
surface, i.e. the volume boundary of an object, and there-
fore convenient methods for calculating it from a mesh rep-
resentation exist. While it is invariant to isometric deforma-
tions [28], it is more natural for the volume to be preserved
during articulated motion. However, the volumetric Lapla-
cian shares similar invariance properties only if a very fine
grid with appropriate boundary conditions is used, which
might be prohibitively expensive for practical 3D scenar-
ios [28]. Nevertheless, it has been shown that the Laplacian
of a voxel representation of a shape is able to handle its ar-
ticulations [15]. Thus it is sufficient for our main goal of
human performance capture.

Therefore, we propose to stay within the level set frame-
work, where objects are represented via voxel grids. We
utilize the eigenfunctions of the Laplacian, which capture
information about natural non-rigid motion patterns, and in-
clude them directly as an energy term in a variational frame-
work. Thus, without explicitly tracking correspondences,
we are able to implicitly infer them. This is demonstrated
through texture transfer during level set evolution, as shown
in Figure 1 and the results that follow.

4. Proposed Approach

In this section we describe our signed distance field evo-
lution method. More specifically, we focus on the novel
Laplacian eigenfunction energy term, which permits the
propagation of implicit correspondences. In addition, we
highlight the modifications to the standard level set frame-
work, which are required to make that propagation possible.

4.1. Signed Distance Field Evolution

The original level set framework [20, 21] is based on
evolution with curvature-dependent speed. This is appro-
priate for applications such as segmentation, in which a ran-
domly initialized shape is evolved towards a target bound-
ary. Since we are interested in deforming a 3D shape to
a given target, we instead prefer the variational formulation
more commonly used for reconstruction [9, 31]. Our choice
of level set is the signed distance field, which provides a
convenient way to distinguish between inside and outside
of objects, and has proven extremely beneficial for shape
representation and reconstruction in recent years [5, 19].

Let φinput be the SDF which is being evolved towards
the target SDF φtarget. Note that they occupy the same vol-
ume and are discretized using the same voxel size.

We aim to estimate a 3D flow field Ψ which warps the in-
put shape towards the target, i.e. it seeks to align φinput(Ψ)
with φtarget. The deformation field has the same resolution
as the SDFs and assigns a displacement vector (u, v, w) to
each voxel center (x, y, z) in the world coordinate frame.
Therefore, our approach resembles scene flow [7, 36], but
the warp field is per voxel rather than per 3D point in a
stereo or RGB-D image.

Thus our SDF evolution data term, similarly to any level
set approach, is a sum over voxels:

Edata(Ψ) =
1

2

∑
x,y,z

(
φinput(x+ u, y + v, z + w)−

−φtarget(x, y, z)
)2
.

(1)

Note that the vector (u, v, w) is different for each voxel,
as the flow field Ψ consists of all of these displacements,
organized in a regular grid.

The level set framework is iterative and typically requires
re-initialization after every couple of iterations in order to
ensure that the geometric properties of the level set are cor-
rect. This can be done by explicitly applying a PDE that
enforces the gradient magnitude to equal unity everywhere
in the volume [20]. Alternatively, it can be achieved directly
through the variational framework, whereby a level set reg-
ularizer term is added to softly impose this constraint [9].
As a variational framework is our goal too, we use the term



introduced by Li et al. [9]:

Ereg(Ψ) =
1

2

∑
x,y,z

(
|∇φinput(x+ u, y+ v, z+w)| − 1

)2
,

(2)
where the∇ operator takes the gradient of the SDF. Numer-
ically, we implement it as a central difference.

4.2. Preventing Diffusion

The terms in Eq. 1 and 2 form a variational energy, which
is solved iteratively via a numerical scheme, such as gradi-
ent descent, based on the respective Euler-Lagrange equa-
tions. At each iteration step of the evolution process, the
warp field is updated and applied to the current shape. As
this results in displacements to non-integer voxel locations,
the new state of the SDF has to be obtained via tri-linear in-
terpolation [31, 37]. This is the main reason why correspon-
dences are not preserved in the level set framework [22],
which is manifested as colour diffusion when attempting to
propagate texture, as shown in Figure 1b. To reduce this
diffusion, instead of incrementally calculating the deforma-
tion field, we always estimate it relative to the initial shape.
We thus obtain the warped SDF via a single interpolation
step from φinput, rather than a sequence of interpolations
applied at each iteration. As we will show in the experi-
mental section, this results in a slightly inferior geometric
accuracy, but is a crucial modification for preserving im-
plicit correspondence.

4.3. Laplacian Eigencolour Term

As the eigenfunction representation results in a colouring
of the voxels, which describe the natural deformation modes
of the shape, we also call it eigencolour. To build it, we start
with a binary voxel representation, which can be obtained
by thresholding an SDF: signed distances with value less
or equal to zero belong to the object. Let the total number
of these occupied voxels be k. Then the Laplacian matrix
L ∈ Nk×k is built as follows:

Li,j =


1 if i 6= j and i⇔ j,
−6 if i = j,
0 otherwise.

(3)

Above we use the symbol⇔ to denote that the voxels with
linearized indices i and j share a common side, i.e. they are
6-neighbours in the 3D grid.

Next, we solve the Laplacian eigenvalue problem, also
known as the Helmholz equation [25], obtaining the eigen-
functions of L. The full spectrum of the Laplacian (or
rather, the Laplace-Beltrami) reflects all possible ways
in which the shape can deform isometrically. However,
since real-world data may contain noise, we discard high-
frequency eigenfunctions. Instead, we want to capture only

Figure 2: Visualization of the Laplacian eigencolour repre-
sentation of several poses of the same subject. The patterns
around skirt folds confirm that the chosen lowest-frequency
eigenfunction is suitable for capturing important character-
istics of the 3D shape, while discarding sporadic details.

the most significant characteristics of the shape. Therefore,
we decide to retain only the eigenfunction with smallest
non-zero eigenvalue. Figure 3 compares several eigenfunc-
tion colourings of the same shape using different eigenval-
ues. It clearly demonstrates that the contours of the higher-
frequency eigenfunctions are too unstable.

Similarly, Figure 2 depicts the lowest-frequency Lapla-
cian eigencolourings of the same shape in different poses.
The skirt is the most motile part of the object and this is
where the contours saturate. Moreover, they form similar
patterns across the different poses, indicating that the eigen-
functions indeed encode the most natural deformations of
the captured shape, regardless of its articulation.

As the eigenfunction of L is a k-element vector, we pad
it to the size of the volume and de-linearize its indices to
obtain l, which is the eigencolouring of the volume. It is a
scalar field of the same resolution as the original SDF grid.
Padding is effectively done in the outside area of the shape,
and we use the minimum value entry of the eigenfunction to
pad because this does not contradict the gradient of l. Fur-
thermore, we normalize the values to the interval [−1, 1],
as different shapes will have slightly different entries in the
eigenfunctions.

Since φinput and φtarget represent articulations of the
same shape, we expect their lowest-frequency Laplacian
eigenfunction representations linput and ltarget to be sim-
ilar. We intergrate this intuition into our variational frame-
work through the following Laplacian eigencolour term:

Eeig(Ψ) =
1

2

∑
x,y,z

(
linput(x+ u, y + v, z + w)−

−ltarget(x, y, z)
)2
.

(4)

Note that Eeig is very similar to the data term Edata. In
fact, it is possible to use only Eeig as a data term, but since
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Figure 3: Laplacian eigenfunction visualization. λ1 corresponds to the smallest eigenvalue, λ2 to the second-smallest, etc.
λlast denotes the largest eigenvalue, out of a total of 3151 in this case, while λlast−10 is the 10th largest and so on. The
contours indicate that the smaller eigenvalues, corresponding to the lower-frequency eigenfunctions, capture more general
and significant characteristics of the shape. On the other hand, the larger eigenvalues are associated with eigenfunctions
containing a lot of high-frequency noise. Therefore, we choose the smallest eigenvalue for our framework.

it stems from a binary voxel representation rather than an
SDF with smooth transitions between values, it would result
in a blocky output. Exploring this possibility is, however, an
interesting direction for future work.

Finally, the complete energy then becomes:

E(Ψ) = Edata(Ψ) + ωregEreg(Ψ) + ωeigEeig(Ψ) . (5)

We solve it via a gradient descent scheme, which terminates

when the sum of squared distances update per voxel be-
comes smaller than 10−7. The weights of the other terms
in the presented examples are ωreg = 0.05 and ωeig = 1.

4.4. Implementation Details

We implemented the presented framework in MATLAB.
Processing a volume of 1283 voxels requires 0.25 seconds
per iteration on a laptop equipped with an Intel i7-4900MQ
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Figure 4: Results of texture transfer on the MIT dataset [35] T swing sequence. The frame index is shown below each image.
The top row demonstrates that our strategy is able to implicitly preserve correspondences, and consequently keep a stable
texture, when the inter-frame motion is smooth. The bottom row shows the limitations of the technique under abrupt motion,
namely texture diffusion (blue replacing purple on the skirt) and inability of the non-incremental scheme to recover the arm.

CPU at 2.80 GHz. This compares favourably with the times
reported by SpringLS [13] and the Particle Level Set [6],
both of which require several minutes for their respective
applications. As most operations run independently over
voxel grids, they can be parallelized. We thus expect an op-
timized C++/ CUDA implementation to bring further sig-
nificant performance gains.

Our framework always converges in less than 120 itera-
tions, even when non-consecutive frames are taken. This
is, however, slower than the classical incremental varia-
tional level set version, which typically requires less than
80 steps. Increasing the weight of the eigencolour term can
drastically reduce the number of iterations by more than 2-
3 times, but this might have a slightly adverse effect on the
geometric error. Therefore, the relative weight selection in
the energy functional brings a trade-off between accuracy
and speed.

5. Results
Now we demonstrate the capabilities of our proposed

framework. The application we tackle is texture transfer
in 4D motion capture, where consecutive frames exhibit
smooth motions [35]. Note that since we rely on the vol-
ume Laplacian, we do not expect to be able to handle larger
pose differences as used in non-rigid shape matching, e.g.
as in the popular FAUST dataset [2].

For comparison, we use a baseline which corresponds
to a standard variatonal signed distance field evolution, i.e.
based on the energy functional

Ebaseline = Edata + ωregEreg . (6)

As explained in the method section, it can be applied in an
incremental way, relative to the state in the previous itera-
tion, or in a non-incremental way, always relative to φinput.
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Figure 5: Results of texture transfer on the MIT dataset [35] D squat sequence. The frame index is shown below each image.
As there is no extremely abrupt motion, our framework manages to preserve a stable texture.

A visual comparison with the incremental baseline was
already shown in Figure 1, where it is clearly visible that
the classical variational level set framework leads to colour
diffusion inside the volume.

Next, we use data from the MIT dataset [35], which con-
tains multi-view mesh reconstructions of dynamic single-
subject scenes. However, we do not make use of the meshes,
but convert them to their signed distance representation and
then feed them into our framework.

In Figures 4 and 5 we colour the voxels of an initial shape
according to their 3D locations and aim to propagate this
texture over time. Note that we do not deform a template
separately to each frame, but start with one coloured grid
and continuously update it to match every incoming frame.
This strategy is more prone to drift, since once the colour
diffuses, it cannot be remedied, but we view it as more ap-
propriate for evaluation of 4D capture.

The resulting shapes are geometrically plausible. In fact,
the average geometric error is 1.2 cm, which is well below
the 1.6 cm voxel size used for discretization, and not much
higher than the 0.7 cm error of the incremental baseline.

The texture is preserved well throughout the first 25
frames of the T swing sequence, i.e. when the motion is not
too abrupt, as shown on the top row of Figure 4. Larger mo-
tions, however, present a challenge, e.g. when the girl makes

a big step and her skirt executes a larger motion. Then the
blue colour on the skirt diffuses from the right part towards
the left one. Afterwards, once the motion is smaller again,
texture stays stable in the next slower motion part of the se-
quence. However, the left arm motion is so large in frames
36-45 that the non-incremental strategy cannot recover the
geometry. Consequently, the colour information there is ter-
minally lost. Even though the movement becomes smaller
afterwards and the wrist can be reconstructed again, it can
only extrapolate colour from the parts that were left. As
shown on the same sequence in KillingFusion [31], the clas-
sical incremental strategy does not face such problems in
recovering geometry - but would fail in transferring texture,
as indicated in Figure 1.

Figure 5 shows the first squat of the D squat sequence.
As the motion is smoother, the colours are well preserved.
Therefore, we conclude that our framework is able to keep
implicit correspondences for smooth motions - improving
over the classical level set approach, but still has issues un-
der arbitrarily large movements.

Finally, to demonstrate the contribution of the proposed
Laplacian eigencolour term over the baseline in its non-
incremental version, we apply a simple texture to the torso
and legs of the man in a frame of D squat, and compare its
preservation over the several following frames in Figure 6.
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Figure 6: Contribution of the Laplacian eigencolour term. Blue regions remain stable while only the arms move. While there
is certain colour diffusion with both schemes when the torso and legs also move, the Laplacian term restricts it better.

While the motion is only in the arms, both schemes keep the
blue colour fixed. However, once the legs start bending, the
version without Laplacian eigencolour (Fig. 6b) visibly dif-
fuses more than the proposed one (Fig. 6c). Therefore, the
lowest-frequency Laplacian eigenfunction aids in implicitly
matching corresponding regions of the shapes.

6. Future Work

The presented implicit correspondence energy term is
based on the Laplacian of a voxelized 3D shape, as it is
suitable for direct inclusion in a variational level set frame-
work. While our system can preserve surface colour during
moderate movements, it does not succeed under very large
motion, as seen in Figure 4. This is due to the fact that the
Laplacian operator is not entirely invariant to isometric de-
formations [28], which might be a desirable property for ap-
plications such as non-rigid shape retrieval, but hinders han-
dling big displacements. On the other hand, the Laplace-
Beltrami operator is invariant [28], but we have avoided us-
ing it, since it is most straightforward to compute it through
the mesh representation. In future work, we will explore
possibilities to calculate it as a projection of a surface rep-
resented in implicit form [1], which would allow us to han-
dle even larger deformations directly through the evolution
equation. Further, Figure 3 suggests that a combination of
several low-frequency eigenfunctions might be better suited
to describe the shape than a single one, but previous works
usually use a seemingly arbitrary number to build signatures
for descriptor matching. Thus, we plan to study into what
subset of the spectrum is required to robustly represent a
shape while still discarding its high-frequency details, and
use a sum over the corresponding eigenfunctions. More-
over, this work has focused on implicitly tracking complete
3D models, while in future we would like to tackle dense
reconstruction from a single depth stream [18], which will
entail further challenges in handling partial overlap.

7. Conclusion

We have presented a variational framework for signed
distance field evolution, which seeks to preserve correspon-
dences implicitly across volumetric representations of sub-
jects undergoing moderate articulated motions. It is based
on their lowest-frequency Laplacian eigenfunctions, as they
encode information about the natural deformation patterns,
and consequently the non-rigid isometries, of the underly-
ing shape. We have demonstrated the ability of this energy
formulation to reduce colour diffusion and preserve texture
during level set evolution, while keeping geometric accu-
racy at the same order of magnitude as the classical level
set formulation.
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