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Abstract

We present a system that builds 3D models of non-rigidly
moving surfaces from scratch in real time using a single
RGB-D stream. Our solution is based on the variational
level set method, thus it copes with arbitrary geometry, in-
cluding topological changes. It warps a given truncated
signed distance field (TSDF) to a target TSDF via gradient
flow. Unlike previous approaches that define the gradient
using an L2 inner product, our method relies on gradient
flow in Sobolev space. Its favourable regularity properties
allow for a more straightforward energy formulation that is
faster to compute and that achieves higher geometric detail,
mitigating the over-smoothing effects introduced by other
regularization schemes. In addition, the coarse-to-fine evo-
lution behaviour of the flow is able to handle larger mo-
tions, making few frames sufficient for a high-fidelity recon-
struction. Last but not least, our pipeline determines voxel
correspondences between partial shapes by matching sig-
natures in a low-dimensional embedding of their Laplacian
eigenfunctions, and is thus able to reliably colour the output
model. A variety of quantitative and qualitative evaluations
demonstrate the advantages of our technique.

1. Introduction
The abundance of affordable RGB-D cameras in recent

years triggered the creation of a variety of excellent real-
time methods for 3D mapping and tracking from a single
stream [22, 23, 29, 31, 32, 33, 49]. Nowadays depth sensors
are being integrated into new generations of mobile phones,
whose limited computational resources call for new solu-
tions. One major challenge is the reduced frame rate, which
can be as low as 5 frames per second on a Tango tablet [17].
While static reconstruction methods have been successfully
ported to mobile devices [21], when it comes to dynamic
scenes, algorithms will have to cope with larger frame-to-
frame motions, which is one of the goals of this paper.

DynamicFusion [31] is the breakthrough work that first
performed real-time 3D reconstruction of a non-rigid scene
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Figure 1. SobolevFusion example. Our method reconstructs
scenes containing multiple non-rigidly interacting agents, captured
with a single RGB-D sensor.

using a single depth camera. Several follow-ups improved
its tracking via additional constraints, such as colour fea-
tures [18], albedo [15] or human skeleton [52]. While
showing ever-improving visual quality, all of these methods
only demonstrate examples of relatively contrived move-
ments. Even state-of-the-art multi-view systems [9] utilize
extremely high frame-rate cameras of up to 200 fps [12] to
ensure that frame-to-frame motion is minimal.

KillingFusion [40] is the only single-stream approach
that has shown capture of more free movements to date.
It warps an input TSDF towards the current canonical re-
construction via a variational formulation that estimates a
flow field. However, the underlying gradient flow is based
on an L2 inner product, which is known to be suscepti-
ble to local minima [45]. In order to counteract this issue
and stabilize the level set evolution, KillingFusion employs
a combination of regularizers, which are difficult to bal-
ance and thus result in over-smoothing and loss of high-
frequency details. Here we propose to define the gradient
flow in the Sobolev space H1 [30, 45]. It acts as a pre-
conditioner that favours consistent motion and features a
desirable coarse-to-fine evolution of the TSDF. This reduces



the risk of getting trapped in local minima without chang-
ing the global optimum [44]. Therefore, it lets us define
an energy of reduced complexity that is faster to evaluate
and yields more detailed reconstructions. Moreover, thanks
to improved convergence, SobolevFusion can capture even
larger motion, thus only several scans are sufficient to build
a realistic 3D model.

As the proposed approach is based on the variational
level set method [53], it can handle topological changes, but
preserving correspondence information is more challenging
than for mesh-based techniques [36]. This usually limits
the applicability to tasks such as texture transfer and charac-
ter animation. Therefore we take inspiration from spectral
techniques for matching over voxel representations [28, 38].
Using a low-dimensional embedding of the eigenspace of a
shape’s Laplacian matrix, the alignment problem is reduced
to matching eigenfunction signatures [28]. However, as we
are dealing with partial shapes from noisy data, we keep
only high-confidence matches. Thus we only obtain a set of
sparse correspondences per frame, but can reliably texture
the final canonical reconstruction.

To sum up, we propose a variational non-rigid fusion
technique, called SobolevFusion, which:

• is based on Sobolev gradient flow, allowing for a more
straightforward, faster to compute energy that pre-
serves geometric details without over-smoothing;

• handles topological changes and large motion, thus re-
quiring only a few views to build a model;

• can estimate voxel correspondences and colour the re-
construction.

2. Related Work
Most real-world scenes consist of agents that interact

with each other and their surroundings. Reconstructing
them is a challenging task due to its high dimensionality.
Compelling state-of-the-art capture systems constrain the
problem through the use of multiple cameras [4, 6, 8, 10, 20]
or template models [3, 16, 55], requiring custom set-ups and
recording studios. Here we address the scenario of a single
RGB-D camera, which is more convenient for the user.

Dynamic reconstruction Template-free methods for
non-rigid fusion using a single depth sensor have been on
the rise since 2015 with the development of the offline bun-
dle adjustment scheme of Dou et al. [11] and the first real-
time solution for simultaneous surface tracking and recon-
struction, DynamicFusion [31]. A line of research improved
on it, including VolumeDeform [18] which combines its
dense depth correspondences with sparse SIFT features,
and the integration of surface albedo constraints by Guo et
al. [15]. However, the examples shown in these publications
mostly contain slow motion and no changing topology.

Large motion KillingFusion [40] tackles the problem
from another perspective, whereby instead of extracting a
mesh from the cumulative model for correspondence esti-
mation, it stays within the TSDF representation and warps
it incrementally. As level sets inherently handle topological
changes and can recover from large distances, examples on
less constrained motion have been shown.

Similar to most approaches derived from the variational
level set method, the gradient flow used for warping is de-
fined via an L2-type inner product [34, 35, 53]. Although
widely used, it assumes a metric that may lead to slow con-
vergence and sub-optimal solutions [45]. Techniques to
stabilize the evolution include re-initialization or additional
regularizers imposing the level set property of unit gradient
magnitude [26], as done by KillingFusion. However, it does
not hold strictly in the discrete case, and is not valid at the
border of voxel truncation, causing over-smoothing effects.

Gradient flow in the Sobolev space H1 has been shown
to have superior performace without changing the global
minimum [45]. Re-casting the notion of gradient in this way
has a pre-conditioning effect that induces flow with coarse-
to-fine behaviour which first evolves lower-frequency com-
ponents and is thus less susceptible to local minima [5, 44].
The concept was developed in the context of numerical so-
lutions of PDEs. We refer the reader to the book of Neu-
berger [30] for a mathematical introduction. It has been ap-
plied for segmentation [1, 14, 45], registration [44, 46, 54]
and sharpening [5] of 2D images or complete 3D volumes
in medical imaging. Here we propose to employ it for the
profoundly different task of incremental 3D reconstruction
from depth images. As its regularity properties will permit
us to define an energy functional with fewer terms, we ex-
pect faster processing, in addition to the discussed improved
convergence and better preservation of geometric details.

Voxel correspondence A major limitation of approaches
based on level set evolution is their inability to track cor-
respondences [36, 50]. One possibility to recover them is
to convert the resulting shape to a mesh and use spectral
matching techniques [2, 19], which utilize the fact that the
graph Laplacian of a shape is invariant to isometric defor-
mations [25, 37]. As mesh extraction would entail temporal
overhead, our aim is to determine correspondences between
an initial TSDF and its warped counterpart. To this end we
follow an approach similar to that of Mateus et al. [28], who
deal with shapes represented as voxel sets. They first find
a lower-dimensional embedding of the Laplacian spectrum,
then determine an ordering of the eigenvalues by matching
eigenfunction signatures, and finally reduce the correspon-
dence estimation problem to rigid alignment in the embed-
ded space. However, their approach is applied only to whole
shapes and does not fit into real-time constraints. Therefore
we propose a modified strategy over TSDFs of incomplete
shapes that only keeps the most likely matches.



Figure 2. SobolevFusion pipeline. Given an input RGB-D pair, we first generate its projective TSDF φi
proj from the current camera

pose estimate. Next, we warp it towards the canonical model TSDF φi−1
model, obtaining φi

warped. Afterwards we optionally estimate voxel
correspondences between φi

proj and φi
warped in order to transfer colour to the warped TSDF. Then we fuse φi

warped into the canonical
model, obtaining its updated state φi

model. Finally, we run a backward warp from φi
model to φi

proj to visualize the live frame to the user.

3. Overview
In the following we briefly describe our mathematical

notation and outline the proposed SobolevFusion approach.

3.1. Mathematical Preliminaries

Our system takes an RGB-D stream consisting of pairs
(IiRGB , I

i
D), where i is the frame index, IRGB is the 3-

channel colour image and ID is the aligned depth map.
We assume a calibrated camera and a projection function
π : R3 7→ N2 from 3D coordinates to pixels.

We discretize the pre-defined bounding volume into cu-
bic voxels of a selected side length. They are indexed by
integer tuples (x, y, z) ∈ N3. Let (X,Y, Z) ∈ R3 be the
coordinates of the respective voxel’s center in 3D space. A
single RGB-D frame allows the generation of a projective
TSDF φ : N3 7→ R. We follow the traditional scaling and
truncation scheme [39]:

d(x, y, z) = ID(π(X,Y, Z))− Z , (1)

φ(x, y, z) =

{
sgn(d(x, y, z)) if |d(x, y, z)| ≥ δ ,
d(x, y, z)/δ otherwise ,

(2)

ω(x, y, z) =

{
1 if d(x, y, z) > −η ,
0 otherwise .

(3)

Here d is the directional signed distance, which is truncated
to the interval [−1,+1] to disregard voxels that are far away
from the surface. In practice we set the responsible param-
eter δ to 5-10 times the voxel size. The parameter η deter-
mines the expected object thickness and is set to 2-3 voxels.
Voxels outside the object and within this thickness receive
a confidence weight ω of 1, while non-observed ones get 0.

TSDFs from multiple views are fused together via the
weighted averaging scheme of Curless and Levoy [7], re-
sulting in a true (not projective) TSDF.

Finally, we will be estimating a vector flow field Ψ =
(U, V,W ) : N3 7→ R3 of the same resolution as the TSDFs.
U , V and W denote its x-, y- and z-components respec-
tively, each of which is a scalar grid N3 7→ R. We denote
the vector applied at voxel (x, y, z) by (u, v, w).

3.2. SobolevFusion Pipeline

Our proposed pipeline is displayed in Figure 2. Given
an existing state of the cumulative model φi−1model and an in-
coming RGB-D pair (IiRGB , I

i
D), we iteratively estimate a

deformation field that warps the projective TSDF φiproj gen-
erated from IiD towards φi−1model, resulting in φiwarped, us-
ing the Sobolev deformation scheme described in Section 4.
We then estimate voxel correspondences between the initial
and warped TSDFs in order to transfer colour from φiproj to
φiwarped, as explained in Section 5. Then we fuse φiwarped

into the global model, obtaining its new state φimodel. Fi-
nally, we run a backward deformation from φimodel towards
φiproj in order to provide a live update to the user.

4. Sobolev 3D Reconstruction
Here we describe our variational model for non-rigid re-

construction, as well as how the concept of Sobolev gradient
flow is employed for computing a minimizer of this model.

4.1. Deformation Energy

As a new RGB-D frame is acquired and we estimate the
approximate camera pose, we generate the corresponding
projective TSDF φproj . Next, we warp it towards the canon-
ical TSDF φmodel. In iteration t, we estimate a deformation
field increment Ψ = (U, V,W ) and apply it to the current
warped TSDF φ(t)proj , obtaining its new state φ(t+1)

proj via tri-
linear interpolation. We do this following a variational for-
mulation consisting of a data term and a regularizer:

Edef (Ψ) = Edata(Ψ) + wregEreg(Ψ) , (4)

where wreg > 0 controls the trade-off between data fidelity
and regularity. A solution of this model can be found via a
gradient descent scheme with step size α > 0:

Ψ(t+1) = Ψ(t) − α ∇Edef

(
Ψ(t)

)
, (5)

where ∇Edef

(
Ψ(t)

)
denotes the variational derivative of

the energy with respect to the deformation field. It is im-
portant to note that ∇Edef depends on the choice of the
underlying inner product as explained in Section 4.2.



Data term Our data term enforces similarity between the
TSDF that we are warping and the target canonical model
by minimizing their squared voxel-wise difference:

Edata(Ψ) =
1

2

∑
x,y,z

(
φproj(x+ u, y + v, z + w)−

−φmodel(x, y, z)
)2
.

(6)

Applying standard calculus of variations we obtain:

∇Edata(Ψ) =
(
φproj(Ψ)− φmodel

)
∇φproj(Ψ) . (7)

Note that we use the symbol∇ both for the spatial gradient
of φ and for the variational derivatives of the energy terms.

Regularizer Our pipeline targets noisy Kinect data,
which might cause inconsistencies within voxel neighbour-
hoods that result in holes in the reconstruction. Therefore
we employ a classical Tikhonov-type regularizer that re-
duces spurious artifacts by imposing uniform motion:

Ereg(Ψ) =
1

2

∑
x,y,z

(
|∇U(x, y, z)|2+

+|∇V (x, y, z)|2 + |∇W (x, y, z)|2
)
.

(8)

Using calculus of variations we obtain:

∇Ereg(Ψ) = −(∆U,∆V,∆W )> , (9)

where ∆U denotes the Laplace operator applied to the x-
component of the flow field, and similarly for V and W .

4.2. Sobolev Gradient Flow

The main idea of Sobolev gradient flows can be sum-
marized as follows: compute the variational derivative of
an energy with respect to the inner product of a smooth
subspace of L2, i.e. a Sobolev space, to obtain a gradi-
ent, which employed in a descent scheme yields a gradient
flow that favours globally consistent solutions and is less
susceptible to undesired local minima. Sundaramoorthi et
al. [44] coined the term coarse-to-fine evolution for this ef-
fect, which accurately summarizes the fact that coarse-scale
changes are favoured over fine-scale ones. In the context of
incremental 3D reconstruction, this means that the warped
TSDF will first adapt to more global deformations before
eventually converging also w.r.t. to fine-scale details.

To compute a Sobolev gradient, it is sufficient to project
the original gradient ∇Edef to the Sobolev space H1 [5].
Identifing∇Edef from Eq. (5) as the L2 gradient∇L2Edef ,
we obtain:

∇H1Edef = (Id− λ∆)−1 ∇L2Edef , (10)

where Id denotes the identity operator. Eq. (10) involves
the solution of an equation system, but it is possible to de-
rive an approximate way of obtaining Sobolev gradients.
First we note that Eq. (10) can be realized via

∇H1Edef = S ∗ ∇L2Edef , (11)

where the filter S is the impulse response of the operator
(Id − λ∆)−1. In practice, we approximate S for a chosen
value of λ and filter size s by solving the following system:

(Id− λ∆)S = v , (12)

where v is a one-hot vector that corresponds to a discretized
Dirac impulse of size s×s×s voxels, and ∆ is the Laplacian
matrix discretized via a 7-point finite-difference stencil.

However, 3D convolutions might become prohibitively
expensive for large values of s. Thus we further approxi-
mate the Sobolev kernel S by three separable 1D convolu-
tions. To this end, we calculate the tensor higher-order SVD
decomposition [24] of S and retain only the first singular
vector from each resulting U matrix, and after normaliza-
tion to unit sum obtain the 1D s-element filters Sx, Sy and
Sz . As they contain the same entries, the subscript denotes
spatial direction of application. Note that this is an approxi-
mation of S that has indispensable performance advantages.

At this point it is important to remark the following:

• A Sobolev gradient flow only enforces a more regular
evolution to the desired minimum and not a more reg-
ular solution itself. Thus it favours globally consistent
motions without changing the global optimum [45]
and does not hamper the reconstruction of fine details,
as we will demonstrate in our experiments.

• Thanks to this more consistent evolution, we do not
need to enforce rigidity constraints, such as embedded
deformation [43] or as-rigid-as-possible schemes [42]
over meshes used by DynamicFusion [31] and its re-
lated methods [11, 18], or impose a divergence-free
vector field prior like KillingFusion [40].

• Furthermore, our scheme does not require explicit re-
initialization [34] or level set regularization [26, 27] to
stabilize the evolution of the TSDF. This is in contrast
to, for instance, KillingFusion [40] that uses both level
set and rigidity priors, which are hard to balance and
may cause over-smoothing effects.

4.3. Implementation Details

We use a default setting of neighbourhood size s = 7,
filter parameter λ = 0.1, motion smoothness wreg = 0.2
and gradient descent step size α = 0.1. Our model is robust
with regard to the parameter choice and achieves good re-
sults with a variety of settings (c.f . also an overview in sup-
plementary material). To explain their acceptable ranges,
we display reconstructions of the full-loop Andrew-Chair
sequence from Dou et al. [11] in Figure 3.

A Sobolev filter size s = 3 is not sufficient to achieve sat-
isfactory results. However, a larger kernel impedes speed,
while the differences with s ≥ 7 become negligible.

The parameter λ has an effect on the convergence rate.
We empirically determined that doubling its value reduces



(a) s = 3 (b) wreg = 0 (c) default

Figure 3. Extreme versus recommended parameter choices for
Sobolev neigbourhood s, kernel strength λ and motion regularity
wreg: (a) a small neigbourhood is not able to fully overcome the
effects of noise; (b) no motion regularization results in inconsistent
geometry; (c) the default setting yields a detailed reconstruction.

the number of iterations by 3-8%. Moreover, as Figure 3(b)
shows, motion regularity is essential to overcome noise.
The ranges λ ∈ [0.05; 0.4] and wreg ∈ [0.1; 0.5] yield high
fidelity reconstructions, and we set the default values in the
middle of those intervals.

Although our energy consists of only two terms, runtime
is dominated by the Sobolev convolutions. Depending on
the bounding volume, we use a voxel size in the range 4-
12 mm in order to fit our regular voxel grid into GPU mem-
ory. Our pipeline achieves 30 fps for 643 voxels on a lap-
top with an Nvidia Quadro K1100M GPU with 2 GB of
global memory, and for 1283 voxels on a desktop PC with
an Nvidia Titan Black with 6 GB memory.

5. Voxel Correspondences

Having developed a strategy for reliable non-rigid re-
construction, we now aim to colour the resulting model.
However, as level set methods do not preserve correspon-
dences [36, 50], colours would diffuse into each other if we
warp an RGB grid in the same way as the TSDF [41].

We therefore turn to techniques based on the spectrum
of the Laplacian matrix of a shape, which is invariant to
isometric deformations [2, 19]. Its lower-frequency eigen-
functions, corresponding to the smallest eigenvalues, repre-
sent the base shape (e.g. a human body), while the higher-
frequency ones carry details (limbs, wrinkles) [25, 37].

Recently it has been attempted to implicitly transfer cor-
respondences in a level set framework via a term based on
the difference of the lowest-frequency eigenfunctions [41].
As the overall scheme involves TSDF evolution, it has been
shown to succeed only on constrained motion of complete
shapes. We thus develop a scheme for direct voxel matching
between TSDFs of incomplete shapes, based on the eigen-
function signature matching proposed by Mateus et al. [28].

Spectral embedding Our objective is to find correspon-
dences between φproj and φwarped. We first calculate the
normalized graph Laplacian matrices of these voxel grids.

Let the number of voxels in the narrow band that is not
truncated to ±1 be l (they do not need to be the same for
both shapes). We refer to them as occupied in the current
context. This is the main difference between our proposed
solution and other spectral methods, which typically con-
sider the entire shape. The adjacency matrixW of size l × l
has an entry 1 when adjacent voxels are occupied, and 0
elsewhere. Note that the diagonal entries are 0, as a voxel
is not adjacent to itself. The degree matrix D contains the
degree of each voxel, i.e. the row-wise sums of elements in
W , on its diagonal. Then the normalized Laplacian is:

L = D−
1
2 (D −W )D−

1
2 . (13)

According to Umeyama’s theorem, finding correspon-
dences between the two shapes can be done through align-
ment of their Laplacian eigenspaces [47]. Let L = UΛU>

be the eigendecomposition. As the number of voxels in
our shapes is very large, we resort to a lower-dimensional
embedding containing the K smallest non-zero eigenvalues
and their eigenvectors [28]. The columns of the respective
matrix UK are the K retained eigenvectors, while its l rows
are the K-dimensional coordinates of the embedded shape.

However, there is no guarantee that the eigenvalues are
reliably ordered in the embedding, so we need to find a
K × K permutation matrix P that aligns the eigenspaces
of our two shapes. In addition, due to sign ambiguity, we
have to determine a sign matrix M , resulting in an overall
transformation T = MP , as described in the next part. It
relates the reduced embeddings as follows:

(UK
warped)> = T (UK

proj)
> . (14)

The correspondences between the embeddings are trans-
ferred to the voxels of the original shapes via nearest neigh-
bour search between embedded- and voxel-coordinates.

Eigenfunction signature matching We seek an optimal
assignment between the column eigenvectors ui

proj and
uj
warped, i, j ∈ {1, ...,K} of UK

proj and UK
warped. The

approach of Mateus et al. [28] suggests to construct his-
tograms from these eigenvectors, since they are invariant to
the value ordering and the number of entries l, and view
them as signatures of the eigenfunctions. We thus build a
200-bin histogram hist(·) from each vector and store the
similarity of each eigenvector pair as the `1 histogram dif-
ference in a score matrix A:

Ai,j = min(||hist(ui
proj)− hist(±u

j
warped)||1) . (15)

Additionally, a matrix M ′ stores the sign of ±uj
warped that

yielded the lower score.
This is an assignment problem between eigenfunction

signatures, which we solve for the lowest cost via the
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Figure 4. Comparison of SobolevFusion to KillingFusion [40] on scenes with interacting subjects, such as two people playing with a
ball, high-fiving and hugging. Both methods handle the motion, but SobolevFusion demonstrates better capture of geometric details, while
KillingFusion tends to over-smooth and thus, for instance, creates the impression that limbs are fused into the body (see marked regions).

Munkres algorithm [13] over A. We then build the permu-
tation matrix P according to its output, and look up M ′

for the appropriate sign in M . Thus we obtain the sought
transformation matrix T = MP and use it to estimate the
correspondence. If a near-surface voxel is assigned to an
off-surface voxel, we discard the match.

After obtaining initial matches, we use the Weiszfeld
algorithm [48] to determine the geometric median in a
3 × 3 × 3 neighbourhood in order to retain only the most
likely correspondence. This step is crucial, since as opposed
to Mateus et al. [28] and other prior work, we are dealing
with partial shapes, so their Laplacian eigenfunctions might
carry information about non-overlapping regions.

In our implementation we choose K ≤ 20, since higher-
frequency eigenfunctions might be contaminated by noise
or pertain to details of the shape rather than its base struc-
ture, which is undesirable for partial TSDFs. As paralleliza-
tion of the voxel matching procedure is not straightforward,
in practice we run it on the CPU while the next frame(s) are
being warped on the GPU. It takes 58-500 ms per frame on
a 2.80 GHz Intel Core i7 CPU, depending on the volume
size. Once done, it continues with the latest warped frame,
effectively avoiding temporal overhead.

6. Evaluation
Figure 1 demonstrates that SobolevFusion can recon-

struct a complete 3D model of a subject moving in a 360◦

loop, undergoing large motion and interacting with a bal-
loon, leading to merging and splitting topology.

ground KF [40] SF ground KF [40] SF
truth 3.9 mm 3.7 mm truth 3.5 mm 3.1 mm

Figure 5. Evaluation of geometric error on objects with ground-
truth canonical pose models from KillingFusion [40]. The error
is given under the respective output of KillingFusion (KF) and
SobolevFusion (SF). In addition to achieving higher geometric ac-
curacy, our method is less susceptible to high-frequency noise on
the Duck and to over-smoothing on the Snoopy sequence.

In this section we carry out various experiments in order
to assess the performance of SobolevFusion and compare it
to state-of-the art techniques. We test the different aspects
of our system separately, namely geometric accuracy, per-
formance under large motion, and ability to transfer colour
to the output model.

6.1. Geometric Fidelity

Most related to our method is KillingFusion [40] due
to the variational formulation based on signed distance
field deformation. In Figure 4 we compare SobolevFusion
against our implementation of KillingFusion with default
parameters on data that we acquired with a Kinect v1, fea-
turing fast motion, multiple interacting subjects and thus
topological changes (more results can be found in our sup-
plementary video). As expected, both methods are able to
handle such motion. However, KillingFusion tends to over-



every 3rd every 5th every 10th every 15th KillingFusion [40] every 10th

Figure 6. Lower frame-rate test. We use only every nth frame, as indicated under the results. SobolevFusion outputs high-fidelity
reconstructions using only 20% of the frames. For slow motion, even less frames give good results, while for large motion some of the
geometry cannot be recovered, resulting in artifacts. The right-most columns show the KillingFusion [40] result for every 10th frame,
exhibiting similar degradation properties as SobolevFusion does for every 15th frame due to its better convergence.
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Figure 7. Canonical model comparison on the full-loop Squeeze
sequence from DynamicFusion [31]. SobolevFusion recovers the
fine structures on the face better than KillingFusion [40].

smooth facial features and folds on clothes, while these are
more clearly visible with our approach. Our reconstructions
contain less noise as the underlying Sobolev gradient flow
provides higher robustness to it. Moreover, our method cap-
tures concavities better and defines sharper edges, both at
the shape outline and where surfaces touch. Last but not
least, we observed that SobolevFusion requires up to 15 %
less iterations to converge.

For quantitative evaluation we test on the fast-motion
mechanical toy sequences from KillingFusion [40], where
it has already been demonstrated that a TSDF-based ap-
proach performs better than a mesh-based technique, such
as VolumeDeform [18], under large motion and topologi-
cal changes. Figure 5 shows that our SobolevFusion fur-
ther decreases the geometric error and outputs more de-
tailed reconstructions. This is especially noticeable on
Snoopy for which the regularizers of KillingFusion lead to
over-smoothing, while our Sobolev gradient flow keeps fine
details while avoiding spurious artifacts caused by noise.
Therefore SobolevFusion achieves both an increased level
of geometric detail and a lower reconstruction error than
KillingFusion.

Similarly, in Figure 7 we demonstrate better preserva-
tion of detail than KillingFusion [40] on the 360◦ Squeeze
sequence from DynamicFusion [31]. For instance, the fa-
cial features are much more conspicuous in our case. Note
that due to the used regular voxel grid our result is still less
detailed than that of DynamicFusion.

We also compare the level of geometric detail of a TSDF
warped via Sobolev gradient flow versus that of a mesh-
based technique. For this purpose in Figure 8 we show
live frames from the Umbrella sequence used in VolumeDe-
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VolumeDeform [18] KillingFusion [40] SobolevFusion
Figure 8. Warped live frame comparison on the Umbrella from
VolumeDeform [18]. SobolevFusion yields similar or higher level
of detail as VolumeDeform without artifacts at the edge, while
KillingFusion [40] over-smooths thin elements such as the tip.

form [18]. Our method recovers similar, or even higher,
level of detail as VolumeDeform, without creating spurious
elements around the open edge or fusing the strap into the
umbrella. Furthermore, KillingFusion over-smooths the tip,
while SobolevFusion manages to capture this fine structure
using the same voxel size.

6.2. Large Motion

Even though datasets from the previous section exhibit
large motion, we simulate a lower frame-rate sensor by tak-
ing every nth frame from 360◦ sequences. To this end we
use the slow-motion Andrew-Chair from Dou et al. [11] and
the fast Alex sequence from KillingFusion [40], as displayed
in Figure 6. Naturally, when less frames are fused, the cu-
mulative TSDF is noisier. However, when only every 10th

frame is used, the reconstruction is still consistent for the
slower Andrew-Chair sequence, while the faster Alex se-
quence starts creating artifacts due to misaligned geome-
try. Moreover, due to improved convergence of the Sobolev
scheme, our method manages to recover even larger motion
than KillingFusion. This can be concluded from the last two
columns of Figure 6, as the KillingFusion result for Alex at
10-frame speedup is similar to that of SobolevFusion for
15-frame speedup.
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Figure 9. Colour transfer from reference frame i to target frame
i + n. With larger distance the amount of transferred colour de-
creases, but remains correct due to our carefully designed scheme.

6.3. Texture Transfer

The reconstruction part of our pipeline is independent of
the voxel matching, therefore it can be run separately. Here
we assess the quality of colour propagation that we achieve.

In Figure 9 we display the amount of colour that our
technique can transfer on the Minion sequence from Vol-
umeDeform [18]. We test on consecutive frames, as well
as on frames separated by a larger distance. The amount of
texture that is being transferred decreases with the increas-
ing pose difference, but our scheme manages to determine
stable matches even when views are 15 frames apart. Fur-
thermore, our procedure for match rejection makes sure that
only reliable correspondences are returned, and thus there is
no transfer of incorrect colours.

Further textured examples are shown in Figure 10. As
explained in the implementation part of Section 5, we do not
necessarily determine matches for every frame in order not
to hamper speed. This is justified, since consecutive frames
have a significant overlap. However, a certain amount of
voxels might remain un-coloured. In that case, we assign to
them the colour that the gradient flow propagates from the
initial projective TSDF. Due to the multiple interpolation
steps, this colour is typically contaminated by the colours
of nearby voxels, but is a plausible estimate.

Figure 1 shows the texture we are able to recover after
the subject does a complete 360◦ loop. Colours on the front
are rather crisp, since the difference between the canonical
pose and the initial frames is not too large and thus match-
ing is very exact. The back shows more mixed colours, as
the poses become more distant and matching becomes more
challenging, but the result remains visually pleasing.

Our main goal is to reliably colour the reconstructions
we obtain, rather than to estimate a dense set of corre-
spondences. Nevertheless, we quantitatively evaluate on the
yt sequence with Vicon markers used in BodyFusion [52],
which features a human executing various motions. We
observed that our matching procedure typically returns a
low error for markers on the torso of the subject, which
is a region where mesh-based correspondences often ex-
hibit sliding. However, since the lower-frequency Lapla-
cian eigenfunctions do not always capture limbs, often cor-
respondences are not estimated for markers located on the
arms. As 12 out of the 18 Vicon markers are placed on
the subject’s arms, this dataset is not optimally suited for

Figure 10. Coloured canonical-pose models, obtained with our
voxel matching scheme between TSDFs of incomplete shapes.

our method, which on average returns matches for half the
markers per frame. Yet, our mean `1 error of 7.7 cm over
the entire sequence is comparable to the 4.4 cm of Dynam-
icFusion [31] and 3.7 cm of VolumeDeform [18], consider-
ing that we always stay in voxel space and thus accumulate
more discretization error, while the other methods explicitly
determine correspondences for deformation field calcula-
tion (BodyFusion achieves a lower error by combining with
a human skeleton prior; c.f . Table 1 of their paper [52]).
This is a promising result for the incorporation of explicit
correspondences into implicit level set frameworks.

7. Limitations and Future Perspectives
Although our framework runs at interactive rates, its

speed and memory consumption can be further optimized
by replacing the regular voxel grid TSDF representation by
an appropriate hashing [33] or hierarchical structure [21].

The voxel matching opens up more avenues for future
work. One of our goals is to obtain denser correspondences.
A possibility to do this is an expectation-maximization pro-
cedure over the spectral matches, which is, however, not
feasible in real time [28]. An alternative would be to learn
a mapping from sparse to dense fields [51], or even learn
correspondences in the spectral embedding. Moreover, seg-
mentation can be helpful in the case of multiple objects, so
that for each one we can compute a separate, more repre-
sentative Laplacian matrix.

8. Conclusion
We have presented a method for non-rigid fusion of

scenes undergoing free motion, including fast movements,
changing topology and interacting agents. The introduced
variational energy formulation is cheaper to compute, con-
verges faster and leads to reconstructions of higher geomet-
ric quality than related techniques. It is minimized using
a Sobolev gradient flow, for which we have developed an
efficient separable 1D convolution implementation. More-
over, we have proposed a correspondence estimation strat-
egy over TSDFs of partial shapes, allowing realistic colour-
ing of the obtained models. Our system uses a single RGB-
D stream and can cope with significantly less frames than
other approaches, paving the way to applications such as
unconstrained performance capture and 3D avatar creation
under large motion.
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