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Abstract

We address the problem of real-time deformable template tracking. Our approach
relies on linear predictors which establish a linear relation between the image intensity
differences of a template and the corresponding template transformation parameters. Up
to this work, linear predictors have only been used to handle linear transformations such
as homographies to track planar surfaces. In this paper, we introduce a method to learn
non-linear template transformations that allows us to track surfaces that undergo non-
rigid deformations. These deformations are mathematically modelled using 2D Free
Form Deformations. Moreover, the simplicity of our approach allows us to track de-
formable surfaces at extremely high speed of approximately 1 ms per frame that has
never been shown before.

To evaluate our algorithm, we perform an extensive analysis of our method’s perfor-
mance on synthetic and real sequences with different types of surface deformations. In
addition, we compare our results from the real sequences to the feature-based tracking-
by-detection method [20], and show that the tracking precisions are similar but our
method performs 100 times faster.

1 Introduction
Template tracking involves the estimation of the transformation parameters that define the
rigid motion of the planar template. Typically, this transformation parameters encode linear
transformation based on homographies. However, when it comes to tracking surfaces that un-
dergo non-rigid deformations, standard template tracking approaches cannot be applied and
deformable transformations have to be used. Related works commonly use image features
and strong prior deformation models [22] for tracking surface deformations. Nevertheless,
due to the non-rigid deformation a large number of feature points is required that results in a
significant number of outliers. Therefore, these methods concentrate on outlier rejection and
are rarely concerned by the speed or precision of tracking. There are very few methods that
use dense image intensities [18] for tracking deformable surfaces. The main benefit of using
dense pixel intensities is that a lack of a large number of feature points is compensated by
the dense pixel information and, thus, allows tracking of less textured surfaces such as faces.

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Pilet, Lepetit, and Fua} 2008

Citation
Citation
{Salzmann and Fua} 2011

Citation
Citation
{Malis} 2007



2 TAN, HOLZER, NAVAB, ILIC: DEFORMABLE TEMPLATE TRACKING IN 1MS

One of the methods that have been successful for rigid tracking of planar templates is
based on learning linear predictors [13] which map dense image intensity differences to the
change of the template transformation parameters. In this paper, we introduce a very simple
method that integrates surface deformations into the linear predictors and consequently al-
lows extremely fast tracking of deformable surfaces. Surface deformations are parametrized
with a 2D Free Form Deformation model based on cubic B-Splines interpolation. The re-
sulting deformable template tracking algorithm can run at approximately 1 ms per frame.

We evaluate our approach using a dataset of 20 images to compare its performance to the
rigid linear predictor in Sec. 5.1. The objective is to compare their performances and explic-
itly determine if our robustness is affected by the deformation model under linear transforms.
It is also used to determine the effects of different parametrization to its robustness and find
the optimum parameters that gives the best results. Furthermore, in Sec. 5.2, we evaluate
the tracking precision using real video sequences and compare our results to the tracking-
by-detection approach of Pilet et al. [20]. In terms of precision, we obtained similar tracking
performance but our method is more than 100 times faster which makes it more suitable for
low-powered devices. Finally, we present several qualitative results in the Supplementary
Material where we demonstrate tracking through different deformations as well as tracking
in low-lighting condition.

2 Related work
Literature regarding deformable template tracking is classified into two well-known cate-
gories – feature-based methods [4, 20, 21, 24, 25] where features are used to characterize the
images and to estimate the deformation from one image to the other; and, pixel-based meth-
ods [1, 7, 12, 18] where the intensity of the images is directly used to find the deformation.

Feature-based methods. In general, the steps in feature-based methods can be summa-
rized into feature correspondence search, outlier rejection mechanism, and finally deforma-
tion model estimation. To detect and match features, most of the literature [20, 21, 22, 24, 25]
use keypoint descriptors such as SIFT [17], SURF [2] or randomized trees [15]. Further-
more, given the correctly matched features from the reference image to the target image,
the thin plate splines of Bookstein [3] is commonly used to estimate the deformation be-
tween the matched keypoints because it offers a closed-form solution. Another approach
with a closed-form solution is from Salzmann and Fua [22] that reconstructs a 3D model
from dense correspondences between the reference template configuration, and the input im-
age relying on the easy to learn local surface deformation models and non-linear constraints
between vertices of the local surface parts.

Unlike rigid transforms where we estimate a 2D homography with a maximum of 8
degrees of freedom and easily remove incorrectly matched features by using RANSAC [6],
deformable transforms have significantly more degrees of freedom which makes it difficult to
identify whether a matched features is an inlier or an outlier. Thus, a number of works [16,
20, 21, 23] have focused on the outlier rejection for deformable transforms. One of the
prominent works is from Pizarro et al. [21] where they assume that the deformation is locally
smooth by using a Delaunay triangulation and iteratively build a set of strong inliers. Another
is from Pilet et al. [20] where, aside from the quadratic deformation energy that penalizes
local surface curvature, they introduce a correspondence energy that includes a ridged shape
robust estimator with a decreasing radius of confidence such that, as the radius of confidence
decreases, the estimator becomes more selective in choosing inliers. In addition, Tran et
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al. [23] shows how to utilize a “simple” RANSAC algorithm with Radial Basic Function
(RBF).

Therefore, the problem in using feature-based methods is that they depend on the re-
peatability of the features and require a sufficiently large number of features in the reference
image to have enough inliers when matched with the target image. This generates a time-
consuming outlier rejection and constraints their application to large templates. As a result,
feature-based template matching has reached real-time application at only 10 fps [20].

Pixel-based methods. Less attention has been given to deformable template matching us-
ing pixel-based methods to perform in real-time applications. These methods are usually
associated with the energy minimization-based image registration, where their energy is
composed of the data term that expresses the similarity measure of two images and the
smoothing term that defines the rigidity of the deformation. Notable works in this field is
the self-occlusion reasoning of Gay-Bellile et al. [7] where they added a term called shrinker
that shrinks the deformation to prevent it from folding at self-occluded regions.

On one hand, the main advantage of using an energy-based image registration is that
it can achieve a subpixel accuracy [12] and can handle self-occlusion [7]; on the other, it
requires an extensive amount of time to complete as well as a good initialization to avoid
local minima.

Works that have accomplished real-time application include the Active Appearance Mod-
els (AAM) [5, 19]. It relies on applying Principal Component Analysis (PCA) on hundreds
of labelled images to find the mean and eigenvectors of the shape, which defines the geomet-
ric structure, and appearance, which includes the image intensities. In this way, their model
can be represented by the linear combination of the resulting mean and eigenvectors. An-
other real-time method that exploits dense pixel information and handles deformations is the
work of Malis [18]. He mainly concentrates on energy-minimization based template tracking
called Efficient Second-order Minimization (ESM) which is designed for tracking rigid mo-
tion of planar templates and extends it with thin plate splines to handle surface deformations.
However, their method for deformable surfaces runs at 3.5 seconds per frame.

Nonetheless, we introduce a pixel-based method with a learning-based approach that
extends the rigid template tracking of Jurie and Dhome [13] to handle non-rigid deformations
where we use the Free-Form Deformations (FFD) based on cubic B-Splines [8, 14] as our
model. Based on our evaluations, our approach is stable for several types of deformations
and can compete against the feature-based method of [20] in terms of precision. However,
our method is running at less than 1 ms per frame which makes it the fastest deformable 2D
tracking method up-to-date.

3 Deformation Model
Our 2D deformation model is based on the Free-Form Deformations (FFD) using cubic B-
Splines. This model is composed of control points that are uniformly arranged in a K×L grid
around a template of size W ×H pixels. Each control point stores a displacement vector that
defines the movement of the template. Therefore, the deformation Ψ of a pixel x = (x,y)> is
computed as:

Ψ◦x = x+D (x) (1)
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(a) Template (b) Sample Points (c) Control Points

Figure 1: Within the template in (a), these succeeding figures demonstrate (b) the location
of the sample points that are represented in small squares and (c) the location of the control
points that are represented in circles.

such that the displacement vector D (x) of the pixel x is interpolated from the displacement
vector di, j at the control points (i, j) using [8]:

D (x) =
3

∑
l=0

3

∑
m=0

Bl (u)Bm (v)di+l, j+m (2)

where i = bx/δxc−1, j = by/δyc−1, u = x/δx−bx/δxc and v = y/δy−by/δyc with the
control point spacings δx =W/(K−1) and δy = H/(L−1), while Bl and Bm are the cubic
B-Spline interpolation coefficients [14].

4 Method
Given the frame It at time t of a video sequence, we define the reference template on the
initial image It0 using ns sample points {xs ∈R2}ns

n=1 on a W×H rectangular grid as shown in
Fig. 1(b). It follows that the intensities on the reference image are described by {It0(xs)}ns

s=1.
Initially, the homography Tt0 transforms the location of the template from the template

coordinate system, where the template center is the origin, to the image coordinate system.
To manage the non-rigid deformation from Sec. 3, we introduce nc = K×L control points on
the template with a set of displacements {dc ∈R2}nc

c=1, where dc is zero on the initial frame,
and transforms the sample points as Φ(dc) ◦ xs = T(Ψ ◦ xs). In vector form, we assign the
parameter vector µ = [dc]

nc
c=1 and the intensity vector i(µ, t) = [It(Φ(µ)◦xs)]

ns
s=1.

4.1 Objective function
The goal of frame-to-frame tracking is to update the parameters at t + τ using the given
parameters µ t at time t [9]. Thus, we seek the change in parameters δ µ by minimizing:

ε(δ µ) =
∥∥∥i(µ t +δ µ, t + τ)− i(µ t0 , t0)

∥∥∥2
. (3)

Using Taylor Series Approximation, we have:

i(µ t +δ µ, t + τ)≈ i(µ t , t)+Jµ(µ t , t)δ µ + τ
∂ i
∂ t

(µ t , t) = i(µ t , t + τ)+Jµ(µ t , t)δ µ (4)
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where Jµt = Jµ(µ t , t) is the Jacobian matrix of i with respect to µ , and ∂ i
∂ t (µ t , t) is estimated

using the forward difference approximation. We substitute Eq. 4 into Eq. 3 as:

ε(δ µ)≈
∥∥∥i(µ t , t + τ)+Jµt δ µ− i(µ t0 , t0)

∥∥∥2
. (5)

Finally, to find δ µ with the minimum ε , we set the5δ µ ε = 0, which implies that:

i(µ t , t + τ)+Jµt δ µ− i(µ t0 , t0) = 0⇒ δ µ =−J+µt
δ i(µ t , t + τ) (6)

where J+µ =
(
J>µ Jµ

)−1 J>µ and δ i(µ, t) = i(µ, t)− i(µ t0 , t0). Similar to [13], our method aims
to replace the time-consuming −J+µt

, that defines the relation between the parameter update
δ µ and the change in intensity δ i, by learning a linear predictor matrix A.

4.2 Learning a linear predictor
At t = t0, we create the set {(δ iω ,δ µω)}

nω

ω=1 where Iω is a deformed version of the template
such that Φ(δ µω) ◦ xs is the ground truth location of the sample points on Iω . For each ω ,
the parameters in δ µω are generated randomly with values within a radius of τµ around the
control points.

Looking at δ iω = i(µ t0 ,ω)− i(µ t0 , t0) more closely, it is noteworthy to mention that
the location of the sample points remains constant while the template deforms across all ω .
However, deforming the entire template is inefficient and time-consuming. Thus, instead of
deforming the template, we transform the location of the sample points using −δ µω . In this
way, the image It0 simply becomes a look-up table for i(µ t0 ,ω) in δ iω .

Therefore, we can concatenate the vectors from {(δ iω ,δ µω)}
nω

ω=1 to construct the matri-
ces Y =

[
δ µ1,δ µ2, · · · ,δ µnω

]
and H = [δ i1,δ i2, · · · ,δ inω

] with the relation Y = AH, and
learn the linear predictor A using [13]:

A = YH>
(

HH>
)−1

. (7)

4.3 Tracking with linear predictors
The location of the template is estimated by using a parameter update vector δ µ t+τ that
corrects the transformation of xs from the frame at t to t + τ . Using the image difference
vector δ it+τ = i(µ t , t+τ)− i(µt0 , t0), where i(µ t , t+τ) is a collection of image intensities in
the current frame with the sample point locations of the previous frame, the relation between
δ it+τ and δ µ t+τ in Eq. 3 can be defined using the linear predictor [13] as:

δ µ t+τ = Aδ it+τ . (8)

Therefore, to track the reference template, we compute δ µ t+τ using the given vector δ it+τ

and the learned matrix A.

Homography Update. Since the estimated displacements are relative to the coordinate
system of the reference template, we keep track of a homography Tt which approximately
maps the current control points from the predicted pose of the template in the current frame
to the reference template. Tt is estimated by computing the homography between the corner
point positions in the reference coordinate system and their location obtained in the previous
frame. To apply the displacements obtained from the linear predictors, we initially warp all
control points back into the reference coordinate system.

Citation
Citation
{Jurie and Dhome} 2002

Citation
Citation
{Jurie and Dhome} 2002

Citation
Citation
{Jurie and Dhome} 2002



6 TAN, HOLZER, NAVAB, ILIC: DEFORMABLE TEMPLATE TRACKING IN 1MS

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40

SU
C

C
ES

S 
R

A
TE

MAXIMUM CONTROL POINT DISPLACEMENT

14x14 SP 18x18 SP 22x22 SP 26x26 SP 30x30 SP

1

10

100

1000

10000

100000

1
9

6

2
9

6

3
9

6

4
9

6

5
9

6

6
9

6

7
9

6

8
9

6

LE
A

R
N

IN
G

 T
IM

E 
(M

S)

NUMBER OF SAMPLE POINTS

DLP-JD DLP-HP DLP-DCT-81

0

0.2

0.4

0.6

0.8

1

1.2

1
9

6

2
9

6

3
9

6

4
9

6

5
9

6

6
9

6

7
9

6

8
9

6

TR
A

C
K

IN
G

 T
IM

E 
(M

S)

NUMBER OF SAMPLE POINTS

DLP-JD DLP-HP DLP-DCT-81
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Figure 2: This shows the (a) tracking robustness, (b) learning time and (c) tracking time with
respect to the number of sample points ns = K×K when using different learning modali-
ties – JD [13], HP [11] and DCT [10]. Using the optimum 26× 26 = 676 sample points
arrangement, we can learn the template in 353.38 ms and track in 0.87 ms.

Coarse-to-Fine Strategy. Several linear predictors are learned for a single template that
compensate for large to small deformations such that each linear predictor refines the pre-
viously estimated parameter vector. The coarse-to-fine approach is applied in a hierarchical
way. At the first two levels of hierarchy, linear predictors are learned with the coarse 2× 2
control points; while, in the last three, linear predictors are learned with 3×3 control points.
Note that between the second and third level, the number of considered control points in-
creases and we linearly interpolate the positions of the additional control points.

Furthermore, each linear predictor is iteratively used to generate better results. In our
work, three iterations for each linear predictor are performed.

5 Evaluation
We perform both qualitative and quantitative evaluations of our approach where each tem-
plate is 150×150 pixels. Learning is parameterized with nω = 5 ·ns training samples where
ns is the number of sample points. All evaluations run on an Intel(R) Core(TM) i7-3820QM
CPU with only one core used.

The first quantitative evaluation in Sec. 5.1 uses a dataset of 20 images and evaluates the
tracking robustness of our method with respect to rigid and non-rigid transformations. It also
includes the comparison with the fast learning methods of Holzer et al. [10, 11] where they
modify Eq. 7 to avoid the inversion of the large matrix HH>.

Another quantitative evaluation in Sec. 5.2 involves three video sequences that consider
problems such as camera noise and motion blur from real deformations. These sequences are
used to test the precision of our algorithm where we compute the distance of 10 manually se-
lected points on the template from their tracked positions to the ground truth. Consequently,
our results are compared to the ones from the feature-based approach of Pilet et al. [20].

Our Supplementary Material includes a video that shows quantitative and qualitative
results to demonstrate our tracking performance under different deformations and in low-
lighting condition.

5.1 Tracking robustness
We randomly warp the 20 images in the dataset as shown in the Supplementary Material
using rigid transformation, including translation, scale, in-plane rotation and out-of-plane
rotation, as well as non-rigid transformations produced from FFD where control points are
located on the whole image. This FFD is parameterized using the maximum displacement
that a control point can randomly move without overlapping each other.
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Figure 3: Comparison of tracking robustness between Rigid Linear Predictors (RLP-
JD) [13], and the Deformable Linear Predictors (DLP) using different learning approaches –
JD [13], HP [11] and DCT-81 [10] with nr = 81 coefficients. It evaluates using (a-d) rigid as
well as non-rigid transforms using FFD with (e) 5×5 and (f) 9×9 control points on the en-
tire image where the x-axis shows the maximum control point displacement. Note that 5×5
and 9×9 does not refer to the control points of the template but rather to the deformation of
the entire image.

The objective is to remove environmental factors such as noise and motion blur; to have
full control of the warping parametrization; to determine the range of movements that our
approach can handle; and, to find the optimum parameters. Furthermore, we look into the
rigid transforms to find out whether using deformable warping parametrization in δ µ com-
promises the linear transformations that [13] can manage.

In these evaluations, two parameters are important – time and robustness. The optimum
case is to perform at high-speed with a fast learning procedure without deteriorating the
tracking robustness. We define tracking robustness as the percent of successfully recovered
template deformations after generating random warps on each image of the dataset. Here,
tracking is successful if the average distance of the backwarped sample points of the tracked
template to the original sample points on the image is less than 1.5 pixels.

5.1.1 Number of sample points
From the previous section, we know that the sample points subsample the template and, in
effect, replaces the template in all computations. Thus, it is crucial to determine the optimum
number of sample points such that the time-performance ratio is optimal. We evaluate the
tracking robustness in Fig. 2(a) with respect to different number of sample points. It shows
that there is no significant improvement between 26×26 = 676 and 30×30 = 900 sample
points. Thus, the optimum number of sample points for our application is 26×26.

Contrary to the rigid linear predictors [13], our approach requires more sample points
because it has more parameters. This is one of the reason why we use a maximum of 3×3
control points as discussed in Sec. 4.3. Another reason is because 3× 3 control points are
sufficient to give a realistic tracking performance as shown in the Supplementary Material.
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Figure 4: These graphs plot the resulting average distance error (in pixels) of the tracked
points to its ground truth from the three sequences.

Furthermore, Fig. 2(b-c) shows the average learning and tracking time while using differ-
ent learning techniques [10, 11, 13] to replace Eq. 7. For a 26×26 sample point arrangement,
we can learn at a minimum of 353.38 ms using [11] and track at approximately 0.87 ms. This
illustrates our main contribution and, in comparison to other deformable template tracking
algorithms, we claim that our method achieves real-time tracking at the minimum time.

5.1.2 Synthetic evaluation
Using the optimum 26× 26 samples points, we compare the performance of our algorithm
with the rigid linear predictor of Jurie and Dhome [13] using synthetic rigid and non-rigid
deformations of the images of the dataset. The objective is to identify how well our method
can handle rigid transformations in comparison to the rigid linear predictor method [13] and
how our method perform under non-rigid deformations using different learning methods.

For the rigid transforms in Fig. 3(a-d), the results show that there is no significant differ-
ence between [13] and our method. This signifies that our performance does not deteriorate
in rigid transformations. On the other hand, it is not surprising that [13] fails in non-rigid
deformations in Fig. 3(e-f). Regarding Fig. 3(f), our method starts to fail after 30 pixel move-
ments. This is because, if the displacements of the 9×9 control points are large, the resulting
image has a smudge-like deformation which is not a realistic surface deformation.

5.2 Tracking accuracy
We evaluate using three real video sequences with a duration of 200 frames which are taken
using a Logitech Webcam C525. The first two sequences consist of a textured template
that undergoes a flag-like deformation with different textures, while the last one is a face
sequence with relatively low texture undergoing arbitrary facial expressions.

Our aim is to track the location of 10 points that have been manually selected in all
sequences. To evaluate these points, we compute the average distance between the tracked
points, using our method and the tracking-by-detection method of Pilet et al. [20], from the
manually provided ground truth point locations. The points are initialized in the sequences
as shown in Fig 5. For [20], the authors kindly provided the results for the sequences.
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Template Our Worst Results Their [20] Worst Results

1

Frame 144 Frame 166

2

Frame 74 Frame 184

3

Frame 35

Figure 5: These figures show the learned template and the worst results from [20] as well
as our approach. For each pair of images, the rectangular image on the left is a frame from
the video sequence while the square image on the right is the backprojected template using
our approach. Moreover, the ten points in all these images are labelled with green for ground
truth, blue for the results from [20] and yellow for our results.

To generate a realistic flag-like deformation, we induce a fast motion on one corner of the
template which results in a motion blur. Throughout the first two sequences, the largest mean
error is 3.6 pixels for our approach as shown in Fig. 4 and 7.0 pixels for [20]. Notably, when
we backproject the template using the results of our approach, the resulting images are very
similar to the template even if frame 166 from Sequence 1 suffers from motion blur. When
comparing these two approaches, we can see that the errors in tracking are very similar but
our approach is 100 times faster.

On the face sequence, all distance errors are less than 5 pixels as plotted in Fig. 4 while
we show in Fig. 5 that the frame with the highest error is the one when the head is tilted up.
According to the authors of [20], their work does not work on faces because their geometric
model assumes a planar surface bending smoothly without holes.

6 Discussion
Using Eq. 8, linear predictors are learned to track templates by updating the change in pa-
rameters (δ µ) based on the given change in intensity (δ i). This implies that, for a given
δ i, there is only one unique location where the template can move. Hence, there must be a
one-to-one correspondence between δ i and δ µ; otherwise, the movement from δ µ becomes
ambiguous. This ambiguity is present in all template tracking using linear predictors whether
rigid or deformable and causes tracking failures. Therefore, texture is an important factor
in linear predictors. For instance, uniformly colored regions or repeating textures (e.g. fine
stripped lines) on the template affects the unique relation between δ i and δ µ .

Occlusion is another problem that affects the values in δ i. However, due to its speed,
partial occlusion is handled by using multiple templates as illustrated in Fig. 7 from [11]
such that, when some of the templates are occluded, the successfully tracked templates can
roughly locate the occluded template for the succeeding frames. Furthermore, another solu-
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tion is used in the face tracking application where we pair the linear predictors with a rigid
template detector to find the location of the template after occlusion.

Moreover, the range of deformation depends on the model in Sec. 3. Since we are us-
ing FFD with cubic splines interpolation, we are limited to smooth deformations which is
adequate for a wide range of applications.

Finally, a larger number of control points requires a larger number of sample points due
to the exponential increase in degrees of freedom. For example, when using 5× 5 instead
of 3× 3, the degrees of freedom raise from 18 to 50. However, note that a large number
of sample points can restrict tracking to large templates only, while our current setup can
handle varying template sizes. Thus, we suggest to use multiple templates instead of more
control points because it enjoys the benefits of speed and independence in tracking which
leads to robustness to partial occlusions, non-lambertian surface and shadows.
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