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Abstract— While the main trend of 3D object recognition
has been to infer object detection from single views of the
scene — i.e., 2.5D data — this work explores the direction on
performing object recognition on 3D data that is reconstructed
from multiple viewpoints, under the conjecture that such data
can improve the robustness of an object recognition system. To
achieve this goal, we propose a framework which is able (i)
to carry out incremental real-time segmentation of a 3D scene
while being reconstructed via Simultaneous Localization And
Mapping (SLAM), and (ii) to simultaneously and incrementally
carry out 3D object recognition and pose estimation on the
reconstructed and segmented 3D representations. Experimental
results demonstrate the advantages of our approach with
respect to traditional single view-based object recognition and
pose estimation approaches, as well as its usefulness in robotic
perception and augmented reality applications.

I. INTRODUCTION AND RELATED WORKS

Object recognition and pose estimation in cluttered scene
from 3D data is one of the most relevant topics in 3D
computer vision and robotic perception, with applications
such as robotic manipulation and grasping, industrial au-
tomation, augmented reality, industrial quality control and
defect detection. The state of the art is roughly subdivided
into two main classes. One class of methods relies on
template matching carried out on depth data [1], [2], [3]. In
general, these approaches can deal with poorly descriptive
shapes and texture-less objects, and are efficient to compute,
but are generally limited in terms of scalability with the
number of models being matched and presence of occlusions.

The other class matches together 3D descriptors [4],
[5], [6] computed on the 3D model and the 3D scene.
While inherently more scalable and robust to occlusions,
the computation of a set of descriptors on a single scene is
usually not compatible with real-time constraints. Typically,
3D descriptors are either global [4] or local [5], [6]: the
former represent the whole model shape with one single
vector, while the latter compute multiple descriptors at
each 3D keypoint extracted from the model surface, each
descriptor taking into account a small neighborhood around
the keypoint. While global descriptors can generally describe
also poorly informative shapes (e.g., household objects or
primitive shapes), they rely on 3D scene segmentation [7],
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Fig. 1. The proposed framework incrementally reconstructs 3D scenes
while simultaneously performing 3D segmentation, 3D object recognition
and 3D pose estimation. Bottom row, left to right: one input RGB frame,
output 3D reconstruction, output 3D segmentation.

[8] as a pre-requisite step, which might fail in the presence
of clutter and occlusions.

One common aspect of template matching-based and
descriptor-based approaches is that they match templates and
descriptors computed on single views of the model and the
scene, i.e. 2.5D data or range images. This is due to the fact
that scenes are acquired via 3D sensors, which provide 3D
representations from specific viewpoints, i.e. in the form of
range images. To avoid matching 2.5D scenes with fully 3D
model representations, a high number of model views are
usually rendered from virtual cameras placed around each
model, so to allow matching 2.5D model views against 2.5D
scene views. Particularly for template matching approaches,
2.5D is the way to go since it provides depth measurements
over an organized 2D grid structure, which is better suited
to compute patch-based representations. By relying on a
single observation from a specific viewpoint, 2.5D data
often reports noisy and distorted versions of the real 3D
surface, in particular (but not only) in presence of dark and
reflective surfaces: this is especially the case of recent, low-
cost consumer RGB-D cameras such as Microsoft Kinect,
Kinect 2.0 and Asus Xtion. As a consequence, 3D object
recognition methods based on single depth maps have to
particularly robust to such nuisances.
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Fig. 2. Flow diagram of the proposed simultaneous reconstruction, segmentation and recognition pipeline.

Recently, 3D reconstruction methods which aim at reg-
istering together, in real-time, depth maps from multiple
viewpoints obtained from a moving sensor are becoming in-
creasingly exploited for higher level robotic perception tasks,
since they offer additional information on the surrounding
environment and are fundamental for robot navigation tasks:
this is the case of Kinect Fusion [9], as well as dense SLAM
[10], [11], [12]. In this scenario, specific methods [13], [14]
have been proposed to leverage the recognition of specific
3D models within the current scene to improve the 3D re-
construction of the scene via SLAM (and vice-versa), e.g. by
providing additional 3D matches within Bundle Adjustment.
However, these methods still carry out 3D object recognition
following the traditional paradigm, i.e. by matching model
views against the current scene frame (2.5D vs 2.5D).

Intuitively, by comparing the 3D scene reconstructions
against the fully-3D model representations, the robustness of
3D object recognition as well as the accuracy of the estimated
3D object pose can be improved. Based on this, our work
proposes a framework that deploys simultaneously a SLAM
algorithm to reconstruct the environment, an incremental
segmentation algorithm to obtain 3D segments of such
reconstruction in real-time, and an incremental 3D object
recognition algorithm that carries out descriptor matching
out of such segments. The goal is to demonstrate that we can
exploit multiple viewpoints around the same scene to achieve
robust recognition and extremely stable 3D poses in presence
of heavy clutter and occlusion at a high efficiency. At the
same time, by matching segments that encode the fully-3D
shape of our object directly against the fully 3D model,
we can be robust towards noise and artifacts that affect the
current scene frame. Moreover, being the number of global
descriptors that need to be computed equal to the number
of such scene segments, the overall process is remarkably
efficient, yielding near real-time performance. We validate
our proposal by evaluating qualitatively its performance on
a benchmark dataset for 3D object recognition in clutter. In
addition, we also test our framework within an augmented
reality application, so as to demonstrate its usefulness and
effectiveness in real scenarios.

Notably, object recognition methods from SLAM recon-
structions have been already proposed [15], [16], [17], [18].
[17] proposes 3D object recognition utilizing temporal multi-
view information. [18] proposes semantic labeling method
using learning feature from point clouds incrementally esti-
mated from SLAM reconstruction. Although they rely on
fully 3D information to aid 3D object recognition, their

reconstruction and recognition assumes an offline or non
real-time framework. Interestingly, [19] proposes 3D object
recognition from incrementally reconstructed scene via dense
SLAM in real-time, by means of keypoints extracted nearby
3D corners and matched. It achieves a higher efficiency
than 2.5D based approaches. However, since the recogni-
tion method relies on such keypoints, it fails on smooth
surfaces where keypoints can hardly be repeatably extracted
(e.g., spherical objects), conversely to the global descriptors
employed by our approach, that can deal also with poorly
descriptive shapes. In addition, the idea of inferring semantic
information out of SLAM-based reconstruction has been
recently deployed with the goal of semantic segmentation
rather than object recognition [20], [21], respectively in the
case of indoor and outdoor scenes.

II. SIMULTANEOUS RECONSTRUCTION, SEGMENTATION
AND RECOGNITION FRAMEWORK

This section describes the proposed framework for simul-
taneous reconstruction, segmentation and object recognition.
The flow diagram sketching the algorithm pipeline deployed
at each input frame is shown in Fig. 2. In this flowchart, the
stages regarding 3D reconstruction, segmentation and recog-
nition are shown as blue, red and orange boxes, respectively.
We assume to have a stream of range images from a moving
3D/RGB-D sensor, which we process one at a time.

The 3D reconstruction algorithm employed by our system
is based on the Kinect Fusion approach [9], a real-time
method which estimates the camera pose of a moving sensor
and relies on a volumetric surface representation called
Truncated Signed Distance Function (TSDF): it is described
in Sec. II-A. Successively, the incremental segmentation
algorithm is based on the recent approach proposed in [22].
Contrary to [22], which merges segments within a point
cloud (the Global Segmentation Map), since our reconstruc-
tion approach deploys Kinect Fusion and a TSDF-based
representation, we propose to incrementally merge the 3D
segments within a specific voxel-based representation, which
we call as Label Volume. Details of the segmentation stages
are illustrated in Sec. II-B.

Finally, the 3D object recognition part is inspired from
the global descriptor pipeline proposed in [5] to yield 3D
correspondences between a range map of the scene and a
set of rendered views of each 3D model. Differently, our
framework computes the 3D descriptor directly on each 3D
segment derived from the incremental segmentation stage,
and match it with the single 3D descriptor computed on



the fully 3D object model. To increase the robustness of
this stage, we propose a novel method, called as Geometric
Verification, which is carried out after descriptor matching
and is able to recognize the correct model with a small
number of available viewpoints. Details of the recognition
stages are explained in Sec. II-C.

The offline stage consists of computing, for each model
in the object database, mk ∈ M, a 3D descriptor from the
model point cloud, which can be obtained directly from a
CAD model of the object (if available), or via dense SLAM
reconstruction. During the offline stage, we also store the
model descriptors in a kd-tree: this yields the important
property that the scalability of descriptor matching is log-
linear with respect to the number of models in the database.

A. Reconstruction

As proposed in [9], a global model (i.e., the output of
the Kinect Fusion reconstruction) consists of a volumetric
representation by a TSDF, a data structure where each voxel
stores the distance to the closest surface, as well as a weight
that measures the uncertainty of the surface measurement,
computed as the capped number of measurements fused so
far in that voxel.

1) Pre-processing: In the Pre-processing stage, the range
image Dt at the current time interval t is transformed into a
metric vertex map Ṽt as:

Ṽt(u) = K−1u̇Dt(u) (1)

where K is the camera intrinsic matrix, u = (i, j)> is the
generic range image element belonging to the image domain
u ∈ Ω ⊂ R2, and u̇ is its corresponding representation in
homogeneous coordinates. A vertex map stores the 3D vertex
v(u) associated to each element u of the range image Dt.
To generate a version of the vertex map with less noise, Vt,
the vertex map Ṽt is smoothened by applying a bilateral filter
[23] Then the normal map Nt is simply generated from the
vertex map Vt by computing, at each element, the normal
via central differences.

2) Camera Pose Estimation: In the successive Camera
Pose Estimation stage, the current 3D camera pose at frame
t, composed of a 3×3 rotation matrix and a 3D translation
vector, Tt = [Rt, tt] ∈ SE(3),Rt ∈ SO(3), tt ∈ R3 is
updated by incrementally aligning the filtered vertex map Vt
with the global model in the form of the vertex map rendered
from the TSDF Volume and the previously estimated camera
pose by ray casting algorithm, Vm

t−1 (computed in the Global
Model Rendering stage, later). The alignment is obtained via
dense Iterative Closest Point (ICP), with a point-to-plane
error metric computed by means of the rendered normal
map, Nm

t−1, and the fast projective data association algorithm
proposed in [9].

3) Global Model Update: Then, in the Global Model
Update stage, the depth measurements associated with the
current vertex map, Vt, are integrated into the previous TSDF
volume, Tt−1, as follows. First, a correspondence between
each element of the TSDF, Tt−1(p) and an element on Vt,
Vt(u), is obtained by projecting Tt−1(p) on Vt by means

of the camera pose Tt, where p = (x, y, z)> is the generic
3D element on the global coordinate system belonging to
the volume domain p ⊂ R3. Then, the Truncated Signed
Distance between these two elements, d̄ (Tt−1(p),Vt(u)) is
used to update the TSDF element by averaging:

Tt(p) =
ωt−1(p)Tt−1(p) + ωt(p)d̄ (Tt−1(p),Vt(u))

ωt−1(p) + ωt(p)
(2)

where the new weight associated to the current TSDF ele-
ment, ωt(p), is updated as:

ωt =

{
ωt−1 + 1 if ωt−1 < ωmax

ωt−1 otherwise
(3)

where ωmax is the cap value for the confidence weights of
the TSDF (set to 128 in our experiments).

4) Global Model Rendering: Finally, during the Global
Model Rendering stage, the model vertex map Vm

t and the
model normal map Nm

t are rendered from the TSDF Volume
using the estimated camera pose of the current frame, Tt, via
raycasting. During raycasting, the extraction of a predicted
surface from the TSDF is achieved by detecting the zero
crossings of the surface with respect to the TSDF elements.
The newly obtained vertex map Vm

t is used in the Camera
Pose Estimation stage for the next time interval, t+ 1.

B. Incremental Segmentation

Incremental segmentation is carried out via the four stages
depicted in red in Fig. 2. As input, it assumes the current
depth map Dt and its associated smooth vertex map Vt, as
well as the TSDF reconstructed up to the current frame, Tt,
as described in Sec. II-A. Analogous to [22], the goal is to
incrementally build up and update a Label Volume L, where
each voxels is associated to a segment’s label and to a label
confidence. To achieve this, L is updated, at each new frame
with the segmentation information associated to the current
depth map. In contrast to [22], L is a voxel map and not a
point cloud, so to better match the 3D representation used
by the deployed Kinect Fusion algorithm.

1) Depth Map Segmentation: In the Depth Map Seg-
mentation stage, to segment each input depth map Dt, we
employ a fast segmentation method based on the normal
edge analysis, where, at each frame, a binary edge map is
computed by comparing nearby normal angles, these edges
representing the segment boundaries. Under the assumption
that real-world objects are mainly consisting of convex
shapes, the concave boundary map is obtained by computing
the angle between a point’s normal and the normals at its
neighboring points. Then, a connected component analysis
algorithm is used to yield a segmentation map Lt, where
each element Lt(u) is associated with a segment label lj . In
this map, the label 0 (unlabeled segment) is assigned to all
points laying on a concave boundary.

2) Segment Label Propagation: In the Segment Label
Propagation stage, a propagated label map, Lp

t , is determined
(depicted in Fig. 3, right), that contains all the 3D segments
of the Label Volume that correspond to the 3D segments on
the current range image. First, a rendered label map, Lm

t is
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Label Volume.

computed by rendering the Label Volume from the currently
estimated camera pose, Tt. This map stores only the visible
segments from the current camera pose. Then, to efficiently
determine segment correspondences between Lm

t and Lt,
we compute the percentage of 3D overlap of every segment
lj ∈ Lt with every segment li ∈ Lm

t . By maximizing such
percentage, we can easily compute, for each segment lj ,
its maximally-overlapping segment l̃i ∈ Lm

t . If the overlap
percentage yielded by l̃i is higher than a threshold, we
propagate its label to the label map Lp

t . Otherwise, we
propagate the label lj directly from Lt, which means that
such segment has not yet been seen in the Label Volume.

3) Segment Merging: Then, in the Segment Merging
stage, the multiple segments which are part of the same
surface are detected and merged by means of the same
criterion used in the previous Segment Propagation stage,
i.e. determine whether the underlying surface of the two
segments is the same based on their 3D overlap. In particular,
we identify all segments li ∈ Lm

t yielding an overlap higher
than a certain threshold with lj ∈ Lt (set to 0.2 in our
experiments): all such segments are then assigned the same
label in L.

4) Segment Update: Finally, in the Segment Update stage,
the Label Volume L is updated by means of the propagated
label map Lp

t . To withstand the noise of each depth map,
we adopt a confidence based approach, by associating each
element L(p) with a confidence Ψt(p). Such a confidence
is initialized and updated by computing the corresponding
element on the propagated label map Lp

t (u) by means of
the similar way to the Global Model Update stage (see Sec.
II-A.3). In particular, the confidence on the voxel which is
located within truncated distance from surface in the TSDF
volume is updated. If L(p) is unlabeled, it is set to the label
of Lp

t (u) while the confidence is initialized as Ψt(p) = 0.
Then, Ψt(p) is incremented or decremented depending on
whether the labels of L(p) and Lp

t (u) are either the same
or different. When Ψt(p) drops to 0, this means that the
segment has changed, e.g. due to noise or a change in the
environment structure (in case of dynamic scenes). In this
case, the point is assigned the corresponding label on Lp

t ,
i.e. L(p) = Lp

t (u).

C. Recognition Framework

This subsection describes the stages carrying out 3D object
recognition from fully-3D data: they are depicted in orange

in Fig. 2. Along these stages, each segment extracted from
the currently reconstructed scene as part of the Label Volume
L is deployed as a potential object candidate and matched
against the pre-trained database of 3D descriptors computed
from full-3D models. This is inspired from the 3D object
recognition pipeline based on global descriptors in [5], where
each segment obtained from a frame-wise segmentation of
the scene is matched against the database of model views.
Importantly, at each new frame, we avoid to match those
segments that have not been updated by the current depth
map. Since it avoids recomputing the 3D descriptors, this
notably speeds-up the overall efficiency. In addition, we
introduce a fast Geometric Verification stage: this is a novel
approach to be applied after descriptor matching, aimed
at increasing the robustness of the recognition process by
verifying the geometric consistency of each object hypothesis
with respect to the TSDF surface of the matched segment.

1) Segment Description: First, in the Segment Description
stage, the subset of indices of all segments that need to be
matched are extracted from the Label Volume. As antici-
pated, this subset only contains those segments belonging
to both the Label volume and the propagated label map
(li ∈ (L ∧ Lp

t )), to avoid recomputing 3D descriptors for
segments that have not changed in the current frame. The
3D vertices corresponding to this subset of indices is in
turn extracted from the TSDF volume, by detecting the
zero-crossing voxels. Each vertex is also associated to a
normal, by calculating the derivative of the TSDF values
over neighboring voxels.

Successively, a 3D global descriptor is used to describe the
geometry of the current segment. Since the 3D representation
of the current segment is a set of 3D vertices, we can
directly employ 3D descriptors proposed for point clouds
such as VFH [24], CVFH [25] and OUR-CVFH [4]. In
particular, the advantage of a descriptor such as OUR-CVFH
is that, by explicitly relying on a repeatable Local Coordinate
Frames (LRF), it provides also a 3D alignment between two
segments. This is particularly useful for those applications
that require the 3D pose of the object in the scene, e.g. for
augmented reality or robotic manipulation applications.

As a result of the Segment Description stage, the set of 3D
descriptors f(li) and associated LRF-based transformation
Tli (when available) is computed on the segments li ∈
(L∧Lp

t ). It is worth pointing out that simple heuristics can
be deployed at this point to avoid computing 3D descriptors
on segments that are clearly not part of the object model
database. A simple approach that we adopt is to discard
3D segments whose number of vertices is bigger than the
maximum amount or smaller than the minimum amount of
the objects in the model database:

|li| < (1− β) min
mk∈M

|mk| (4)

|li| > (1 + β) max
mk∈M

|mk| (5)

where | · | is the cardinality operator for the set of points of a
segment or a model, while β is a percentual margin value for
segment discarding. If both conditions (4) and (5) hold, then



the current segment li is not considered as a possible scene
object. In our experiments, β is set to 0.2, this means that
every segment whose number of vertices is smaller than 80%
of the amount of vertices of the smallest model, or bigger
than 120% of the amount of vertices of the biggest model is
discarded.

2) Descriptor Matching : During the Descriptor Matching
stage, object hypotheses at each segment are generated
by matching the associated descriptor to the database of
model descriptors. The best matched candidates associated
to each segment li on current observation is computed by
performing a Nearest Neighbor Search (NNS) across the pre-
built kd-tree database by computing the descriptor distance
d(f(li), f(mk)) between the descriptors of the current seg-
ments and the descriptors of each model mk ∈ M in the
database, according to the L2 metric.

m̃li = arg min
mk∈M

d (f (li) , f (mk)) (6)

When d (f(li), f(m̃ (li))) is below a matching threshold, an
observed object hypothesis is generated associating segment
li to the respective best matching model m̃li .

3) Segment Alignment: In the Segment Alignment stage,
if an LRF associated to each descriptor is available, the
object’s 6DoF pose can be estimated by computing the
transformation that aligns the two LRFs [4]. In particular,
the object pose for segment li can be computed as:

Tlim̃ = T−1li
Tm̃li

(7)

where Tli is the LRF associated to the 3D descriptor of
segment li, while Tm̃li

is the LRF associated to the best
matching model descriptor f(m̃li).

4) Geometric Verification : Finally, in the Geometric
Verification stage, the obtained object hypotheses are verified
by computing the residuals in the 3D space between the
model and the reconstructed scene by means of the TSDF
volume Tt. To recognize the object that has grown the highest
confidence throughout multiple views, a current residual
Rt (li) and current model mt (li) are initially associated to
each matched scene segment li at the first frame t = 0, and
updated at each new frame. To update it, an observed residual
Ro

t (li) is computed for each visible segment of the Label
Volume li ∈ (L ∧ Lp

t ) and best matched model m̃ (li) ∈M
as the (truncated) L1 distance between the 3D model surface
and the segment surface:

Ro
t (li) =

1

|m̃li |

|m̃li
|∑

i=1

|Tt(Tlim̃ · m̃li(i))| (8)

where the index i loops over all 3D points of current model
m̃li . As it can be seen from (8), we can obtain a good
estimate of such residual, which provides a measure of the
3D fitting between segment and model, directly by indexing
the elements of the TSDF where the transformed model
points falls according to the estimated pose. This provides
a great benefit in terms of efficiency, since we can skip
the costly NNS operation at each 3D point of the model,
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Fig. 4. Comparison between the use of the descriptor distance (left chart)
and the geometric residual values (right char) for object recognition, on the
scene segment corresponding to the object Radio over the whole sequence
of Fig. 9.

differently from the state of the art geometric verification
methods [5], [6].

Then, the current residuals Rt (li) and current matched
model mt (li) on segment li are updated by means of the
observed residuals Ro

t (li) as:

Rt (li) =

{
Ro

t (li) if Ro (li) < Rt−1 (li)

Rt−1 (li) otherwise
(9)

i.e., if the observed residual is lower than the previous
value, the residual and model are updated to new observa-
tion: mt (li) = m̃li , otherwise the matched model m̃li is
discarded. Due to this scheme, only the object hypotheses
yielding the lowest residuals are recognized throughout the
multiple views. A final check is applied, so that if Rt(Lt)
is greater than a certain threshold it is not assigned to any
model, this meaning that no database model matches that
segment. This is particularly useful in case of cluttering
objects that are not part of the object database.

To demonstrate the usefulness of the proposed Geometric
Verification approach in increasing the robustness of object
recognition, we provide the experiment in Fig. 4, which
shows the measured descriptor distance (left chart) and
residual values (right chart) among all models and the scene
segment corresponding to the object Radio over the whole
sequence of Fig. 9. As we can see, by means of the proposed
Geometric Verification stage we can already recognize the
correct model after 40 frames rather than 130, the residual
case yielding overall a remarkably bigger gap between the
best model and the second-best compared to the descriptor
distance case.

III. EXPERIMENTAL RESULTS

In this section, we provide quantitative experimental result
by means of a comparison, on a 3D benchmark dataset, be-
tween our recognition pipeline and the corresponding object
recognition based on matching 2.5D data. In addition, we
also provide qualitative results where our framework is tested
under challenging conditions in terms of clutter, occlusions
object model shapes. Finally, we show an application of our
approach in an augmented reality context, to show how well
our proposal can suit such scenario.



Fig. 5. The 9 full 3D models of the dataset reconstructed via Kinect Fusion.

Fig. 6. An example of scene reconstruction and segmentation provided by
our method on the scene 02 sequence of the RGB-D Scenes Dataset v2[18].

A. Object recognition accuracy

We compare the proposed recognition framework against
the single-view recognition pipeline based on global descrip-
tor computed on 2.5D data [5]. As for this pipeline, each
model is rendered into different views, while the scene is
segmented using a segmentation algorithm for range maps.
Then, each scene segment and model view is associated to
a 3D descriptor, which is the matched to retrieve object
correspondences. For fairness of comparison we employ, as
the range map segmentation algorithm of this pipeline, the
same algorithm used in the Depth Map Segmentation stage
of our framework. To normalize the point cloud density as in
[5], we use a uniform sampling with the same resolution as
the one used for data pre-processing within our framework.

For the comparison, we have used the public RGB-D
Scenes Dataset v2 [18]. Five sequences from the dataset
(scenes number 1, 3, 9, 11 and 12) were used for recon-
structing via Kinect fusion the 3D models, so to obtain all 9
object models that are present on the dataset (shown in Fig.
5). The 3D model descriptors are then computed directly on
these reconstructed models. Then, 7 sequences (number 2,
4, 5, 6, 7, 8, 10) were used for testing the two pipelines in
terms of 3D object recognition, i.e. all remaining sequences
except for scenes number 13 and 14, which consists of only
partial 3D observations. Each of these sequences contain
from 3 to 5 objects on a table-top scenario, with each object
undergoing strong occlusions. Fig. 6 shows an example of
a reconstructed and segmented scene (scene 2 sequence) as
provided by our framework.

Both pipelines have been tested on the same platforms, a
desktop PC equipped with an Intel Xeon CPU at 2.4GHz
with 16GB of RAM, and a Nvidia Quadro K5200 GPU
with 8GB of VRAM. The resolution of the input depth
maps is 640×480, the resolution of the TSDF volume is
512×512×512, and the voxel scale is 5 mm. The Kinect
Fusion Reconstruction stages and Depth Map Segmenta-
tion stage are implemented on GPU, while the remaining
segmentation stages and all object recognition stages are
implemented on CPU.

Fig. 7 shows the Precision-Recall curve concerning the

TABLE I
MEASURED EXECUTION TIMES OF EACH STAGE INVOLVED IN THE

PROPOSED PIPELINE AVERAGED ON THE RGB-D SCENES DATASET V2
[18]. ALL REPORTED EXECUTION TIMES ARE IN MS.

DATA STATISTICS
Number of frames 5586

Depth Map Resolution 640×480
Resolution of TSDF volume 512×512×512

RECONSTRUCTION
Preprocessing 7.49

Camera Pose Estimation 7.06
Global Model Update 9.65

Global Model Rendering 4.48
Total 28.68

SEGMENTATION
Depth Map Segmentation 4.37

Segment Label Propagation 3.72
Segment Merging 0.86
Segment Update 1.29

Total 10.17
RECOGNITION OUR-CVFH VFH

Segment Description 213.62 20.64
Segment Matching 0.91 0.03
Segment Alignment 0.01 —

Geometric Verification 2.18 —
Total 216.72 20.68

comparison between our method and the single view pipeline
in terms of 3D object recognition using three different global
descriptors, i.e. VFH[24], CVFH[25] and OUR-CVFH[5],
whose implementations are publicly available in the Point
Cloud Library (PCL)1. The Precision-Recall curve is cal-
culated by changing the threshold of the final check on
geometric verification (See Sec. II-C.4). As for the single-
view pipeline, results are averaged over all views. The charts
also report the theoretical curve yielded by selecting, for each
sequence, the single view that yields the best results (best
view), so to observe the ideal performance of a single view
approach that selects the most advantageous viewpoint.

The results show the remarkable advantage of directly
matching full 3D models against reconstructed 3D scenes, as
opposed to single view-based recognition, even if the dataset
contains very similar 3D shapes such as the models of the
cup shown in Fig. 5. This situation, although very common
in practice, indeed represents a typical failure case for single
view recognition pipelines. Interestingly, our approach also
outperforms the single view pipeline in case of selection of
the best viewpoint, this motivating further the use of such
representations. The same trend is exhibited for all the 3
global descriptors used, the best performance obtained by
using the OUR-CVFH descriptor.

In addition, Fig. 8 illustrates the Precision-Recall curves
obtained using different view point coverage for reconstruc-
tion, segmentation and recognition, averaged on all test
sequences and obtained with the OUR-CVFH descriptor. In
particular, we compare full 3D reconstruction (blue line)
against using only a limited number of views (respectively,
only 75%, 50% and 25% of continuous frames of each
sequence). As expected, the result shows that the recognition

1www.pointclouds.org
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Fig. 7. Precision-Recall curve for 3D object recognition (no pose estimation) comparing the proposed framework with the single-view pipeline. Each
chart is relative to a different global descriptor (VFH, CVFH and OUR-CVFH) whose implementation is available in the Point Cloud Library (PCL). The
charts also report the theoretical curve yielded by selecting, for each sequence, the view that yields the best results (best view curve).

performance improves as more viewpoints are processed. As
a complement, the chart also shows the result yielded by our
method without the proposed Geometric Verification stage
(red line). The result illustrates the usefulness brought in by
the use of this stage in terms of recognition performance.

In terms of qualitative results, Fig. 1 shows the result of
our framework in a highly challenging scene, typical for
indoor robotic perception, composed of similar household
objects, characterized by poor geometrical shapes and placed
over different metallic planes (noisy to acquire with low-cost
RGB-D sensors). We point the reader to the supplementary
material, which includes additional qualitative results within
challenging indoor scenarios.

Finally, Table I shows the measured execution times for
each stage of the proposed framework averaged on the
whole test sequences. From the table, we can see that the
computational burden associated to the reconstruction and
segmentation stages is sufficiently low to allow real-time
performance. The main bottleneck is currently represented
by the feature description stage: in particular, OUR-CVFH
descriptor has a high computational cost, as witnessed by
the reported time of the Description Stage on the Table. For
this reason, we use two different CPU threads, one devoted
to reconstruction and segmentation, the other carrying out
object recognition, so to allow the entire framework to run
in near real-time, with a reported frame rate of 4.6 fps. On
a single CPU core, the reported frame rate gets down to
3.9 fps. Conversely, by using the VFH descriptor, the whole
pipeline reports a frame rate of 25.7 fps by using two CPU
threads as previously explained, while can still run at 16.8
fps on a single CPU thread.

B. Augmented Reality application

As a complement to previous results, we show an ap-
plication of our framework to 3D object recognition and
3D augmented reality in indoor environments. In particular,
we acquired some RGB-D sequences with our own setup
based on a PrimeSense Carmine 1.09 RGB-D sensor. A few
examples of the input data, as well as the output in terms of
recognition and augmented reality, are shown in Fig. 9, while
the complete video is included as Supplementary Material.
The setup refers to a highly cluttered table-top scenario,
with 10 models used for object recognition. In particular, the
left column on Fig. 9 shows, from top to bottom, the input
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Fig. 8. Precision-Recall curves reported by the proposed framework
using different number of viewpoints (from 25% of the entire viewpoints
to full 3D) and using the OUR-CVFH descriptor. The chart also shows
the recognition performance obtained without the proposed Geometrical
Verification stage.

RGB image and the normal map computed from the input
depth image, the TSDF reconstruction and the segmentation
result. In the middle, the figure shows the output in terms
of object recognition and pose estimation. As shown by the
central image, our method can recognize the Helmet object,
demonstrating how it can deal also with smooth and spherical
shapes where keypoints can hardly be extracted. Finally,
images on the right side show real-time augmentation of a
black hat with 3D content of a recognized object. Notably,
in this case, the augmented content is aligned with respect
to the recognized object by means of its estimated pose,
and can be shown also coherently with respect to occlusions
due to the scene geometry (including 3D self-occlusions),
as shown in the bottom right image of Fig. 9. Once the
object is recognized, disadvantageous viewpoints where the
object gets occluded by foreground do not deteriorate the
augmented content, as visible also from the video included
in the supplementary material.

IV. CONCLUSIONS AND FUTURE WORK

We analyzed and experimentally evaluated how full 3D
object recognition is advantageous with respect to standard
single view-based approaches. We have proposed a frame-
work for Simultaneous Reconstruction, Segmentation and
Recognition, which incrementally segments and recognizes
full 3D objects out of a Kinect Fusion reconstruction, and
yields robust object recognition and 3D pose estimation,



Fig. 9. Application of the proposed framework to 3D augmented reality. Left column, from top to bottom: input RGB frame, normal map, TSDF
reconstruction and segmentation result. Middle: output of the object recognition and pose estimation from a database of 10 models. Right side: real-time
augmentation of a black hat with 3D content of a recognized object.

useful for a number of applications such as grasping, ma-
nipulation and augmented reality. Future direction regards
the use of the color cue in the recognition stages of our
framework, so to be able to recognize 3D objects with
similar geometry and distinctive texture. Another interesting
direction will be the extension of our framework to object
discovery applications and to large scale environments.
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