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Abstract

Given the recent advances in depth prediction from Con-
volutional Neural Networks (CNNs), this paper investigates
how predicted depth maps from a deep neural network can
be deployed for accurate and dense monocular reconstruc-
tion. We propose a method where CNN-predicted dense
depth maps are naturally fused together with depth mea-
surements obtained from direct monocular SLAM. Our fu-
sion scheme privileges depth prediction in image locations
where monocular SLAM approaches tend to fail, e.g. along
low-textured regions, and vice-versa. We demonstrate the
use of depth prediction for estimating the absolute scale of
the reconstruction, hence overcoming one of the major lim-
itations of monocular SLAM. Finally, we propose a frame-
work to efficiently fuse semantic labels, obtained from a sin-
gle frame, with dense SLAM, yielding semantically coherent
scene reconstruction from a single view. Evaluation results
on two benchmark datasets show the robustness and accu-
racy of our approach.

1. Introduction

Structure-from-Motion (SfM) and Simultaneous Local-
ization and Mapping (SLAM) are umbrella names for a
highly active research area in the field of computer vision
and robotics for the goal of 3D scene reconstruction and
camera pose estimation from 3D and imaging sensors. Re-
cently, real-time SLAM methods aimed at fusing together
range maps obtained from a moving depth sensor have wit-
nessed an increased popularity, since they can be employed
for navigation and mapping of several types of autonomous
agents, from mobile robots to drones, as well as for many
augmented reality and computer graphics applications. This
is the case of volumetric fusion approaches such as Kinect
Fusion [21], as well as dense SLAM methods based on
RGB-D data [30, 11], which, in addition to navigation and
mapping, can also be employed for accurate scene recon-
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Figure 1. The proposed monocular SLAM approach (a) can es-
timate a much better absolute scale than the state of the art (b),
which is necessary for many SLAM applications such as AR, e.g.
the skeleton is augmented into the reconstruction. c) our approach
can yield joint 3D and semantic reconstruction from a single view.

struction. However, a main drawback of such approaches
is that depth cameras have several limitations: indeed, most
of them have a limited working range, and those based on
active sensing cannot work (or perform poorly) under sun-
light, thus making reconstruction and mapping less precise
if not impossible in outdoor environments.

In general, since depth cameras are not as ubiquitous as
color cameras, a lot of research interest has been focused on
dense and semi-dense SLAM methods from a single camera
[22, 4, 20]. These approaches aim at real-time monocular
scene reconstruction by estimating the depth map of the cur-
rent viewpoint through small-baseline stereo matching over
pairs of nearby frames. The working assumption is that the
camera translates in space over time, so that pairs of con-
secutive frames can be treated as composing a stereo rig.
Stereo matching is usually carried out through color consis-
tency or by relying on keypoint extraction and matching.

One main limitation of monocular SLAM approaches is
the estimation of the absolute scale. Indeed, even if camera
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pose estimation and scene reconstruction are carried out ac-
curately, the absolute scale of such reconstruction remains
inherently ambiguous, limiting the use of monocular SLAM
within most aforementioned applications in the field of aug-
mented reality and robotics (an example is shown in Fig.
1,b). Some approaches suggest solving the issue via object
detection by matching the scene with a pre-defined set of
3D models, so to recover the initial scale based on the es-
timated object size [6], which nevertheless fails in absence
of known shapes in the scene. Another main limitation of
monocular SLAM is represented by pose estimation under
pure rotational camera motion, in which case stereo estima-
tion cannot be applied due to the lack of a stereo baseline,
resulting in tracking failures.

Recently, a new avenue of research has emerged that ad-
dresses depth prediction from a single image by means of
learned approaches. In particular, the use of deep Convolu-
tional Neural Networks (CNNs) [16, 2, 3] in an end-to-end
fashion has demonstrated the potential of regressing depth
maps at a relatively high resolution and with a good ab-
solute accuracy even under the absence of monocular cues
(texture, repetitive patterns) to drive the depth estimation
task. One advantage of deep learning approaches is that the
absolute scale can be learned from examples and thus pre-
dicted from a single image without the need of scene-based
assumptions or geometric constraints, unlike [10, 18, 1]. A
major limitation of such depth maps is the fact that, al-
though globally accurate, depth borders tend to be locally
blurred: hence, if such depths are fused together for scene
reconstruction as in [16], the reconstructed scene will over-
all lack shape details.

Relevantly, despite the few methods proposed for sin-
gle view depth prediction, the application of depth predic-
tion to higher-level computer vision tasks has been mostly
overlooked so far, with just a few examples existing in lit-
erature [16]. The main idea behind this work is to exploit
the best from both worlds and propose a monocular SLAM
approach that fuses together depth prediction via deep net-
works and direct monocular depth estimation so to yield
a dense scene reconstruction that is at the same time un-
ambiguous in terms of absolute scale and robust in terms
of tracking. To recover blurred depth borders, the CNN-
predicted depth map is used as initial guess for dense re-
construction and successively refined by means of a direct
SLAM scheme relying on small-baseline stereo matching
similar to the one in [4]. Importantly, small-baseline stereo
matching holds the potential to refine edge regions on the
predicted depth image, which is where they tend to be more
blurred. At the same time, the initial guess obtained from
the CNN-predicted depth map can provide absolute scale
information to drive pose estimation, so that the estimated
pose trajectory and scene reconstruction can be significantly
more accurate in terms of absolute scale compared to the

state of the art in monocular SLAM. Fig. 1, a) shows an
example illustrating the usefulness of carrying out scene re-
construction with a precise absolute scale such as the one
proposed in this work. Moreover, tracking can be made
more robust, as the CNN-predicted depth does not suffer
from the aforementioned problem of pure rotations, as it is
estimated on each frame individually. Last but not least,
this framework can run in real-time since the two processes
of depth prediction from CNNs and depth refinement can
be simultaneously carried out on different computational re-
sources of the same architecture - respectively, the GPU and
the CPU.

Another relevant aspect of recent CNNs is that the same
network architecture can be successfully employed for dif-
ferent high-dimensional regression tasks rather than just
depth estimation: one typical example is semantic segmen-
tation [3, 29]. We leverage this aspect to propose an exten-
sion of our framework that uses pixel-wise labels to coher-
ently and efficiently fuse semantic labels with dense SLAM,
so to attain semantically coherent scene reconstruction from
a single view: an example is shown in Fig. 1, c). Notably,
to the best of our knowledge semantic reconstruction has
been shown only recently and only based on stereo [28] or
RGB-D data [15], i.e. never in the monocular case.

We validate our method with a comparison on two public
SLAM benchmarks against the state of the art in monocu-
lar SLAM and depth estimation, focusing on the accuracy
of pose estimation and reconstruction. Since the CNN-
predicted depth relies on a training procedure, we show ex-
periments where the training set is taken from a completely
different environment and a different RGB sensor than those
available in the evaluated benchmarks, so to portray the ca-
pacity of our approach - particularly relevant for practical
uses - to generalize to novel, unseen environments. We also
show qualitative results of our joint scene reconstruction
and semantic label fusion in a real environment.

2. Related work
In this Section we review related work with respect to

the two fields that we integrate within our framework, i.e.
SLAM and depth prediction.

SLAM There exists a vast literature on SLAM. From the
point of view of the type of input data being processed, ap-
proaches can be classified into either depth camera-based
[21, 30, 11] and monocular camera-based [22, 4, 20]. In-
stead, from a methodological viewpoint, they are classified
as either feature-based [12, 13, 20] and direct [22, 5, 4].
Given the scope of this paper, we will focus here only on
monocular SLAM approaches.

As for feature-based monocular SLAM, ORB-SLAM
[20] is arguably the state of the art in terms of pose esti-
mation accuracy. This method relies on the extraction of
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Figure 2. CNN-SLAM Overview.

sparse ORB features from the input image to carry out a
sparse reconstruction of the scene as well as to estimate the
camera pose, also employing local bundle adjustment and
pose graph optimization. As for direct monocular SLAM,
the Dense Tracking and Mapping (DTAM) of [22] achieved
dense reconstruction in real-time on s GPU by using short-
baseline multiple-view stereo matching with a regulariza-
tion scheme, so that depth estimation is smoother on low-
textured regions in the color image. Moreover, the Large-
Scale Direct SLAM (LSD-SLAM) algorithm [4] proposed
the use of a semi-dense map representation which keeps
track of depth values only on gradient areas of the input im-
age, this allowing enough efficiency to enable direct SLAM
in real-time on a CPU. An extension of LSD-SLAM is the
recent Multi-level mapping (MLM) algorithm [7], which
proposed the use of a dense approach on top of LSD-SLAM
in order to increase its density and improve the reconstruc-
tion accuracy.

Depth prediction from single view Depth prediction
from single view has gained increasing attention in the com-
puter vision community thanks to the recent advances in
deep learning. Classic depth prediction approaches em-
ploy hand-crafted features and probabilistic graphical mod-
els [10, 18] to yield regularized depth maps, usually making
strong assumptions on the scene geometry. Recently devel-
oped deep convolutional architectures significantly outper-
formed previous methods in terms of depth estimation accu-
racy [16, 2, 3, 29, 19, 17]. Interestingly, the work of [16] re-
ports qualitative results of employing depth predictions for
dense SLAM as an application. In particular, the predicted
depth map is used as input for Keller’s Point-Based Fusion
RGB-D SLAM algorithm [11], showing that SLAM-based
scene reconstruction can be obtained using depth predic-
tion, although it lacks shape details, mostly due to the afore-
mentioned blurring artifacts that are associated with the loss
of fine spatial information through the contractive part of a
CNN.

3. Proposed Monocular Semantic SLAM
In this section, we illustrate the proposed framework

for 3D reconstruction, where CNN-predicted dense depth

maps are fused together with depth measurements obtained
from direct monocular SLAM. Additionally, we show how
CNN-predicted semantic segmentation can also be coher-
ently fused with the global reconstruction model. The flow
diagram in Fig. 2 sketches the pipeline of our framework.
We employ a key-frame based SLAM paradigm [12, 4, 20],
in particular we use as baseline the direct semi-dense ap-
proach in [4]. Within such approach, a subset of visually
distinct frames is collected as key-frames, whose pose is
subject to global refinement based on pose graph optimiza-
tion. At the same time, camera pose estimation is carried
out at each input frame, by estimating the transformation
between the frame and its nearest key-frame.

To maintain a high frame-rate, we propose to predict a
depth map via CNN only on key-frames. In particular, if
the currently estimated pose is far from that of existing key-
frames, a new key-frame is created out of the current frame
and its depth estimated via CNN. Moreover an uncertainty
map is constructed by measuring the pixel-wise confidence
of each depth prediction. Since in most cases the camera
used for SLAM differs from the one used to acquire the
dataset on which the CNN is trained, we propose a spe-
cific normalization procedure of the depth map designed to
gain robustness towards different intrinsic camera param-
eters. When additionally carrying out semantic label fu-
sion, we employ a second convolutional network to predict
a semantic segmentation of the input frame. Finally, a pose
graph on key-frames is created so to globally optimize their
relative pose.

A particularly important stage of the framework, also
representing one main contribution of our proposal, is
the scheme employed to refine the CNN-predicted depth
map associated to each key-frame via small-baseline stereo
matching, by enforcing color consistency minimization be-
tween a key-frame and associated input frames. In partic-
ular, depth values will be mostly refined around image re-
gions with gradients, i.e. where epipolar matching can pro-
vide improved accuracy. This will be outlined in Subsec-
tions 3.3 and 3.4. Relevantly, the way refined depths are
propagated is driven by the uncertainty associated to each
depth value, estimated according to a specifically proposed
confidence measure (defined in Subsec. 3.3). Every stage of
the framework is now detailed in the following Subsections.



3.1. Camera Pose Estimation

The camera pose estimation is inspired by the key-frame
approach in [4]. In particular, the system holds a set of key-
frames k1, .., kn ∈ K as structural elements on which to
perform SLAM reconstruction. Each key-frame ki is as-
sociated to a key-frame pose Tki

, a depth map Dki
, and a

depth uncertainty map Uki
. In contrast to [4], our depth

map is dense because it is generated via CNN-based depth
prediction (see Subsec. 3.2). The uncertainty map mea-
sures the confidence of each depth value. As opposed to
[4] that initializes the uncertainty to a large, constant value,
our approach initializes it according to the measured con-
fidence of the depth prediction (described in Subsec. 3.3).
In the following, we will refer to a generic depth map ele-
ment as u = (x, y), which ranges in the image domain, i.e.
u ∈ Ω ⊂ R2, with u̇ being its homogeneous representation.

At each frame t, we aim to estimate the current camera
pose T ki

t = [Rt, tt] ∈ SE(3), i.e. the transformation be-
tween the nearest key-frame ki and frame t, composed of a
3×3 rotation matrix Rt ∈ SO(3) and a 3D translation vec-
tor tt ∈ R3. This transformation is estimated by minimiz-
ing the photometric residual between the intensity image It
of the current frame and the intensity image Iki

of the near-
est key-frame ki, via weighted Gauss-Newton optimization
based on the objective function

E(T ki
t ) =

∑
ũ∈Ω

ρ

 r
(
ũ,T ki

t

)
σ
(
r
(
ũ,T ki

t

))
 (1)

where ρ is the Huber norm and σ is a function measuring the
residual uncertainty [4]. Here, r is the photometric residual
defined as

r
(
ũ,T ki

t

)
= Iki

(ũ)− It
(
π
(
KT ki

t Ṽki
(ũ)
))

. (2)

Considering that our depth map is dense, for the sake
of efficiency, we limit the computation of the photometric
residual only on the subset of pixels lying within high color
gradient regions, defined by the image domain subset ũ ⊂
u ∈ Ω. Also, in (2), π represents the perspective projection
function mapping a 3D point to a 2D image coordinate

π
(
[xyz]T

)
= (x/z, y/z)

T (3)

while Vki(u) represents a 3D element of the vertex map
computed from the key-frame’s depth map

Vki(u) = K−1u̇Dki (u) (4)

where K is the camera intrinsic matrix.
Once T ki

t is obtained, the current camera pose in world
coordinate system is computed as Tt = T ki

t Tki
.

3.2. CNN-based Depth Prediction and Semantic
Segmentation

Every time a new key-frame is created, an associated
depth map is predicted via CNN. The depth prediction ar-
chitecture that we employ is the state-of-the-art approach
proposed in [16], based on the extension of the Residual
Network (ResNet) architecture [9] to a Fully Convolutional
network. In particular, the first part of the architecture
is based on ResNet-50 [9] and initialized with pre-trained
weights on ImageNet [24]. The second part of the archi-
tecture replaces the last pooling and fully connected lay-
ers originally presented in ResNet-50 with a sequence of
residual up-sampling blocks composed of a combination
of unpooling and convolutional layers. After up-sampling,
drop-out is applied before a final convolutional layer which
outputs a 1-channel output map representing the predicted
depth map. The loss function is based on the reverse Huber
function [16].

Following the successful paradigm of other approaches
that employed the same architecture for both depth predic-
tion and semantic segmentation tasks [3, 29], we also re-
trained this network for predicting pixel-wise semantic la-
bels from RGB images. To deal with this task, we modi-
fied the network so that it has as many output channels as
the number of categories and employed a soft-max layer
and a cross-entropy loss function to be minimized via back-
propagation and Stochastic Gradient Descent (SGD). It is
important to point out that, although in principle any seman-
tic segmentation algorithm could be used, the primary ob-
jective of this work is to showcase how frame-wise segmen-
tation maps can be successfully fused within our monocular
SLAM framework (see Subsec. 3.5).

3.3. Key-frame Creation and Pose Graph Optimiza-
tion

One limitation of using a pre-trained CNN for depth pre-
diction is that, if the sensor used for SLAM has different
intrinsic parameters from those used to capture the train-
ing set, the resulting absolute scale of the 3D reconstruction
will be inaccurate. To ameliorate this issue, we propose to
adjust the depth regressed via CNN with the ratio between
the focal length of the current camera, fcur and that of the
sensor used for training, ftr as

Dki (u) =
fcur
ftr
D̃ki

(u) (5)

where D̃ki
is the depth map directly regressed by the CNN

from the current key-frame image Ii.
Fig. 3 shows the usefulness of the adjustment proce-

dure defined in (5), on a sequence of the benchmark ICL-
NUIM dataset [8] (compare (a) with (b) ). As shown, the
performance after the adjustment procedure is significantly
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Figure 3. Comparison among (a) direct CNN-depth prediction,
(b) after depth adjustment and (c) after depth adjustment and re-
finement, in terms of (A) pose trajectory accuracy and (B) depth
estimation accuracy. Blue pixels depict correctly estimated depths,
i.e. within 10 % of ground-truth. The comparison is done on one
sequence of the ICL-NUIM dataset [8].

improved over that of using the depth map as directly pre-
dicted by the CNN. The improvement shows both in terms
of depth accuracy as well as pose trajectory accuracy.

In addition, we associate each depth map Dki
to an un-

certainty map Uki
. In [4], this map is initialized by setting

each element to a large, constant value. Since the CNN
provides us with dense maps at each frame but without
relying on any temporal regularization, we propose to in-
stead initialize our uncertainty map by computing a con-
fidence value based on the difference between the current
depth map and its respective scene point on the nearest key-
frame. Thus, this confidence measures how coherent each
predicted depth value is across different frames: for those
elements associated to a high confidence, the successive re-
finement process will be much faster and effective than the
one in [4].

Specifically, the uncertainty map Uki
is defined as the

element-wise squared difference between the depth map of
the current key-frame ki and that of the nearest key-frame
kj , warped according to the estimated transformation T ki

kj

from ki to kj

Uki
(u) =

(
Dki

(u)−Dkj

(
π
(
KT ki

kj
Vki

(u)
)))2

. (6)

To further improve the accuracy of each newly initialized
key-frame, we propose to fuse its depth map and uncertainty
map with those propagated from the nearest key-frame (this
will obviously not apply to the very first key-frame) after
they have been refined with new input frames (the depth re-
finement process is described in Subsection 3.4). To achieve
this goal, we first define a propagated uncertainty map from

the nearest key-frame kj as

Ũkj
(v) =

Dkj (v)

Dki
(u)
Ukj

(v) + σ2
p (7)

where v = π
(
KT ki

kj
Vki

(u)
)

while, following [4], σ2
p is

the white noise variance used to increase the propagated un-
certainty. Then, the two depth maps and uncertainty maps
are fused together according to the weighted scheme

Dki (u) =
Ũkj

(v)·Dki
(u)+Uki

(u)·Dkj
(v)

Uki
(u)+Ũkj

(v)
(8)

Uki
(u) =

Ũkj
(v)·Uki

(u)

Uki
(u)+Ũkj

(v)
. (9)

Finally, the pose graph is also updated at each new key-
frame, by creating new edges with the key-frames already
present in the graph that share a similar field of view (i.e.,
having a small relative pose) with the newly added key-
frame. Moreover, the pose of the key-frames is each time
globally refined via pose graph optimization [14].

3.4. Frame-wise Depth Refinement

The goal of this stage is to continuously refine the depth
map of the currently active key-frame based on the depth
maps estimated at each new frame. To achieve this goal, we
use the small baseline stereo matching strategy described in
the semi-dense scheme of [5], by computing at each pixel of
the current frame t a depth map Dt and an uncertainty map
Ut based on the 5-pixel matching along the epipolar line.
These two maps are aligned with the key-frame ki based on
the estimated camera pose T ki

t .
The estimated depth map and uncertainty map are then

directly fused with those of the nearest key-frame ki as fol-
lows:

Dki
(u) =

Ut(u)·Dki
(u)+Uki

(u)·Dt(u)

Uki
(u)+Ut(u) (10)

Uki
(u) =

Ut(u)·Uki
(u)

Uki
(u)+Ut(u) (11)

Importantly, since the key-frame is associated to a dense
depth map thanks to the proposed CNN-based prediction,
this process can be carried out densely, i.e. every element
of the key-frame is refined, in contrast to [5] that only re-
fines depth values along high gradient regions. Since the
observed depths within low-textured regions tend to have
a high-uncertainty (i.e., a high value in Ut), the proposed
approach will naturally lead to a refined depth map where
elements in proximity of high intensity gradients will be re-
fined by the depth estimated at each frame, while elements
within more and more low-textured regions will gradually
hold the predicted depth value from the CNN, without being
affected from uncertain depth observations.

Fig. 3 demonstrates the effectiveness of the proposed
depth map refinement procedure on a sequence of the



benchmark ICL-NUIM dataset [8]. The Figure reports, in
(c), the performance obtained after both adjustment and
depth refinement of the depth map, showing a significant
improvement of both depth estimation and pose trajectory
with respect to the previous cases.

3.5. Global Model and Semantic Label Fusion

The obtained set of key-frames can be fused together
to generate a 3D global model of the reconstructed scene.
Since the CNN is trained to provide semantic labels in ad-
dition to depth maps, semantic information can be also as-
sociated to each element of the 3D global model, through a
process that we denote as semantic label fusion.

In our framework, we employ the real-time scheme pro-
posed in [27], which aims at incrementally fusing together
the depth map and the connected component map obtained
from each frame of a RGB-D sequence. This approach uses
a Global Segmentation Model (GSM) to average the assign-
ment of labels to each 3D element over time, so to be robust
to noise in the frame-wise segmentation. In our case, the
pose estimation is provided as input to the algorithm, since
camera poses are estimated via monocular SLAM, while in-
put depth maps are those associated to the set of collected
key-frames only. Here, instead of connected component
maps as in [27], we use semantic segmentation maps. The
result is a 3D reconstruction of the scene, incrementally
built over new key-frames, where each 3D element is as-
sociated to a semantic class from the set used to train the
CNN.

4. Evaluation
We provide here an experimental evaluation to validate

the contributions of our method in terms of tracking and
reconstruction accuracy, by means of a quantitative com-
parison against the state of the art on two public benchmark
datasets (Subsec. 4.1), as well as a qualitative assessment
in terms of robustness against pure rotational camera mo-
tions (Subsec. 4.2) and accuracy of semantic label fusion
(Subsec. 4.3).

The evaluation is carried out on a desktop PC with an In-
tel Xeon CPU at 2.4GHz with 16GB of RAM and a Nvidia
Quadro K5200 GPU with 8GB of VRAM. As for the im-
plementation of our method, although the CNN network
works on an input/output resolution of 304×228 [16], both
the input frame and the predicted depth map are converted
to 320×240 as input for all other stages. Also, the CNN-
based depth prediction and semantic segmentation are run
on the GPU, while all other stages are implemented on the
CPU, and run on two different CPU threads, one devoted to
frame-wise processing stages (camera pose estimation and
depth refinement), the other carrying out key-frame related
processing stages (key-frame initialization, pose graph op-
timization and global map and semantic label fusion), so to

allow our entire framework to run in real-time.
We use sequences from two public benchmark datasets,

i.e. the ICL-NUIM dataset [8] and TUM RGB-D SLAM
dataset [26], the former synthetic, the latter acquired with a
Kinect sensor. Both datasets provide ground truth in terms
of camera trajectory and depth maps. In all our experiments,
we used the CNN model trained on the indoor sequences
of the NYU Depth v2 dataset [25], to test the generaliza-
tion capability of the network to unseen environments; also
because this dataset includes both depth ground-truth (rep-
resented by depth maps acquired with a Microsoft Kinect
camera) and pixel-wise semantic label annotations, neces-
sary for semantic label fusion. In particular, we train the
semantic segmentation network on the official train split of
the labeled subset, while the depth network is trained using
more frames from the raw NYU dataset, as reported in [16].
Semantic annotations consist of the 4 super-classes floor,
vertical structure, large structure/furniture, small structure.
Noteworthy, the settings of the training dataset are quite dif-
ferent from those on which we evaluate our method, since
they encompass different camera sensors, viewpoints and
scene layouts. For example, NYU Depth v2 includes many
living rooms, kitchens and bedrooms, which are missing in
TUM RGB-D SLAM, being focused on office rooms with
desks, objects and people.

4.1. Comparison against SLAM state of the art

We compare our approach against the publicly available
implementations of LSD-SLAM1 [4] and ORB-SLAM2

[20], two state-of-the-art methods in monocular SLAM rep-
resentatives of, respectively, direct and feature-based meth-
ods. For completeness, we also compare against REMODE
[23], state-of-the-art approach focused on dense monocular
depth map estimation. The implementation of REMODE
has been taken from the author’s code3. Finally, we also
compare our method to the one in [16], that uses the CNN-
predicted depth maps as input for a state-of-the-art depth-
based SLAM method (point-based fusion[11, 27]), based
on the available implementation from the authors of [27]4.
Given the ambiguity of monocular SLAM approaches to
estimate absolute scale, we also evaluate LSD-SLAM by
bootstrapping its initial scale using the ground-truth depth
map, as done in the evaluation in [4, 20]. As for REMODE,
since it requires as input the camera pose estimation at each
frame, we use the trajectory and key-frames estimated by
LSD-SLAM with bootstrapping.

Following the evaluation methodology proposed in [26],
Table 1 reports the camera pose accuracy based on the Ab-
solute Trajectory Error (ATE), computed as the root mean

1github.com/tum-vision/lsd_slam
2github.com/raulmur/ORB_SLAM2
3https://www.github.com/uzh-rpg/rpg_open_remode
4campar.in.tum.de/view/Chair/ProjectInSeg

github.com/tum-vision/lsd_slam
github.com/raulmur/ORB_SLAM2
https://www.github.com/uzh-rpg/rpg_open_remode
campar.in.tum.de/view/Chair/ProjectInSeg


Table 1. Comparison in terms of Absolute Trajectory Error [m] and percentage of correctly estimated depth on ICL-NUIM and TUM
datasets (TUM/seq1: fr3/long office household, TUM/seq2: fr3/nostructure texture near withloop, TUM/seq3: fr3/structure texture far.

Abs. Trajectory Error Perc. Correct Depth
Our LSD-BS LSD ORB Laina Our LSD-BS LSD ORB Laina Remode

Method [4] [4] [20] [16] Method [4] [4] [20] [16] [23]
ICL/office0 0.266 0.587 0.528 0.430 0.337 19.410 0.603 0.335 0.018 17.194 4.479
ICL/office1 0.157 0.790 0.768 0.780 0.218 29.150 4.759 0.038 0.023 20.838 3.132
ICL/office2 0.213 0.172 0.794 0.860 0.509 37.226 1.435 0.078 0.040 30.639 16.7081
ICL/living0 0.196 0.894 0.516 0.493 0.230 12.840 1.443 0.360 0.027 15.008 4.479
ICL/living1 0.059 0.540 0.480 0.129 0.060 13.038 3.030 0.057 0.021 11.449 2.427
ICL/living2 0.323 0.211 0.667 0.663 0.380 26.560 1.807 0.167 0.014 33.010 8.681
TUM/seq1 0.542 1.717 1.826 1.206 0.809 12.477 3.797 0.086 0.031 12.982 9.548
TUM/seq2 0.243 0.106 0.436 0.495 1.337 24.077 3.966 0.882 0.059 15.412 12.651
TUM/seq3 0.214 0.037 0.937 0.733 0.724 27.396 6.449 0.035 0.027 9.450 6.739

Avg. 0.246 0.562 0.772 0.643 0.512 22.464 3.032 0.226 0.029 18.452 7.649

Ours REMODEGround Truth Raw Depth Prediction

Accuracy: 57.15%66.18% 12.26%
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Color
Figure 4. Comparison in terms of depth map accuracy and density among (from the left) the ground-truth, a refined key-frame from our
approach, the corresponding raw depth prediction from the CNN, the refined key-frame from LSD-SLAM [4] with bootstrapping and
estimated dense depth map from REMODE [23], on the (office2) sequence from the ICL-NUIM dataset [8]. The accuracy value means
correctly estimated depth density on this key-frame.

square error between the estimated camera translation and
the ground-truth camera translation for each evaluated se-
quence. In addition, we assess both reconstruction accu-
racy and density, by evaluating the percentage of depth val-
ues whose difference with the corresponding ground truth
depth is less than 10%. Given the observations in the Ta-
ble, our approach is able to always report a much higher
pose trajectory accuracy with respect to monocular meth-
ods, due to the their aforementioned absolute scale ambigu-
ity. Interestingly, the pose accuracy of our technique is on
average higher than that of LSD-SLAM even after apply-
ing bootstrapping, implying an inherent effectiveness of the
proposed depth fusion approach rather than just estimating
the correct scaling factor. The same benefits are present in
terms of reconstruction, being the estimated key-frames not
only dramatically more accurate, but also much denser than
those reported by LSD-SLAM and ORB-SLAM. Moreover,
our approach also reports a better performance in terms
of both pose and reconstruction accuracy, also comparing
to the technique in [16], where CNN-predicted depths are
used as input for SLAM without any refinement, this again
demonstrating the effectiveness of the proposed scheme to
refine the blurred edges and wrongly estimated depth values
predicted by the CNN. Finally, we clearly outperform also
REMODE in terms of depth map accuracy.

The increased accuracy with respect to the depth maps
estimated by the CNN (as employed in [16]) and by RE-

MODE, as well as the higher density with respect to LSD-
SLAM is also shown in Fig. 4. The figure compares the
ground-truth with, a refined key-frame using our approach,
the corresponding raw depth prediction from the CNN, the
refined key-frame from LSD-SLAM [4] using bootstrap-
ping and the estimated dense depth map from REMODE
on a sequence of the ICL-NUIM dataset. Not only our ap-
proach demonstrates a much higher density with respect to
LSD-SLAM, but the refinement procedure helps to drasti-
cally reduce the blurring artifacts of the CNN-based pre-
diction, increasing the overall depth accuracy. Also, we can
note that REMODE tends to fail along low-textured regions,
as opposed to our method which can estimate depth densely
over such areas by leveraging the CNN-predicted depth val-
ues.

4.2. Accuracy under pure rotational motion

As mentioned, one of the advantages of our approach
compared to standard monocular SLAM is that, under pure
rotational motion, the reconstruction can still be obtained
by relying on CNN-predicted depths, while other methods
would fail given the absence of a stereo baseline between
consecutive frames. To portray this benefit, we evaluate our
method on the (fr1/rpy) sequence from the TUM dataset,
mostly consisting of just rotational camera motion. The
reconstruction obtained by, respectively, our approach and
LSD-SLAM compared to ground-truth are shown in Fig-



Ours LSD-SLAMGround Truth
Figure 5. Comparison on a sequence that includes mostly pure rotational camera motion between the reconstruction obtained by ground
truth depth (left), proposed method (middle) and LSD-SLAM [4] (right).
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Figure 6. The results of reconstruction and semantic label fusion on the office sequence (top, acquire by our own) and one sequence
(kitchen 0046) from the NYU Depth V2 dataset [25] (bottom). Reconstruction is shown with colors (left) and with semantic labels (right).

ure 5. As it can be seen, our method can reconstruct the
scene structure even if the camera motion is purely rota-
tional, while the result of LSD-SLAM is significantly noisy,
since the stereo baseline required to estimate depth is for
most frames not sufficient. We also tried ORB-SLAM on
this sequence but it completely fails, given the lack of the
necessary baseline to initialize the algorithm.

4.3. Joint 3D and semantic reconstruction

Finally, we show some qualitative results of the joint 3D
and semantic reconstruction achieved by our method. Three
examples are shown in Fig. 6, which reports an office scene
reconstructed from a sequence acquired with our own setup
and two sequences from the test set of the NYU Depth V2
dataset [25]. Another example from the sequence living0
of the ICL-NUIM dataset is shown in Fig.1,c). The Figures
also report, in green, the estimated camera trajectory. To
the best of our knowledge, this is the first demonstration
of joint 3D and semantic reconstruction with a monocular
camera. Additional qualitative results in terms of pose and
reconstruction quality as well as semantic label fusion are

included in the supplementary material.

5. Conclusion

We have shown how the integration of SLAM with depth
prediction via a deep neural network is a promising direc-
tion to solve inherent limitations of traditional monocular
reconstruction, especially with respect to estimating the ab-
solute scale, obtaining dense depths along texture-less re-
gions and dealing with pure rotational motions. The pro-
posed approach to refine CNN-predicted depth maps with
small baseline stereo matching naturally overcomes these
issues while retaining the robustness and accuracy of direct
monocular SLAM in presence of camera translations and
high image gradients. The overall framework is capable of
jointly reconstructing the scene while fusing semantic seg-
mentation labels with the global 3D model, opening new
perspectives towards scene understanding with a monocular
camera. A future research avenue is represented by closing
the loop with depth prediction, i.e. improving depth estima-
tion by means of geometrically refined depth maps.
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