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Abstract

Atherosclerosis is a leading cause of most 
cardiovascular diseases. Current intravascular 
ultrasound (IVUS) image processing techniques do not 
allow adequate and effective identification of the 
coronary artery plaques. This can be improved by 
defining more discriminative features for each kind of 
artery plaques. In this paper, the effectiveness of a
modified wavelet transform feature extraction method 
and the Gabor filter were studied for automated 
characterization of the atherosclerosis plaques within 
the IVUS images. The methods are applied on 100 
IVUS images obtained from five different patients. 
Support vector machine was employed in the 
classification step. As a result an accuracy rate of 
about 8o% was achieved for all methods. 

1. Introduction

Cardiovascular diseases caused by atherosclerosis
are the leading cause of mortality in the developed 
countries. Lesion components respond differently to 
pharmaceuticals and interventional therapies; therefore 
differentiating between various tissue and plaque types 
is of paramount importance. Common clinically 
important plaque types include: Calcium, Fibrous, 
Necrotic, and Lipid types [1].  The size of each plaque 
type in the plaque area and also their combination 
define the type of the problem [1, 2].

The most frequent cause of coronary thrombosis is a 
thin fibrous cap heavily covering an underlying lipidic
core that is in communication with the flowing blood
[1,2]. In addition, focal calcifications often form the 
initiating site of dissection after balloon angioplasty 
and specific patterns of calcification strongly correlate 

with the risk of major postangioplasty dissection [3].
Therefore, accurate characterization of the plaque 
lesions helps to choose the appropriate clinical 
intervention and assess the therapy effects.

High-resolution intravascular ultrasound (IVUS) has 
provided clinically important means to demonstrate the 
extent and distribution of the coronary artery disease 
and reveal the severity and eccentric nature of the 
plaque lesions which may be underestimated in 
angiography. IVUS has also provided insights into the 
plaque distribution and the extent of the lipid-rich 
plaques, calcification and thickness of the fibrous cap.

The tedious and time-consuming task of manual 
processing and interpretation of IVUS images suffers 
from intra- and interobserver variability. Furthermore, 
an expert may not be able to completely characterize 
the different compositions of the atherosclerotic 
plaques. Thus, automatically characterizing the IVUS 
images is demanding and challenging. 

Several methods have been proposed for 
characterizing atherosclerosis composition using IVUS 
technique recently [4-7]. Generally, there are two 
approaches for analyzing the IVUS data: the first 
approach is to examine the IVUS image by extracting 
the important textural features and to assign each pixel 
into one of the predefined classes [4,5]. 

The second approach is to analyze the ultrasound 
RF signals directly rather than using the IVUS images 
generated from them [6,7]. Since only the amplitude 
information of the RF signals is used for generating the 
IVUS images, the second method is superior. In [6,7], a 
novel method based on the power spectral analysis of 
the RF signals has been proposed which is known as 
the “Virtual Histology (VH)”. The in vivo study of the 
IVUS-VH method is reported to be highly correlated 
with those of histopathology [8,9]. Different 



investigations showed the efficacy of this method for 
classification of different types of coronary plaque 
components so VH is a widely accepted and 
extensively used clinical method [8,9]. Perhaps the 
only limitation of this technique is the large storage 
needed for saving the IVUS backscattered signal of 
every subject.

In this paper, the efficiency of the wavelet transform 
(with two different mother wavelet functions) and also 
the Gabor filter for characterizing different plaque 
types in IVUS images is investigated. Wavelet 
transform provides both time and frequency domain
analysis of the signals and images. The Gabor filter is a 
kind of wavelet transform. These methods have been 
extensively used in image processing and pattern 
recognition researches in the past [5,10,11]. These
methods provide a precise and unifying framework for 
the analysis and characterization of a signal at different 
scales.

The Support Vector Machine (SVM) is employed 
for classifying the extracted feature vectors. SVM is 
known to have more reliable results in comparison to 
other classifiers such as neural networks. It has 
outperformed the traditional techniques in various 
applications [10]. There are four classes of calcium, 
fibrous, fibrolipidic, and necrotic core in IVUS-VH. In 
[6,7] all areas that exhibited mild to heavy lipid 
accumulation were diagnosed as fibrolipidic. Thus, the 
fibrolipidic areas exhibit a large variation in intensity 
levels making it hard to classify all four plaque types at 
just one step. Therefore, we unify the fibrous and 
fibrolipidic classes in this work producing three classes 
in total. To ensure the comparability of the results and 
validity of the comparisons, the same borders that were 
detected in the VH images are used in this study. 

The rest of the paper is organized as follows. 
Section 2 describes the proposed methods for 
characterizing plaque compositions in IVUS images. 
Section 3 compares the results obtained using the 
proposed method to those of other methods. Finally 
section 4 concludes the paper.

2. Methodology

2.1. Wavelet transform:

Wavelet transform provides a time-frequency 
representation of a signal. Wavelet coefficients of a 
signal, )(tf , are the projections of the signal onto the 

multiresolution subspace }),({ ,  ktspanV kjj  and 

}),({ ,  ktspanW kjj  , j where the basis 

functions )(, tkj and )(, tkj are constructed by dyadic 

dilations and translations of the scaling and wavelet 
functions )(t and )(t as follows:
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where j is the scaling parameter and k is the translation 
parameter. The wavelet decomposition of a 2-D signal 
(image) can be achieved by applying the 1-D wavelet 
decomposition along the rows and columns of the 
image separately. This is equivalent to projecting the 
image onto separable 2-D basis functions obtained 
from the products of 1-D basis functions. First, in each
level, images are decomposed into four sub-images: 
LL, LH, HL, and HH. The sub-band LL (low frequency 
content) is used for the decomposition into the further 
decomposition levels. 

In this research, we have averaged the sub-images in 
the horizontal and vertical directions for achieving 
more robustness in the aspect of being invariance to 
rotation. The reason for this is the fact that there are 
many structural variations in each plaque type in IVUS 
images. Finally, the energy function for each sub-image 
is calculated and used as a feature. Therefore, the
number of the features would count to 2*N+1, where N 
is the maximum number of decomposition levels.

2.2 Gabor filter

A Gabor Filter is a special case of wavelets. It is
essentially a Gaussian function which is modulated by 
a complex sinusoid. A 2-D Gabor filter in the spatial 
domain can be considered as follows:
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The performance of the Gabor filter depends on the 
selection of the input parameters correctly.

2.3. Support Vector machines

In this section, we will briefly review the use of 
SVMs in classification problems. For further 
knowledge on SVMs one can refer to [10]. Let the 
training set D to be represented by 1)},{( i

N
ii yx , with 

each input m
ix  and the output label assuming two 

classes }1{iy . The SVM first maps x to )(xz 
in a Hilbert space F (with inner product  (.)(.), ) 

via a nonlinear map Fm : . The space F which is 

usually of high dimensionality is often called the 



feature space. Considering the case when the data is 
linearly separable in F, i.e., there exists a vector 

Fw and a scalar b such that
1))(,(  bxwy ii            (6)

for all elements in the training set. The SVM constructs 
a hyperplane ))(,( bxw   for which the separation 

between the positive and negative examples is 
maximized.

w for this optimal hyperplane can be found by 
minimizing w , and the resulting solution can be 

written as 


N

i iii xyw
1

)( for some 0i .

The vectors αi’s, can be found by solving the 
quadratic programming problem:
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subject to the constraints
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For the non-zero elements of αi’s, the 
corresponding training examples must lie along the 
margins of the decision boundary given by the Kuhn-
Tucker theorem. These are called support vectors. The 
parameter C controls the tradeoff between errors of the 
SVM on training data and margin maximization.

Instead of mapping )( ix and )( jx explicitly first, 

which results in a very high dimension, SVM makes 
use of a kernel function K(.) to be substituted in (7),
such that

 )(),(),( jiji xxxxK  .                                   (10)

This approach is same for any kernel methods in 
general. For this property to be used, the kernel has to 
satisfy conditions of Mercer’s Theorem. In this paper, 
we have used the Gaussian kernel shown in (11).
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The above mentioned equations were for cases 
where the training set is separable in the F dimension. 
On the other hand, when the data is not separable in the 
F dimension, like what we face here, the regularization
parameter C, controls the tradeoff between model 
complexity and training error in order to ensure good 
generalization performance [10].

3. Result and discussion

The study group in this work is consisted of 
sequences of IVUS images acquired from five different 
patients. These images with the digitized matrix size of 
400×400 pixels were acquired using a 30-MHz 
transducer at a 0.5 mm/s pullback speed. Out of the 
frames in which all types of plaques were detected by 

the reference VH method, 20 frames were selected for 
each patient. The three aforementioned methods were 
then applied on the set of 100 frames. The 
characterized IVUS images were validated by their 
corresponding VH images and the accuracy, sensitivity, 
and specificity parameters were calculated for each 
technique. The results of the methods were compared 
to each other. These values were calculated using the 
equations described in continue. 

The area between Intima and Media-adventitia 
borders is scanned by a 7×7 sweeping window. Next, 
the aforementioned features are extracted from each 
sub-image in the window and assigned to the center 
pixel of the window. The wavelet functions used in this 
study were “Db1” and “Coif1”. These functions are 
chosen as they are small enough to fit in the sub-image.
The maximum number of decomposition was set to 
three. The Gabor filter parameters are chosen as 
follows:
Sd = [0.5, 1, 1.5, 2], f = [1, 2, 4, 8], φ = [0, 45, 90, 135].

Therefore, the number of features for wavelet 
analysis method was seven in comparison with the 64 
features for Gabor filter method.

All the features were first normalized into 
]10[  before classification step. The standard 

deviation value in SVM’s Gaussian function was 
empirically chosen to be 0.7. The leave-one-patient-out 
was used for method evaluation in this study. Table I 
shows the results for three plaque types. Fig. 1
illustrates an example characterized images using the 
Gabor filter and the “Coif1” wavelet function.  

Table I. results of three used methods in this 
study.

Calcium Fibrolipid Necrotic
accuracy

Sens. Spec. Sens. Spec. Sens. Spec.

Db1 68% 93% 90% 88% 57% 87% 79%

Coif1 70% 93% 91% 88% 54% 84% 80%

Gabor 64% 83% 92% 84% 48% 89% 78%



   

  
Fig. 1. From left to right: above) Original IVUS

image, VH characterized image. below) Result of 
Gabor, Result of “Coif1”. (Red = Necrotic, White= 

calcified, and Green = Fibrolipid)

4. Conclusion

In this paper, the ability of the Gabor filter and
modified wavelet transform features for characterizing
arthrosclerosis plaque compositions was investigated. 
The SVM with a Gaussian kernel was used to classify 
the extracted feature vectors. The results of this study 
show that all three methods have somehow near 
accuracies. However, in overall the “coif1” wavelet 
transform has better performance in comparison with 
the other methods.    

Although in signal processing methods, the 
frequency information of RF signal can be used along 
with its amplitude whereas in image processing 
techniques, decisions are made from the variations in 
the distribution of gray levels produced solely from the 
amplitude information of the RF signal however, the
RF signals are not always available e.g. for the large 
dataset of images available within the archives. So, 
development of the image based VH algorithm will 
have a considerable impact. In fact this would allow the 
physicians to get the VH information by simply 
processing the previously acquired IVUS images of the
patient. 
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Abstract


Atherosclerosis is a leading cause of most cardiovascular diseases. Current intravascular ultrasound (IVUS) image processing techniques do not allow adequate and effective identification of the coronary artery plaques. This can be improved by defining more discriminative features for each kind of artery plaques. In this paper, the effectiveness of a modified wavelet transform feature extraction method and the Gabor filter were studied for automated characterization of the atherosclerosis plaques within the IVUS images. The methods are applied on 100 IVUS images obtained from five different patients. Support vector machine was employed in the classification step. As a result an accuracy rate of about 8o% was achieved for all methods. 

1. Introduction


Cardiovascular diseases caused by atherosclerosis are the leading cause of mortality in the developed countries. Lesion components respond differently to pharmaceuticals and interventional therapies; therefore differentiating between various tissue and plaque types is of paramount importance. Common clinically important plaque types include: Calcium, Fibrous, Necrotic, and Lipid types [1].  The size of each plaque type in the plaque area and also their combination define the type of the problem [1, 2].

The most frequent cause of coronary thrombosis is a thin fibrous cap heavily covering an underlying lipidic core that is in communication with the flowing blood [1,2]. In addition, focal calcifications often form the initiating site of dissection after balloon angioplasty and specific patterns of calcification strongly correlate with the risk of major postangioplasty dissection [3]. Therefore, accurate characterization of the plaque lesions helps to choose the appropriate clinical intervention and assess the therapy effects.

High-resolution intravascular ultrasound (IVUS) has provided clinically important means to demonstrate the extent and distribution of the coronary artery disease and reveal the severity and eccentric nature of the plaque lesions which may be underestimated in angiography. IVUS has also provided insights into the plaque distribution and the extent of the lipid-rich plaques, calcification and thickness of the fibrous cap.


The tedious and time-consuming task of manual processing and interpretation of IVUS images suffers from intra- and interobserver variability. Furthermore, an expert may not be able to completely characterize the different compositions of the atherosclerotic plaques. Thus, automatically characterizing the IVUS images is demanding and challenging. 

Several methods have been proposed for characterizing atherosclerosis composition using IVUS technique recently [4-7]. Generally, there are two approaches for analyzing the IVUS data: the first approach is to examine the IVUS image by extracting the important textural features and to assign each pixel into one of the predefined classes [4,5]. 


The second approach is to analyze the ultrasound RF signals directly rather than using the IVUS images generated from them [6,7]. Since only the amplitude information of the RF signals is used for generating the IVUS images, the second method is superior. In [6,7], a novel method based on the power spectral analysis of the RF signals has been proposed which is known as the “Virtual Histology (VH)”. The in vivo study of the IVUS-VH method is reported to be highly correlated with those of histopathology [8,9]. Different investigations showed the efficacy of this method for classification of different types of coronary plaque components so VH is a widely accepted and extensively used clinical method [8,9]. Perhaps the only limitation of this technique is the large storage needed for saving the IVUS backscattered signal of every subject.

In this paper, the efficiency of the wavelet transform (with two different mother wavelet functions) and also the Gabor filter for characterizing different plaque types in IVUS images is investigated. Wavelet transform provides both time and frequency domain analysis of the signals and images. The Gabor filter is a kind of wavelet transform. These methods have been extensively used in image processing and pattern recognition researches in the past [5,10,11]. These methods provide a precise and unifying framework for the analysis and characterization of a signal at different scales.


The Support Vector Machine (SVM) is employed for classifying the extracted feature vectors. SVM is known to have more reliable results in comparison to other classifiers such as neural networks. It has outperformed the traditional techniques in various applications [10]. There are four classes of calcium, fibrous, fibrolipidic, and necrotic core in IVUS-VH. In [6,7] all areas that exhibited mild to heavy lipid accumulation were diagnosed as fibrolipidic. Thus, the fibrolipidic areas exhibit a large variation in intensity levels making it hard to classify all four plaque types at just one step. Therefore, we unify the fibrous and fibrolipidic classes in this work producing three classes in total. To ensure the comparability of the results and validity of the comparisons, the same borders that were detected in the VH images are used in this study. 


The rest of the paper is organized as follows. Section 2 describes the proposed methods for characterizing plaque compositions in IVUS images. Section 3 compares the results obtained using the proposed method to those of other methods. Finally section 4 concludes the paper.

2. Methodology

2.1. Wavelet transform:

Wavelet transform provides a time-frequency representation of a signal. Wavelet coefficients of a signal, 
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where j is the scaling parameter and k is the translation parameter. The wavelet decomposition of a 2-D signal (image) can be achieved by applying the 1-D wavelet decomposition along the rows and columns of the image separately. This is equivalent to projecting the image onto separable 2-D basis functions obtained from the products of 1-D basis functions. First, in each level, images are decomposed into four sub-images: LL, LH, HL, and HH. The sub-band LL (low frequency content) is used for the decomposition into the further decomposition levels. 

In this research, we have averaged the sub-images in the horizontal and vertical directions for achieving more robustness in the aspect of being invariance to rotation. The reason for this is the fact that there are many structural variations in each plaque type in IVUS images. Finally, the energy function for each sub-image is calculated and used as a feature. Therefore, the number of the features would count to 2*N+1, where N is the maximum number of decomposition levels.


2.2 Gabor filter


A Gabor Filter is a special case of wavelets. It is essentially a Gaussian function which is modulated by a complex sinusoid. A 2-D Gabor filter in the spatial domain can be considered as follows:



[image: image11.wmf])


2


cos(


)


2


exp(


)


,


,


;


,


(


2


2


x


f


Sd


y


x


f


Sd


y


x


G


¢


P


´


¢


+


¢


-


=


j


      (3)

where



[image: image12.wmf])


sin(


.


)


cos(


.


j


j


y


x


x


+


=


¢




                         (4)



[image: image13.wmf])


sin(


.


)


cos(


.


j


j


x


y


y


-


=


¢


.

           (5)

The performance of the Gabor filter depends on the selection of the input parameters correctly.

2.3. Support Vector machines


In this section, we will briefly review the use of SVMs in classification problems. For further knowledge on SVMs one can refer to [10]. Let the training set D to be represented by 
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for all elements in the training set. The SVM constructs a hyperplane 
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The vectors αi’s, can be found by solving the quadratic programming problem:
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subject to the constraints
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For the non-zero elements of αi’s, the corresponding training examples must lie along the margins of the decision boundary given by the Kuhn-Tucker theorem. These are called support vectors. The parameter C controls the tradeoff between errors of the SVM on training data and margin maximization.

Instead of mapping 
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This approach is same for any kernel methods in general. For this property to be used, the kernel has to satisfy conditions of Mercer’s Theorem. In this paper, we have used the Gaussian kernel shown in (11).
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The above mentioned equations were for cases where the training set is separable in the F dimension. On the other hand, when the data is not separable in the F dimension, like what we face here, the regularization parameter C, controls the tradeoff between model complexity and training error in order to ensure good generalization performance [10].

3. Result and discussion

The study group in this work is consisted of sequences of IVUS images acquired from five different patients. These images with the digitized matrix size of 400×400 pixels were acquired using a 30-MHz transducer at a 0.5 mm/s pullback speed. Out of the frames in which all types of plaques were detected by the reference VH method, 20 frames were selected for each patient. The three aforementioned methods were then applied on the set of 100 frames. The characterized IVUS images were validated by their corresponding VH images and the accuracy, sensitivity, and specificity parameters were calculated for each technique. The results of the methods were compared to each other. These values were calculated using the equations described in continue. 

The area between Intima and Media-adventitia borders is scanned by a 7×7 sweeping window. Next, the aforementioned features are extracted from each sub-image in the window and assigned to the center pixel of the window. The wavelet functions used in this study were “Db1” and “Coif1”. These functions are chosen as they are small enough to fit in the sub-image. The maximum number of decomposition was set to three. The Gabor filter parameters are chosen as follows:

Sd = [0.5, 1, 1.5, 2], f = [1, 2, 4, 8], φ = [0, 45, 90, 135].


Therefore, the number of features for wavelet analysis method was seven in comparison with the 64 features for Gabor filter method.


All the features were first normalized into 
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before classification step. The standard deviation value in SVM’s Gaussian function was empirically chosen to be 0.7. The leave-one-patient-out was used for method evaluation in this study. Table I shows the results for three plaque types. Fig. 1 illustrates an example characterized images using the Gabor filter and the “Coif1” wavelet function.  


Table I. results of three used methods in this study.

		

		Calcium

		Fibrolipid

		Necrotic

		accuracy



		

		Sens.

		Spec.

		Sens.

		Spec.

		Sens.

		Spec.

		



		Db1

		68%

		93%

		90%

		88%

		57%

		87%

		79%



		Coif1

		70%

		93%

		91%

		88%

		54%

		84%

		80%



		Gabor

		64%

		83%

		92%

		84%

		48%

		89%

		78%
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Fig. 1. From left to right: above) Original IVUS image, VH characterized image. below) Result of Gabor, Result of “Coif1”. (Red = Necrotic, White= calcified, and Green = Fibrolipid)

4. Conclusion

In this paper, the ability of the Gabor filter and modified wavelet transform features for characterizing arthrosclerosis plaque compositions was investigated. The SVM with a Gaussian kernel was used to classify the extracted feature vectors. The results of this study show that all three methods have somehow near accuracies. However, in overall the “coif1” wavelet transform has better performance in comparison with the other methods.     


Although in signal processing methods, the frequency information of RF signal can be used along with its amplitude whereas in image processing techniques, decisions are made from the variations in the distribution of gray levels produced solely from the amplitude information of the RF signal however, the RF signals are not always available e.g. for the large dataset of images available within the archives. So, development of the image based VH algorithm will have a considerable impact. In fact this would allow the physicians to get the VH information by simply processing the previously acquired IVUS images of the patient. 
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