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Abstract— This work proposes a real-time segmentation
method for 3D point clouds obtained via Simultaneous Lo-
calization And Mapping (SLAM). The proposed method in-
crementally merges segments obtained from each input depth
image in a unified global model using a SLAM framework.
Differently from all other approaches, our method is able to
yield segmentation of scenes reconstructed from multiple views
in real-time, with a complexity that does not depend on the size
of the global model. At the same time, it is also general, as it
can be deployed with any frame-wise segmentation approach
as well as any SLAM algorithm. We validate our proposal by a
comparison with the state of the art in terms of computational
efficiency and accuracy on a benchmark dataset, as well as by
showing how our method can enable real-time segmentation
from reconstructions of diverse real indoor environments.

I. INTRODUCTION AND RELATED WORK

Scene segmentation is one of the most important and
researched topics in the field of robotic perception, being
segmentation a typical pre-requisite for several robotic tasks
such as object modeling and object recognition [1], au-
tonomous grasping and manipulation of objects [2], object
tracking [3], scene understanding and object discovery of
unknown environments [4]. Within the robotic perception
and computer vision communities, a great effort has been
made to develop efficient 3D segmentation algorithms, i.e.
real-time processing of depth maps obtained from RGB-
D and 3D sensors. The focus on 3D data is motivated by
the additional insight that geometry and shape provide with
respect to texture and color only for the task of segmentation,
as well as the opportunity to determine segments that lie in
the 3D space in front of the robot and not just on the image
plane. Fast real-time segmentation of depth maps has been
recently investigated by the works of Uckermann et al. [5],
[6], Pieropan et al. [7] and Abramov et al. [8].

Recently, 3D reconstruction methods which aim at reg-
istering together, in real-time, depth maps from multiple
viewpoints obtained from a moving sensor are becoming in-
creasingly exploited for higher level robotic perception tasks,
since they offer additional information for the surrounding
environment and are fundamental for robot navigation tasks:
this is the case of Kinect Fusion[9], as well as dense SLAM
[10], [11], [12]. While the former method yields a 3D mesh
of the reconstructed environment, obtained by exploiting a
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Fig. 1. Real-time incremental segmentation applied to the reconstruction of
a kitchen (top) and a table-top scene (bottom). As witnessed by these exam-
ples, the proposed segmentation method can adapt to different scenarios and
can yield accurate segmentation since it applies to scenes reconstructed by
merging multiple views via SLAM, this usually providing more consistent,
reliable and meaningful segments than the single-view case.

specific data representation internally deployed, the output
of SLAM methods is generally in the form of a 3D point
cloud: in both cases, the size of such reconstruction tends to
increase with the number of merged depth maps.

As a consequence, in addition to segmentation methods
aimed at processing single depth maps, some work has
recently addressed the problem of segmenting 3D recon-
structions obtained via Kinect Fusion or SLAM. Toward
this goal, segmentation methods specifically devised to work
on 3D meshes [13] or point clouds [14], [15], [16] are
generally deployed to yield a segmentation of such 3D
representations, as proposed in the object discovery approach
of [4]. One main limitation of such methods is clearly the
computational cost, since they cannot run in real-time: this
aspect strongly limits their use in those application scenarios
characterized by real-time constraints, as it is the case in
most of the aforementioned robotic perception tasks. In
addition, their computational burden tends to increase with
the size of the point cloud or 3D mesh. Hence, to limit the
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Fig. 2. Flow diagram of the proposed incremental segmentation pipeline applied at each input depth map.

overall computational requirements, up to a certain number
of merged depth maps can be deployed with off-the-shelf
hardware.

Aiming for the same goal, [17] proposes incremental ob-
ject segmentation in a dense RGB-D SLAM framework. The
method is based on Kintineous [10], a dense RGB-D SLAM
method which builds upon KinectFusion [9], and relies on a
3D representation called Truncated Sign Distance Function
(TSDF). In this method, newly merged depth frames in the
TSDF are, from time to time, extracted in the form of “slices”
(i.e., a 3D mesh) according to the estimated camera position,
segmented via graph-based segmentation [13], and merged
into a global segmentation map. Although yielding a much
higher efficiency than previous approaches, the use of a
segmentation method such as [13] on each “slice” (repre-
sented as a 3D mesh), as well as the fact that the segments
extracted from each slice are successively merged in the
global segmentation map, still does not allow this method to
yield segmentation of the current input data in real-time, and,
as stated in [17], yields an overall computational complexity
that grows with the size of the global segmentation map.

Also related, the work by Salas-Moreno et. al. [18] aims
at real-time plane segmentation and SLAM reconstruction.
In this method, planes are segmented from each input depth
map, then they are incrementally merged into a global model.
The main limitation of such a method in the context of
segmentation is the fact that it considers only planar surfaces,
while curved surfaces are not segmented, posing a limit to the
generality of the processed shapes especially in the presence
of objects.

In this paper, we propose a method where segmentation
is carried out incrementally within a SLAM framework.
The proposed method separately segments each input depth
image, then merges the obtained segments within a unified
Global Segmentation Map (GSM) built on top of the SLAM
3D reconstruction. This merging procedure is carried out by
projecting the GSM into the camera frame by means of the
camera pose estimated via SLAM, then by merging newly
observed segments on each input frame to those already
present in the GSM. One important advantage provided by
our approach with respect to existing ones is the ability to
run in constant time regardless of the size of the GSM and
the number of merged depth maps in the global 3D model:
this makes our approach also particularly suited to deal
with large-scale 3D reconstructions. Moreover, since both
the frame-wise segmentation as well as the label merging
are carried out by processing depth maps rather than the
global 3D model, our method can process each depth frame
in real-time. Additionally, the proposed approach is also

general, since it can be used together with any frame-wise
segmentation approach as well as SLAM algorithms. By
means of quantitative and qualitative experimental results,
we demonstrate that our approach can enable real-time,
accurate segmentation of diverse indoor environments. This
is also shown by Fig. 1, which reports two examples of
segmentation attained by our method within, respectively,
a kitchen and a table-top environment.

II. SYSTEM OVERVIEW

This section briefly outlines the proposed framework for
real-time point cloud segmentation. The flow diagram sketch-
ing the algorithm pipeline deployed at each input frame is
shown in Fig. 2. In this flowchart, the stages regarding SLAM
reconstruction are shown as blue boxes, while the stages
regarding segmentation are shown as red boxes. We assume
a stream of depth maps acquired from a moving 3D/RGB-D
sensor, which we process one at a time.

The SLAM algorithm employed by our system is based on
the point-based fusion method of Keller et al. [19]. Instead
of standard voxel-based representations, such an approach
uses a point-based representation with normal information
referred to as surfel, i.e. a disk-shaped entity which describes
locally planar regions without connectivity information. The
advantage of using surfel-based representations is that com-
mon operations of map entities such as data association, in-
sertion, averaging, and removal can be performed at a lower
memory footprint compared to voxel-based representations
like Kinect Fusion [9]. Throughout this approach, the camera
pose of each input depth map is estimated and each depth
map is merged into the global model.

As for the segmentation stages, as previously mentioned,
our approach aims at incrementally - and synergically with
respect to the SLAM reconstruction - building up a Global
Segmentation Map (GSM) in real-time by properly prop-
agating and merging segments extracted from each depth
map. Toward this goal, each depth map is segmented first
(Depth Map Segmentation stage). Although any segmenta-
tion method devised to work on depth maps can be employed
at this stage, our approach uses an adapted version of the
real-time method proposed in [6] (described in Sec. III-A).
Successively, during the Segment Label Propagation stage,
the segments building up the GSM and associated with each
surfel on the global model are propagated to the current depth
map by means of the estimated camera pose obtained via
SLAM. In particular, propagated segments are only those
whose surfaces overlap with the current geometry of the
depth map: this allows us to assign a label to each segment



of the depth map, which is consistent with that of the GSM
(detailed in Sec. III-B).

The goal of the successive Segment Merging stage is to
detect and merge segments in the GSM that have the same
correspondent in the current depth map, a circumstance that
typically occurs when, in the previous views, the underlying
surface had occluding foreground objects. We thus exploit
new vantage points along the SLAM sequence to improve
the consistency of the GSM (illustrated in SubSec. III-C).

Finally, in the Segment Update stage, the labels of the
GSM are updated with the labels computed from the current
depth map during the Segment Label Propagation stage.
Since the frame-wise depth map segmentation might be
noisy, it is undesirable to update the segment label directly
on the GSM from the corresponding segment label on the
depth map. Therefore, we assign each element of the GSM
to a confidence based on the various label observations, so
that the update process can be carried out only after each
propagated label has reached a certain confidence level, thus
removing noisy label associations. This is explained in Sec.
III-D.

In the next Subsection, we briefly outline notation and
the stages of our pipeline devoted to SLAM reconstruction,
which deploy and adapt the approach proposed in [19].
The stages carrying out the incremental segmentation, which
build up the core of our proposal (those depicted in red in
2), are described in Sec. III.

A. SLAM framework

In this section, we briefly outline the SLAM stages in-
volved in the proposed incremental segmentation framework.
As proposed in [19], a global model (i.e., the output of
the SLAM reconstruction) consists of an unorganized set of
surfels s1, .., sk ∈ S , where each surfel sk is characterized
by a 3D position vk ∈ R3, a normal nk ∈ R3, a radius
rk ∈ R, a confidence ck ∈ R and a time stamp tk ∈ N. In the
Preprocessing stage, a depth image Dt at current frame t is
transformed into a metric vertex map Ṽt(u) = K−1u̇Dt(u),
with the camera intrinsic matrix K, a depth map element
u = (x, y)> in the image domain u ∈ Ω ⊂ R2 and its
homogeneous representation u̇. The vertex map Ṽt is then
smoothed by applying a bilateral filter [20] so as to generate
a version of the vertex map with less noise, Vt. The normal
map of current frame Nt is simply generated from the vertex
map Vt by central differences.

In the Camera Pose Estimation stage, the current 3D
camera pose at frame t, composed of a 3×3 rotation matrix
and a 3D translation vector, Tt = [Rt, tt] ∈ SE(3),Rt ∈
SO(3), tt ∈ R3 is updated by incrementally aligning the
filtered vertex map Vt with the global model in the form
of the vertex map rendered from the previously estimated
camera pose, Vm

t−1 (hereinafter, we use the superscript “m” to
indicate the rendered version of a 3D point cloud with respect
to a particular camera pose). The alignment is obtained via
dense ICP, with a point-to-plane error metric computed by
means of the rendered normal map, Nm

t−1, and the fast
projective data association algorithm proposed in [9].

Fig. 3. Normal map (left), normal and geometrical edge map (middle) and
resulting depth map segmentation with shading (right)

During the Global Model Rendering stage, to compute
correspondences between the points on the current depth
map and the surfels on the global model, a index map I is
created which maps each surfel vertex of the global model
v ∈ S with its projection on the current depth map at element
u = π(KT−1

t v) via standard pin-hole projection function
π based on the updated camera pose Tt. Additionally, the
model vertex map Vm

t and model normal map Nm
t are

rendered to be used for the camera pose estimation of the
successive frame.

Finally, in the Global Model Update stage, the new surfel
measurements v obtained from the current depth map are
either added as unstable surfels, or they become merged
with already present surfels. Merging v with a surfel already
present in S increments the associated confidence c. After
a certain number of stable measurements, unstable surfels
change their status to stable: this occurs when the associated
confidence grows above a threshold (set to 5 measurements).
In specific temporal or geometric conditions, points are
removed from the global model.

III. INCREMENTAL SEGMENTATION
FRAMEWORK

In this Section, we describe the stages of the proposed
pipeline carrying out the incremental segmentation, which
represent the core of our proposal: they are depicted in red
in Fig. 2. These stages assume, as input, the current depth
map Dt as well as the global model reconstructed via SLAM
up to the current frame, S, as described in Sec. II-A. Each
depth map is also associated with a vertex map, Vt, that
stores the 3D vertices v(u) of each element u in the depth
map Dt. The goal is to incrementally build up and update
a GSM L, which has the same number of elements as the
global model S, in which each element represents a segment
label. To this end, L is updated, at each new frame, with the
segmentation information associated with the current depth
map, as explained in the remainder of this Section.

A. Depth map segmentation

To segment each input depth map Dt, we employ a fast
segmentation method inspired by the normal edge analysis
carried out in [6], where, at each frame, a binary edge map is
computed by comparing nearby normal angles, these edges
representing the segment boundaries. In contrast to [6], we
propose to extract only convex-shape segments by explicitly
detecting concave boundaries. Indeed, this choice is moti-
vated by recent works exploiting graph-based segmentation
[4], [17], that introduced a penalty for concave regions based



on the assumption that real-world objects mainly consist of
convex shapes.

Inspired by these methods, we adapt the concave region
penalty to the normal edge-based segmentation deployed in
our pipeline. First, for each element u in the depth map Dt,
we detect concave boundaries by computing the dot product
between the normal at u, n(u), and each normal of the 8-
connected neighboring points of u, n(ui), i = 1, .., 8, In
particular, we define an operator, Φi(u), as follows:

Φi(u) =

{
1 (v(ui)− v(u)) · n(u) > 0

n(u) · n(ui) otherwise
(1)

v(u) and v(ui) being the associated 3D vertices from the
vertex map Vt. This operator takes value 1 (i.e., its maximum
value) when n(u) and n(ui) lie on a convex surface, while
it takes the dot product between such normals if they lie on
a concave shape. Hence, the higher the concavity, the lower
the value of Φi(u). We compute such an operator for all 8
neighbors, then take its minimum:

Φ(u) = min
i=1,..,8

{Φi(u)}, (2)

Such an operator highlights concavities along at least one of
the eight directions around element u. We thus compute our
concavity-aware normal edge map by thresholding Φ(u) (we
set the threshold 0.94).

Another cue that we take into consideration is the distance
between two vertices in the 3D space: indeed, a commonly
deployed assumption is that depth borders define 3D segment
borders. To reach this goal, we define another operator,
Γ(u), that takes into account the maximum 3D point-to-plane
distance between an element u ∈ Dt and its 8 neighbors:

Γ(u) = max
i=1,..,8

{
∣∣ (v (ui)− v (u)) · n (u)

∣∣} (3)

To threshold Γ(u), we use an uncertainty measure σd (u)
computed following the noise model proposed in [21]. Such
a measure adaptively takes into account the noise level of
each point of the depth map, assuming a noise model that
increases with the distance from the sensor. By thresholding
Γ(u), we obtain a set of geometrical edges, which are added
to the previously computed normal edges to yield the final
edge map (shown in Fig. 3, middle). Finally, we apply a
connected component analysis algorithm to the edge map
obtained to yield a label map Lt, where each element u
is associated with a segment label Lt(u) = lj (shown in
Fig. 3, right). In this map, the label 0 (unlabeled segment)
is assigned to all points lying within the detected concave
regions and depth border regions.

B. Segment Label Propagation

As anticipated, the goal of this stage is to propagate the
segments of the GSM that are visible from the current camera
viewpoint onto the label map of the current depth map. With
this in mind, correspondences between the visible segments
of the GSM, li ∈ L and those on the current depth map,
lj ∈ Lt are estimated by checking whether the underlying

surface of both segments are the same. The label propagation
procedure is illustrated in Fig. 4. As introduced in Sec. III,
given the currently estimated camera pose at time t, we re-
project the global model onto its image plane, yielding a
vertex map Vm

t and a normal map Nm
t . At the same time, we

also compute the vertex map and the normal map associated
with the current depth map, i.e. Vt, Nt (note the absence of
superscript “m” to distinguish them). In a similar fashion, we
re-project the GSM, L, on the same image plane, obtaining
a label depth map Lm

t . Note that this re-projection allows us
to focus only on the elements of the GSM currently visible
from the current camera viewpoint and to discard all GSM
elements that are either occluded or outside of the camera’s
field of view, thus resulting in efficiency and scalability with
respect to the global model size.

To efficiently determine segment correspondences between
Lt and Lm

t , first the number of corresponding points Π(li, lj)
between all points with label li ∈ Lm

t and all points with
label lj ∈ Lt are determined. This is done by considering
each pair of elements li = Lm

t (u), lj = Lt(u),∀u ∈
Dt, and by thresholding the distance of the corresponding
vertices along the viewing ray and the angle between the
corresponding normals:∣∣∣∣(Vt (u)− Vm

t (u)) · Vt (u)

|Vt (u)|

∣∣∣∣ < σd (u) (4)

cos−1(Nt(u) · Nm
t (u)) > τN (5)

where σd (u) is the depth uncertainty measure previously
used, and τN is the normal angle threshold (in our exper-
iments, τN = 20◦). When both conditions are satisfied,
Π(li, lj) gets incremented. We normalize this term by the
size of the corresponding segment on Lt:

Π̃(li, lj) =
Π(li, lj)

#(lj)
(6)

(we refer to # as the cardinality operator for a segment).
Hence, Π̃(li, lj) represents the percentage of 3D overlap of

segment lj ∈ Lt with li ∈ Lm
t , computed as the intersection

between the two segment point sets and normalized by the
magnitude of the point set of lj . It can be regarded as a
confidence measure for both segments to lie on the same 3D
surface. We can thus easily associate each segment on Lt

with the maximally-overlapping segment on Lm
t as follows:

Π̃max(lj) = max
li∈Lm

t

{Π̃(li, lj)} (7)

We wish to note here that, since we take into account only
those labels of the GSM that appear on the current label
map Lm

t , the complexity of the operation in formula (7) is
independent from the size of the GSM.

Based on Π̃max(lj), we build up a propagated label map
Lp
t (depicted in Fig. 4, right) by applying to each element

l ∈ Lp
t the following rule:

1) If Π̃max(lj) ≥ τΩ, then l = li, i.e. we propagate the
label of the GSM segment that yielded the highest
overlap. τΩ is set, in our experiments, to 0.3 — i.e.,
we require at least 30% segment overlap.
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Fig. 5. Benefits of the proposed Segment Merging procedure: an object
initially segmented into two parts due to an occluding foreground surface
(left), is then merged into the same segment when a different camera view
reveals the right connectivity (middle and right)

2) otherwise l = lj , i.e. we propagate the label lj directly
from Lt.

Finally, to avoid including in Lp
t new segments derived from

possible data artifacts or bordering regions, we assign the
label 0 to l every time the newly propagated segment from
Lt has a size smaller than a certain threshold (50 pixels in
our experiments).

C. Segment merging

During the label propagation stage, different segments on
the GSM might correspond to the same segments on the
depth map. This is typically the case for a surface which is
initially separated into multiple segments due to occluding
foreground objects: when the camera viewpoint changes,
the occlusion might disappear to reveal that such multiple
segments are indeed part of the same surface. An example
of such a situation is depicted in Fig. 5. The goal of this
stage is to identify and merge together these corresponding
segments on the GSM.

To determine whether the underlying surface of the two
segments is the same based on their 3D overlap, we rely on
the same criterion used in the previous Segment Propagation
stage. In particular, during the computation of term Π̃(lj),
we identify all segments li ∈ Lm

t yielding an overlap higher
than a certain threshold with lj ∈ Lt (set to 0.2 in our
experiments). Such segments form the label set Llj .

Since the segments obtained from the depth map are
often noisy, it is not robust to perform such a merging
procedure only from the observations derived from a single
depth map. Therefore, we introduce a pairwise confidence
that estimates to what extent a pair of segments are part
of the same surface based on all input data seen so far,
inspired by the confidence measure used on each surfel
with the SLAM method [19]. Specifically, all possible label

pairs (la, lb), la, lb ∈ Llj , la 6= lb are associated with a
confidence Ψm

t (la, lb). If a pair (la, lb) is identified for the
first time, its associated confidence is initialized as follows:
Ψm

t (la, lb) = 0 Instead, when such a segment pair has been
already observed, its associated confidence is updated by
incrementing it:

Ψm
t (la, lb) = Ψm

t−1 (la, lb) + 1 (8)

Finally, for all those segment pairs which are not observed
at the current time t, but for which a confidence was already
initialized in the previous frames, their confidence is updated
as follows:

Ψm
t (la, lb) = max

(
0,Ψm

t−1(la, lb)− 1
)

(9)

Also when the confidence associated to a certain segment
pair grows higher than a specific threshold (set to 3 in our
experiments), the segment pair (la, lb) is merged by replacing
the label la with label lb in L.

D. Segment Update

The last step of the incremental segmentation procedure
concerns updating the GSM with the label map obtained at
the end of the Segment Label Propagation stage, i.e. Lp

t .
Analogously to the Segment Merging stage, in this case also
it is not robust to directly modify our GSM based on the
label indications contained in Lp

t , since such a label map,
being based on one single depth frame, usually contains
noisy information. Hence, and similarly to the previous stage,
we follow a confidence based approach, by associating each
element of the GSM map L(v) with a confidence Ψu

t (v).
To initialize and update such a confidence, for each

element Lp
t (u), we compute the corresponding GSM element

L(v) by means of the estimated camera pose, and follow
these three cases:

1) If L(v) is unlabeled (e.g., the corresponding surfel has
been just added due to the new observation), it is set
to the label of the new observation: L(v) = Lp

t (u),
while the confidence is initialized as Ψu

t (v) = 0.
2) If the labels of u and v are the same, the confidence

is incremented:

Ψu
t (v) = min(Ψu

t−1(v) + 1,Ψu
max) (10)

where Ψu
max is the cap value for the confidence asso-

ciated surfels (set to 10 in our experiments).



TABLE I
MEASURED EXECUTION TIMES OF EACH STAGE OF THE PROPOSED

INCREMENTAL SEGMENTATION AVERAGED ON THE fr1/room SEQUENCE

[22] AT DIFFERENT RESOLUTIONS OF THE INPUT FRAMES (ALL STAGES

ARE IMPLEMENTED ON CPU)

Number of frames 739 739 739
Resolution of depth map 160×120 320×240 640×480

Depth Map Segmentation [ms] 1.81 7.63 32.39
Segment Label Propagation [ms] 1.5 5.58 29.2

Segment Merging [ms] 0.08 0.09 0.11
Segment Update [ms] 0.13 0.51 1.92

Segmentation Total [ms] 3.52 13.82 63.58
Segmentation Frame-Rate [fps] 284 72 15
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Fig. 6. Comparison between the proposed segmentation framework and
[13] in terms of computational efficiency, tested at an increasing number of
points of the reconstructed 3D data.

3) If the labels of u and v are different, the label
confidence is decreased:

Ψu
t (v) = max

(
0,Ψu

t−1(v)− 1
)

(11)

When the confidence associated with a point L(v) drops
to 0, it means that the segment has changed, e.g. due to
a change in the structure of the environment (in case of
dynamic scenes). In such a case, the point is assigned the
corresponding label on Lp

t , i.e. L(v) = Lp
t (u).

IV. EXPERIMENTAL RESULTS

In this Section, we provide quantitative and qualitative
experimental results to demonstrate how our approach can
enable real-time, accurate segmentation of diverse indoor en-
vironments. An implementation of the proposed incremental
segmentation framework is publicly available1.

1campar.in.tum.de/Main/KeisukeTateno

A. Efficiency and scalability

We compare the proposed incremental segmentation
framework against the graph-based segmentation algorithm
of Felzenszwalb and Huttenlocher [13], it being a widely
used batch segmentation method for reconstructed 3D data
[4], whose implementation is publicly available2. Since this
approach relies on the 3D mesh topology in order to build the
segment graph, to test it on our point clouds reconstructed
via SLAM, we have employed the fast meshing algorithm
proposed in [23], whose implementation is publicly available
in the Point Cloud Library (PCL)3.

For the comparison, we have used one sequence (fr1/room)
from the public TUM RGB-D SLAM benchmark dataset [22].
Both algorithms have been tested on the same platforms, a
standard laptop PC equipped with an Intel Core i7 CPU at
2.6GHz with 16GB of RAM. Both algorithms run totally
on CPU processing (no GPU optimization of any part). The
resolution of the input depth maps is converted to 160x120
to allow the dense SLAM framework employed to run in
real-time on such CPU.

Fig. 6 shows the comparison in terms of efficiency be-
tween the two algorithms. For both algorithms, only the
time required for segmentation is measured, while the time
spent on SLAM is not taken into account. The efficiency
is measured at an increasing size of the point cloud re-
constructed with SLAM, also to compare the two methods
in terms of scalability with the number of frames merged
into the SLAM sequence. As shown in the Figure, while
[13] exhibits a clearly linear complexity with the point
cloud size, the proposed algorithm demonstrates a constant
complexity with such size, thanks to the incremental nature
of its approach. Also, the proposed method demonstrates
real-time capabilities, running at an average of 3.5 ms per
frame.

Also, we wish to point out here the advantage with respect
to the incremental segmentation method in [17], which, as
mentioned in Sec. I, also performs incremental segmentation
of 3D reconstructions. As stated in Sect. IV of [17], the
complexity of this method grows on the size of the map, and
its run-time exhibits a linear dependency with the number of
points of the 3D reconstruction, as reported by the results in
Fig. 5 in [17]. Our method, instead, has a constant run-time
with respect to the global model size, as shown in Fig. 6.

The execution time measured relatively to each stage
involved in our incremental segmentation, averaged over the
benchmark fr1/room sequence, is summarized in Table I,
while the final segmentation of the whole sequence is shown
in Fig. 7 (discussed in the next Subsection). As shown by the
table, the whole segmentation framework can run in real-time
at different resolutions of the input depth map, yielding 284
frame per second on the 160×120 resolution, and running at
72 and 15 frames per second at a resolution of, respectively,
320×240 and 640×480. We expect that even higher frame
rates could be achieved if the segmentation stages were to

2cs.stanford.edu/people/karpathy/discovery
3www.pointclouds.org



Fig. 7. Qualitative comparison between the segmentation obtained by the proposed method (left) and that obtained by the method in [13] (right).

be processed on GPU. Also interestingly, the Table shows
that the most time consuming stage is the initial frame-wise
segmentation step: hence, an even higher efficiency can be
achieved by plugging in a different, more efficient frame-
wise segmentation algorithm with respect to the one currently
being deployed.

B. Segmentation accuracy

In addition to the previous results, we also compare our
method with [13] in terms of the segmentation accuracy of
the same sequence used for the experiment in Subsec. IV-
A (i.e., fr1/room) from the TUM RGB-D SLAM benchmark.
Fig. 7 shows a qualitative comparison in terms of segmen-
tation yielded by the proposed framework (left) and those
by [13] (right). Overall, the segmentation accuracy appears
to be comparable, although the proposed method seems able
to better segment small objects on top of planar surfaces, as
witnessed also by the right close-up snapshot shown at the
bottom of the Figure.

Finally, we show some qualitative results of the seg-
mentation reported by our method for reconstructed indoor
environments acquired with our own setup based on a
PrimeSense Carmine 1.09 RGB-D sensor. Two examples are
shown in Figure. 1, which reports a kitchen-like scene and a
typical table-top scene. In addition, we also acquired a video
showing the incremental reconstruction carried out by the in-
cremental segmentation framework in such scenarios, which
is available as supplementary material with this submission.
The overall reconstruction and some details relative to such
sequences are reported in Fig. 8.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach in which segmenta-
tion is carried out incrementally within a SLAM framework,
where segments obtained from the depth map are merged
within a unified GSM built on top of the SLAM 3D recon-
struction. Conversely to available methods in literature, our
method demonstrated its efficiency and to scale well with the
number of frames of the SLAM reconstruction. We believe
that real-time incremental segmentation of reconstructed en-
vironments can pave the way to new directions in the field of
robotic perception: for example, the method can allow real-
time object discovery in unknown environments (currently
done offline [4]), as well as real-time object recognition
from SLAM reconstructions (currently done on depth maps
only [1]). As a future work, we plan to deploy our method
in a SLAM framework with loop closure detection, so to
exploit SLAM graph optimization to improve the accuracy of
the incremental segmentation. Another interesting direction
is represented by pairing the proposed framework with 3D
mesh-based reconstruction algorithms, such as the Kinect
Fusion[9].
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