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Abstract. Intravascular Ultrasound (IVUS) is a diagnostic imaging technique 
that provides tomographic visualization of coronary arteries. Important 
challenges in analysis of IVUS images are speckle noise, artifacts of catheter 
and calcified shadows. In this paper, we present a method for the automated 
detection of outer (media-adventitia) border of vessel by the use of geometric 
deformable models. Speckle noise is reduced with median filter. The initial 
contour is extracted using Canny edge detection and finally the calcified 
regions are characterized by using Bayes classifier and thresholding methods. 
The proposed methods were evaluated on 60 IVUS images from 7 different 
patients. The results show that the border detection method was statistically 
accurate and in the range of inter observer variability (based on the used 
validation methods). Bayesian classifier enables us to characterize the regions 
of interest, with a sensitivity and specificity of 92.67% and 98.5% respectively.  
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characterization. 

1   Introduction 

Intravascular Ultrasound (IVUS) is a catheter-based medical imaging technique. 
Using a specially designed ultrasound catheter it provides real-time tomographic 
images of the arterial wall that shows the morphology and histological properties of 
the cross-section of the vessel. IVUS not only provides a quantitative assessment of 
the vessels' wall but also introduces information about the nature of atherosclerotic 
lesions as well as the plaque shape and size [1]. The first step for plaque 
characterization in IVUS images is detection of outer layer of vessel wall. 
Nevertheless, it is a difficult, subjective and time-consuming procedure to manually 
perform segmentation. Therefore, there is an increasing interest in developing 
automatic tissue segmentation algorithms for IVUS images. 
Reducing the effect of the speckle noise is required for many applications in 
ultrasound image processing [2]. Most widely used techniques to reduce the speckle 
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noise include the Median Filter. This filter seeks a balance between averaging and all 
pass filters, although it improves the quality of the images. Several segmentation 
methods in IVUS images have been proposed in the literature. Some of the earlier 
works on segmentation of the IVUS images were semi-automatic and some other 
were based on the energy minimization of a contour either guided snake toward the 
target structure or minimize a cost function [5, 6]. Segmentation methods based on 
probabilistic approaches have been proposed in [4, 8]. Some authors combine 
transversal and longitudinal contours to provide the model with spatial continuity 
along the sequences [7]. Region growing method is used in [9] to detect the edges.  
The active contours used in the previous approaches are mostly based on a kind of 
parametric deformable model. However, parametric deformable models have two 
main limitations [10]. For recognizing calcium regions in IVUS images some 
characterization methods have been proposed using adaptive thresholding algorithm 
[3] and texture based features [13, 14]. However the thresholding based method is 
sharp in discriminating and ignores the variants of gray level of regions, and the latter 
is time consuming and doesn’t have the desirable accuracy. 
We have focused on the development and validation of an automated method based 
on non-parametric deformable models for accurate IVUS image segmentation. The 
results of the application of the proposed algorithm to real IVUS images of different 
patients are presented. After detecting the media-adventitia boundary and extracting 
the region between this border and the catheter, the Bayes classifier and the 
thresholding based method is employed to characterize the calcified regions. The 
calcified area detected by the implemented methods was validated and compared with 
the manually segmented areas by the expert. 

2   Method 

2.1   Border Detection  

Reducing the effect of the speckle noise is required for many applications in 
ultrasound image processing. Median filter is used for denoising in this work [2]. The 
planar image in Cartesian coordinates is converted into the polar coordinates. The 
reason for this is that the more or less circular vessel structures can be processed 
easier in polar coordinates. For detecting the initial contour, a Canny edge detection 
method ( 8=α ) is used for media-adventitia. After the border detection, the images 
have to be converted back to the Cartesian coordinates in order to continue edge 
detection with deformable model and finally to be understood well by the physicians. 

Manual processing of IVUS images is a tedious and time consuming procedure. 
Many efforts have been made in order to develop an accurate automated method for 
the detection of the regions of interest in IVUS images. Many restrictions in 
automated segmentation of IVUS images derive from the quality of the image, such 
as the lack of homogeneity of regions of interest and shadowed regions, which are 
produced by the presence of calcium [12].  



Let us consider a dynamic curve as X(s,t)=[X(s,t),Y(s,t)] where t is the time and s 
is the curve parameter. Let us also to denote the curve's inward unit normal as N and 
its curvature as k. The evolution of the curve along its normal direction can be 
characterized by the following partial differential equation: 
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where V(k)  is the speed function since it determines the speed of the curve 
evolution. In the level set method, the curve is represented implicitly as a level set of 
a 2D scalar function which is usually defined on the same domain as the image itself. 
The level set is defined as the set of points that have the same function value. 

We now derive the level set embedding of the curve evolution. Given a level set 
function φ(x,y,t) with the contour X(s,t) as its zero level set we have φ[X(s,t),t]. 
Differentiating this term with respect to t and using the chain rule, we obtain:                                 
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where φ denotes the gradient of φ, assuming that φ is negative inside the zero level 
set and positive outside it. Equation (2) can be rewritten to (3) according to inward 
unit normal to the level set curve: 
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where k the curvature at the zero level set is given by: 
Since the evolution (3) is derived for the zero level set only, the speed function 

V(k), in general, is not defined on other level sets. Hence, we need a method to extend 
the speed function V(k) to all of the level sets. A speed function that is used by 
geometric deformable contours, takes the following form:  
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A positive value of V0 shrinks the curve while a negative V0 expands it. The curve 
evolution is coupled with the image data through a multiplicative stopping term. This 
scheme can work well for objects that have good contrast. However, when the object 
boundary is indistinct or has gaps like the IVUS image in our case, the geometric 
deformable contour may leak out because the multiplicative term only slows down the 
curve near the boundary rather than completely stopping the curve. Once the curve 
passes the boundary, it will not be pulled back to recover the correct boundary.  

To overcome this deficiency a new term is added to (5) as shown in (7). 
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 The resulting speed function has an extra stopping term∇C∇ φ that can pull 
back the contour if it passes the boundary [11]. 



2.2   Characterizing Calcified Region  

In the previous section, media-adventitia boundary was detected with geometric 
deformable model method. The region between this border and the catheter is 
extracted. Vessels’ plaques are generally composed of calcium, fibrous and lipid. 
Calcified regions in IVUS images can be recognized by following characteristics: 

• They are usually represented by bright intensity among plaque region. 
• As calcium is a hard plaque, the ultrasound beam is not strong enough to 

penetrate through it. Therefore, the calcified region is usually followed by a dense 
shadow. Two methods for characterizing calcified regions are examined here. The 
first one is Bayes classifier and the other is implemented via setting a threshold value 
on the pixel intensities. For both techniques the results are confirmed by checking the 
shadow behind the calcified region. 

2.2.1   Bayes Classifier 

Bayes classifier is based on maximum a posteriori probability, in which the feature 
vector X is assigned to class ωj if 

(8) X)|P(X)|P( kj ωω f , k=1, 2…M, 

where M is the number of classes and P is the probability. As the amount of a 
posteriori probabilities are unknown in most application, its quantity should be 
calculated through Bayes algorithm where  
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From the above equation and considering that P(X) is equal for all classes, (6) can 
be written as  

 (10) )()|()()|( kkjj PXPPXP ωωωω ×× f ,k=1, 2…M 

Here we have two classes, one calcified (ω1) and another non-calcified (ω2). The 
Probability Density Function (pdf) of classes is assumed to be Gaussian; therefore, 
only the values of mean and variance of pdf’s should be estimated. These values are 
attained from 30 images, which were collected by the expert from the dataset, and set 
as follows: mu1= 245, mu2=70, sig1=20, sig2=20. 
The values of a priori probabilities are achieved experimentally from 30 images and 
are as follows: P(calcified region)=0.1 , p(Non-calcified region)=0.9.  

2.2.2   Thresholding Method 

In this method, by studying the pixels’ intensities for two classes (calcified and non-
calcified) in 30 images, the average value is achieved and is set to 173.50. Therefore, 
the pixel intensities which are greater than the threshold value are set to calcified class 
and the others are set to non-calcified class. 



2.2.3   Checking the Shadows 

In order to increase our classifier reliability, the shadows following the detected 
calcified regions should get verified and in the case of existing shadow, these 
identified regions are accepted to be calcified region, otherwise they are set back to 
non-calcified class. As the IVUS images have circular trait, we first transform the 
images to polar coordinates where the shadows behind detected calcified regions can 
easily be checked. For this goal, average of pixels’ intensities, which are placed in the 
same angle as identified regions, is calculated and the one that it’s value is below 70, 
is accepted to remain as calcified class. 

3   Result and Discussion 

Our study group as sequences of IVUS images includes 7 patients. These images with 
the digitized matrix size of 500*500 pixels were acquired using a 30-MHz transducer 
at a 0.5 mm/s pullback speed. 60 frames from each patient have been gathered. The 
accuracy of the mentioned method is determined by comparing this method resulting 
borders with borders identified by an expert.  

3.1   Border Detection 

To put the accuracy of the segmentation into numbers, average distance (AD) and 
Hausdorff distance, the maximum distance between boundaries, (HD) between 
automatic and manually traced borders were calculated. These distances directly 
depict point to point contour variations. The level set based method was applied to 
each frame to detect intimia and medi-adventitia layers by defining a distance 
function from the initial border that were detected in preprocessing step. Fig. 2 shows 
an example outcome of the method. 

       
Fig. 2. Normal and calcified original images (number 1 and 3) and the result of method 
(number 2 and 4). 

The cross sectional media_adventitia distances from manually traced and 
automatically detected boundaries were compared, and the results were expressed as 
systematic and random differences (Means ± Standard deviation). The automatically 
determined borders corresponded very well with expert manual measurements. The 
Average (AD) and Hausdorff distance (HD) values were obtained for the proposed 
method, demonstrating that this method is powerful for simulated IVUS segmentation 
(because of the low value for these measurements). These two values for the first 
expert were 0.344±0.108 and 0.650±0.150 (mm) respectively. For the second expert 



the values for AD and HD were 0.360± 0.100 and 0.780±0.180 (mm). Area difference 
value was calculated for the non-overlapping area borders of proposed method and 
parametric deformable model, the result was 12.3±1.9 and 13.3±2.4 ( ) 
respectively.     

2mm

3.2   Classification Accuracy 

The calcified regions detected by the implemented methods were also compared with 
the manually detected images. In order to validate the system, the sensitivity and 
specificity of calcified class were calculated. For this purpose true and false positive 
(TP and FP), and true and false negative (TN and FN) values were computed and 
sensitivity and specificities were calculated. The sensitivity for a class is the 
percentage of members of that class that are correctly classified by the test. As such, it 
has to be as high as possible. The specificity for a class is the percentage of members 
of the other classes that are correctly classified by the test. Table 1 shows these values 
for two classification method. The results of different steps of characterizing calcified 
region by means of Bayes classifier are demonstrated in Fig. 3. 

                         
     (a)                    (b)                     (c) 

                    
       (d)                     (e)                     (f)  

Fig. 3. Characterizing calcified region. (a) IVUS image, (b) High intensity plaque identification 
by Bayes algorithm ( yellow regions indicates calcified area), (c) Transformed image in Polar 
coordinate, (d) Removing identified plaques which are not followed by shadow , (e) 
Reconstructed image in Cartesian coordinate ( final result), (f) Manually characterized calcified 
image by expert. 
Table 1. Performance of Calcified region characterization methods. 

 
Specificity 

     
Sensitivity Classification  Method  

 
98.5% 

 
92.674% Bayes Classifier 

 
83.7% 

 
74.14% Thresholding method 

 
88% 

 
84% Adaptive Thresholding [6] 

 
Not-reported 

 
76.04% Texturural Features [14] 



4   Conclusion 

 
Border detection and region identification in IVUS images are a challenging task in 
medical imaging analysis. Few algorithms have been developed in order to trace 
media-adventitia border automatically. In this paper the preprocessing includes 
median filtering that reduces the noise well and preserves the edges of the image and 
second, detection of the initialize contour with edge detection methods that makes the 
deformable model method automatic. The initial contour is defined to be a distance 
function for the evolution equation. After detecting the border, calcified regions are 
identified with Bayesian classifier and thresholding method. In our validation 
methodology we compared the results from the implemented methods with the 
manual estimation of borders by an expert. We observed small variations between 
manual and automated detection of borders, this denotes that this automatic method 
was accurate.  
Geometric deformable models have some advantages over parametric models. First, 
they are completely intrinsic and, therefore, are independent of the parameterization 
of the evolving contour. In fact, the model is generally not parameterized until 
evolution of the level set function is complete. Second, the intrinsic geometric 
properties of the contour, such as the unit normal vector and the curvature, can be 
easily computed from the level set function. We have solved the problem of the places 
of the nodes in initialization stage for both methods. The proposed method has 
limitations such that it is not accurate where there is the artifact of existence of other 
branches or the artifact of curvature of the vessel or catheter and sometimes the 
frames with calcified shadowing artifacts, for this reason we suggest to use other 
frames around this frame for decision of the place of the borders. 

Also in this paper, the ability of Bayes classifier in characterizing calcified region 
was investigated. The results of our study show that this method has improved the 
value of sensitivity and specificity in comparison with other algorithms such as 
thresholding or using texture based features.  
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