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INTRODUCTION 

Every surgeon and nurse involved in surgery builds a 

mental model of each type of surgery based on their 

experiences. This implicit knowledge about the surgical 

workflow allows them to make decisions based on the 

current context and predict and prepare future steps. 

Acquiring this model takes time, therefore experienced 

scrub nurses are in high demand. Additionally to that, 

qualified scrub nurses are chronically scarce even in 

developed countries, which led to the development of 

robotic surgical assistants. In this paper we give a short 

introduction to surgical workflow analysis and show, 

how these methods can be applied to support both the 

education of human scrub nurses, as well as aid robotic 

scrub nurses. 

The field of surgical workflow analysis or surgical 

process modelling has developed in recent years with the 

goal to enable context-awareness in the operating room 

of the future [1, 2]. Current approaches to recognize the 

surgical process involve among other methods manual 

labeling [3], sensor-based instrument detection [4], 

evaluation of the laparoscopic video [5], and kinematic 

data from surgical robot systems [6]. The collected data 

is then usually turned into a specific model through 

different techniques, like Dynamic Time Warping 

(DTW), Hidden Markov Models (HMM), or machine 

learning approaches like Support Vector Machines 

(SVM) or random forests [4, 5, 7]. 

The idea for Scrub Nurse Robots (SNR) has also been in 

development for several years [8]. Most systems rely on 

voice commands from the surgeon or another nurse to 

reach for instruments [9, 10], but one could argue that the 

state models used internally for the robots are already a 

step towards a surgical model. Enhancing these systems 

through surgical phase detection and automatic 

predictions of upcoming instrument requests would 

further improve the robots performance as it could then 

also prepare future actions, much like experienced scrub 

nurses do. 

This paper builds on the previous work in [4], so we will 

apply random forests on instrument detection data in 

order to recognize workflow phases during a surgery. We 

will use this information to deduce for every step in the 

surgery the most probable instruments to be requested 

next by the main surgeon. This allows scrub nurses to 

prepare these instruments and provide them in time, 

while robotic scrub nurse systems can use this 

information also to optimize recognition of commands 

and actions from the main surgeon. 

 
Fig. 1 Binary data collected over the course of a surgery. Each 

instrument or mode is in use, when the corresponding line is 

raised. 

MATERIALS AND METHODS 

Our medical application will be a laparoscopic 

cholecystectomy. The recorded data consists of 

measurements of the irrigation and suction bag weights, 

intra-abdominal CO2 pressure, the inclination of the 

surgical table, and binary data for the state of both HF 

modes, the room and surgical lamps and usage of up to 

eight RFID-enabled surgical instruments as described in 

[11]. An exemplary visualization of the binary signals 

collected over the courses of a single surgery is given in 

figure 1. 

We employ random forests to predict for every step of 

the surgery in which phase it happens. A random forest 

is a collection of randomly decorrelated decision trees. 

Each tree consists of internal nodes that evaluate simple 

thresholding functions on presented feature vectors. The 

feature vectors in our case are the collected 

measurements for a single timeframe. The hierarchical 

combination of multiple decision nodes leads to a 

classification of the given feature vector to one of several 

possible classes, in our case the a priori known workflow 

phases. Combining multiple classifications from several 

trees through a majority voting yields the final 

classification result of the full random forest. A more 

detailed explanation is given in [12]. 

RESULTS 

Our dataset consists of four fully labeled surgeries with a 

total of approximately 60,000 measurements. We 

evaluate our classifier in Leave One Surgery Out (LOSO) 

fashion by training on three surgeries and validating on 

the forth, for each surgery. Phases could be detected by 

our approach with an overall accuracy of 68.78% and an 
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average recall over all classes of 73.41%. Detailed 

performance measurements per phase are given in 

table 1. 

In a different approach we trained the forest in order to 

detect the expected state of the lights in the OR instead 

of surgical phases. The training was done after removing 

the light data from the training set. In this reduced 

scenario we reach an accuracy of 87.57% with an average 

recall of 75.44% 

 
Phase Precision Recall 

Trocar placement 99,99% 99,52% 

Preparation 68,83% 79,36% 

Clipping 42,54% 40,50% 

Detaching gallbladder 77,89% 11,34% 

Retrieving gallbladder 98,06% 99,74% 

Stop bleeding 18,52% 83,49% 

Drainage and closing 99,85% 99,89% 

Table 1 Recognition rates for all defined workflow phases over 

four surgeries. 

DISCUSSION 

Through very simple sensor measurements we are able to 

detect the current phase in an ongoing surgery. Single 

phases still have low recognition rates that require further 

improvements, but as important implication one can 

argue that the broad application of simple and cheap 

sensors to the OR can provide the infrastructure for 

detailed workflow analyses. 

For every phase there are usually at most two instruments 

being changed. By being able to recognize the surgical 

phases, we can therefor easily predict the two instruments 

most likely to be exchanged soon. In addition to the 

prediction of the light state, we can now support both the 

scrub nurse as well as the circulator by presenting them 

with their most likely next task. This allows novice 

nurses to be prepared and reduces the time to switch 

between instruments, and visualizing the progress of the 

surgery can improve their learning process and aid them 

in building their own mental model of the surgery. 

In a similar manner scrub nurse robots can be supported. 

For a two-step system as in [9], where the SNR takes 

requested instruments from a full tray and delivers them 

to an interchange tray for a human nurse, the most likely 

instruments can already be provided solely based on the 

surgical process. In this scenario the nurse only needs to 

request special tools in case of emergencies or other 

deviations from the regular workflow and can otherwise 

focus on the provided, context-dependent subset of all 

instruments that is available on the interchange tray. But 

also the performance of a SNR that interacts directly with 

the surgeon can be improved by knowledge of the 

surgical progress. As stated in the conclusion of [10], 

inclusion of surgical process models can enable context-

sensitive devices (such as scrub nurse robots) to predict 

upcoming steps and react to requests and common 

situations in smarter ways. 
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