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Abstract— We present a 3D mesh re-sampling algorithm,
carefully tailored for 3D object detection using point pair
features (PPF). Computing a sparse representation of objects
is critical for the success of state-of-the-art object detection,
recognition and pose estimation methods. Yet, sparsity needs to
preserve fidelity. To this end, we develop a simple, yet very ef-
fective point sampling strategy for detection of any CAD model
through geometric hashing. Our approach relies on rendering
the object coordinates from a set of views evenly distributed on
a sphere. Actual sampling takes place on 2D domain over these
renderings; the resulting samples are efficiently merged in 3D
with the aid of a special voxel structure and relaxed with Lloyd
iterations. The generated vertices are not concentrated only on
critical points, as in many keypoint extraction algorithms, and
there is even spacing between selected vertices. This is valuable
for quantization based detection methods, such as geometric
hashing of point pair features. The algorithm is fast and can
easily handle the elongated/acute triangles and sharp edges
typically existent in industrial CAD models, while automatically
pruning the invisible structures. We do not introduce structural
changes such as smoothing or interpolation and sample the
normals on the original CAD model, achieving the maximum
fidelity. We demonstrate the strength of this approach on 3D
object detection in comparison to similar sampling algorithms.

I. INTRODUCTION

Detection and 6DOF pose estimation of 3D CAD models
have ubiquitous use in robotics and industrial applications.
Typical CAD models are designed to be parametric forms,
where the surface is represented by a collection of mathe-
matical constructs. These constructs are assembled together
to compose the complete models. While this is the standard
mode of operation in manufacturing, other fields, such as
computer graphics, post-process and discretize these models
to 3D meshes for resource efficient handling. This discretiza-
tion is called mesh generation [1] and typically introduces
non-uniform, anisotropic and elongated triangles, as well as
sharp edges and vertices clustered around feature-rich areas.

State of the art object/scene perception techniques treat
the input model as a well behaving point cloud [2], [3], [4],
[5]. While the research in keypoint extraction is numerous
[6], [7], [5], these methods already operate on a reasonably
well distributed vertex set, covering the entire object surface.
These render the aforementioned form of discretization very
unfriendly for computer vision.

In this paper, we address the particular problem of gener-
ating vision-compatible 3D point representations from irreg-
ular, non-conforming mesh geometries, amenable to object
detection and registration. We contribute by designing a
point resampling algorithm, aiding the Geometric Hashing
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Fig. 1: Samples generation. See text for details.1

framework of Drost et. al. [2] and Birdal and Ilic [3].
Outcome of our method could certainly be used in other
detection pipelines, but we particularly address this one
because it inspired a broad range of research and is very
practical due to the capability of handling raw point clouds.
Their PPF matching relies on uniformly quantizing surfel
features. Quantized values act like visual words and are
used in retrieval of the model pose. This quantization step
is shown to be the most critical source of error [8]. While
Birdal and Ilic [9] tackle such problems via soft quantization,
they do not devise methods for keypoint selection. With our
method, we address the even sampling of both vertices and
surface normals resulting in improved detection performance.

Our input is a 3D mesh. This is the modality we will refer
as CAD model. Our method starts by presenting a multi-view
rendering strategy to form an oversampling of the visible
model part. Such sampling is computed by casting rays from
all the pixels of all the views and intersecting them with the
surface. This can be implemented efficiently by bounding
volume hierarchies. A major challenge then stands out to
globally unify the sampled views. One of our contributions
is to prune and fuse/merge together the points in an effective
way to create a bias-free, sparser output. We achieve this
by using shallow trees for representing voxel grids. While,
at this stage, desired output characteristics can be imposed
by the practitioner, we specifically choose to constrain the
minimum distances between randomly distributed samples
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(a.k.a. Poisson Disk Sampling) and the distribution of nor-
mals (a.k.a. Normal Space Sampling - NSS) because of the
quantization necessity of PPF based geometric hashing [2].
With that, we are able to achieve bias-reduced blue noise
(white noise with even spacing) characteristics, which is
appealing for this and also other applications [10]. Moreover,
for more regularity in the output, we employ a restricted
Lloyd relaxation, in which the average disk radius is in-
creased iteratively. With the introduction of this relaxation,
blue noise characteristics can be traded-off to distant samples
and regular structures. See Fig. 1 for a brief summary.

Main contributions of this work are summarized as:
• We develop a mesh resampling method applicable to

any mesh, regardless of the triangles being large, small,
acute or elongated.

• We integrate view rendering to bias-reduced sample
generation in order to gracefully remove the hid-
den/invisible geometries.

• We introduce an efficient sparse voxel based algorithm
to address the global distribution of resulting vertices
and normals using Poisson Disk Sampling and Normal
Space Sampling, in order to satisfy the requirements of
PPF matching. We suggest to use the restricted Lloyd
relaxation to balance the regularity and randomness.

• We present a GPU implementation for the most com-
putationally heavy part of our algorithm.

Qualitative evaluations and spectral analysis show that we
could generate visually appealing samplings with good the-
oretical properties. Quantitative assessments demonstrate that
our algorithm can significantly boost object detection tasks.
Our supplementary video can be viewed under
https://youtu.be/uQo535jQ52s.

II. PRIOR ART

Sampling is mostly explored in the contexts of mesh to
mesh (re-meshing), mesh to points and points to points.

a) Re-meshing: In computer graphics, the state of
the art to generate more suitable discrete representations
is through re-meshing [11], [12], where a better mesh is
obtained in terms of vertex sampling, regularity and triangle
quality. A large body of the works in this category are
variational and use on Voronoi diagrams. It might be possible
that these algorithms create erroneous samples to satisfy the
structural penalties. It is also probable that the sharp features
are not preserved [11]. Some works explicitly address this
[13], sacrificing some mesh quality. On the runtime aspect,
many re-meshing algorithms easily reach minutes, making
them an overkill, when only point samples are desired. More-
over, naive re-meshing cannot distinguish invisible structures
and is thus sub-optimal for vision tasks.

b) Sampling Point Clouds: Rusinkiewicz et.al. propose
NSS, for reducing the size of the point clouds for ICP
registration [14]. Gelfand et.al. [15] sample the points such
that the rigid transformation is constrained the most. Their
effective scheme also explicitly addresses ICP. This, by
construction, is application specific and tends to select points
concentrated around salient regions, whereas our method

could be useful in more applications than PPF matching.
Another line of research in this category follows sampling
points on which good descriptors can be extracted [4], [5].
These methods do not use meshes, cannot benefit from the
triangle structure and have to rely on the vertex distribution
of original cloud. Tuzel et. al. [16] propose to learn to weigh
the model samples per scene. Yet, we are seeking a generic
approach, rather than one with a scene specific training.

c) Re-sampling Meshes: Rodola et.al [17] devise a
relevance based scheme to sample meshes. Relevance is
similar to curvature and obviously prone to noise. Along with
many other keypoint selectors on meshes [18], [19], [20],
they rely on dense distribution of vertices and cannot handle
irregular triangles or invisible structures. Descriptor oriented
keypoint detection schemes, which are vertex-based [4], [21],
[22] remain to be local and do not ensure a global distribution
of the samples over the mesh. This doesn’t play well with
the global or semi-global object modeling, such as geometric
hashing of PPF. Moreover, none of these approaches take into
account the specific nature of the object detector, as we do
in this paper. Birdal et. al. [23] deal with irregularities and
visibility issues, but propose a 2D sampling for registration
to images. This doesn’t generalize to 3D.

Several computer vision scholars, working with mesh
models, faced the difficulty we address in this paper. Johnson
proposed spin images as local feature descriptors for meshes
[24]. He describes a custom re-meshing to aid the spin
image computation. Mian et. al. [25] use CAD model meshes
under a recognition task and proposes to first render the
depth images from different views and then to carry out a
volumetric fusion of 3D SDFs using VripPack [26]. This
is similar to performing a variant of marching cubes [27].
Note that, this method is limited by voxel resolution and it
is expected not to be as quick as the proposed technique.
Nonetheless, they do not suffer from the visibility problems,
but, unfortunately, authors did not evaluate this aspect of
their method. Birdal and Ilic [9] use remeshing to prepare
prior models for their reconstruction pipeline.

Point sampling is a long gone study in computer graphics.
There, a vast literature exists on sampling with blue noise
character for e.g. ray tracing, halftoning or stippling [28]. A
famous work with desirable spatial uniformity and absence
of artifacts is Poisson Disk Sampling (PDS) [29], [30]. Our
work carries traits from PDS and fuses it with the demands of
object modeling for detection, resulting in a new algorithm,
carrying the good parts of both worlds: Even vertex and
normal distribution, graceful handling of irregular or hidden
structures and improving the object pose estimation.

III. METHOD

Before delving into the details, we briefly review the
simultaneous object detection and pose estimation of [2].

A. Object Detection via PPF

Given an input mesh, the surface model is described as a
database of point pair features F = {fij} such that:

fij = (‖d‖2,∠(ni,d),∠(nj ,d),∠(ni,nj)) (1)
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where d is the difference vector, ni and nj are the surface
normals at points mi and mj . ‖·‖ is the Euclidean distance
between point pairs. i refers to the reference point, and j
denotes any other paired point. A database is maintained
as an inverted file H, where self similar point pair features
(PPF) of the 3D model are clustered to belong to the same
bucket. Buckets store the indices of reference points, as well
as the local reference frame of the point pair. This description
is semi-global, in the sense that a reference point is described
by the set of other points it is paired with. The creation of a
database key, from a given feature is done by quantization:

f̂ij = (τ‖d‖2, α∠(ni,d), α∠(nj ,d), α∠(ni,nj)) (2)

where τ and α are relative quantization coefficients of
distances and angles, respectively. It is noticeable from Eq.
2 that to populate the hashtable as uniformly as possible,
and to increase the discriminative power, an even sampling
of both distances and angles is a necessity. This motivates
us to develop a tailored point resampling algorithm.

B. Proposed Algorithm

Given an object model, we generate a set of synthetic
cameras on a sphere encapsulating the object, as in Fig. 2(a)
and cast rays for each view, from the camera center towards
the origin. Each ray intersects the mesh, and creates a sample
point and a normal at the intersection. We then collect all
these samples and prune them using an efficient voxel grid,
with Poisson constraints. Finally, with a Llyod relaxation, the
sampling gains a balanced regularity. The entire procedure
is summarized in Alg. 1 and illustrated in Fig. 1.

Formally, given a mesh model C = (M,T), with ver-
tices M = {m1..mNm} ∈ RNm×3 and triangles T =
{ t1..tNt

} ∈ ZNt×3, we aim to generate the point cloud
P ∈ RNp×3 and normals N ∈ RNp×3, s.t. sampled points
obey uniform distribution in both 3D space and normal space.

a) Preprocessing: Man-made CAD models might not
have design constraints of orientation or positioning and are
free to lie anywhere in space. To let the algorithm operate
regardless of the model positioning, a first step is to align
the model to a canonical reference frame and scale. To do
this, we first compute the covariance matrix of the vertices
C and v, the normalized eigen-vectors of C: Cv = λv.
We fix an intermediate reference system as (v0,v1,v0 ×
v1). The model rotation aligns this new coordinate frame to
the base frame C0. Moreover, the oriented bounding box is
computed as the axis aligned bounding box in transformed
frame. Even though this approach doesn’t necessarily output
a volume-minimizing bounding box, it is sufficiently accurate
for our purposes. Finally, the mesh is rescaled to the ball with
diameter d =

√
2. From here on, with the abuse of notation,

the model M will be referring to this normalized mesh.
b) Multi-View Setting: We generate a set of camera

poses (views) V = {V1...VN}, uniformly distributed on
a sphere S, obtained by subdividing the faces of a 12-
vertex icosahedron into equally spaced Ns vertices as in
Fig. 2(a). A pose is composed of a rotation matrix R and
a translation vector ξ: Qi = [Ri|ξi], while oi = −RT

i ξi is

(a) Cam Views

(i) Original Model

(ii) Only Distance Constraint (iii) Distance Constraint + Bias Reduction

(b) Illustration of Sampling Bias

Fig. 2: (a) We synthesize camera views around the object as
shown. (b) Demonstration of Poisson characteristics. Without
bias reduction, artifacts caused by view discretization and
intersection around the model edges are more visible. To
exaggerate the effect, we used 160x120 image resolution.

the camera center. Moreover, for each pose, we maintain a
set of intrinsic camera matrices K = {Ki}, according to the
pinhole model. Let f = (fx, fy) be the focal length in pixels,
and c = (cx, cy), the principal point. We set cx = w/2,
cy = h/2, with (w, h), the desired resolution of the camera.

As we synthesize the camera poses Qi from sphere S, we
are guaranteed to view the entire projection of the model, but
we are not guaranteed to utilize the full resolution, unless
f is tuned. To maximally use the viewport, we first set
f to a relaxed initial value f = (f0, f0), and project the
model. Given this projection, we compute a tightly fitting
2D bounding box and scale f accordingly as:

f∗ = min
( w
bw
,
h

bh

)
f0 c∗ = 2c− cb (3)

where (bw, bh) are the dimensions and cb is the center of
the 2D bounding box. This way, the area of projection is
maximized, while preserving the aspect ratio. Because the
projected object silhouette is different in all views, f∗ and
c∗ differ for each view, resulting in the set K = {Ki}.

c) Efficient Ray-Triangle Intersection: In this next
stage, the samples projected on the camera views are back-
projected and intersected with the 3D mesh itself.

Let r = {o,d} denote the ray with origin o and a
normalized direction vector d. Any point on this ray is then
parameterized as r(λ) = o + λd. We then write the edges
of the intersecting triangle as E = {eo, e1, eo} and express
a triangle by a point and two edges t = (v, e0, e1). The
point of intersection vint can be described using the 2D
Barycentric coefficients (u, v) as vint = p+ue0+ve1. Using
the famous Möller Trumbore algorithm [31], λ, u and v are
obtained. The normal information of the sample pint is then
retrieved as the normal of the face: nint = (p1−p)×(p2−p)

‖(p1−p)×(p2−p)‖ .
Note that, since we are using the face normals, we do not

have to carry out normal computation for each sample point.
Instead, we could pre-compute all the triangle normals and
reduce the normal computation to single look-up. If storage
is a concern, one could always index the normals during
runtime in a hashtable, and ensure single computation per



Algorithm 1 Proposed Sampling Algorithm

Require: Mesh ({Ti}, {Mi}), Relative sample threshold τ ,
Weight threshold τw and # Max Samples Nm

Ensure: Sampled point cloud D with normals ND

Normalize and Align M to canonical frame as in Section IIIa
Generate camera poses : V = {V1...VN}
(S,N)← []
for Vi ∈ V do . Sample pool generation

Find best K via Eq. (2)
Shoot rays: ri(λ)← o+ λdi

{(vi
int,n

i
int)} ← {ri} ∩ (T,M)

Compute w(φ) via Eq. (3)
Exclude vertices with w(φ) < τw
(S,N) = (S,N) ∪ ({vi

int}, {ni
int})

end for
Randomize(S,N) as explained in Section IIIg
Compute CDF from Section IIIi.
Rd ← diameter(S)
(D,ND)← []
cnt← 0
for cnt < Nm do . Prune and Merge

i← find(CDF, random(0, N)) . See section IIIi
(s,n)← (Si,Ni)
dmin = min(t∈D) |s− t| . See Section IIIh.
if (dmin > τRd) then

D← D
⋃

s
ND ← ND

⋃
n

end if
cnt← cnt+ 1

end for
Apply Lloyd relaxation on {D,ND,T}

face. The result here is a sample pool X, where CAD model
is covered by an over-specified number of points.

d) Weighting Samples: Due to the viewpoint differ-
ences and the numerical accuracy of the ray-triangle in-
tersection, not every selected sample has the same quality.
Thanks to the ray casting, for each point mj and intersecting
triangle ti, we are able to weigh the samples. We first flip
the normals {ni} to point towards the camera, to get {nvi }.
The weight for the sample i is inversely proportional to the
angle between the normal and the cast ray and is defined as:

w(φ) =
1

1 + exp(−λ(φ− µφ))
φ = 1− |nvi dj | (4)

We use λ = 10 and µφ = 0.5. The maximum weight
wmax ≈ 1 is achieved when the vectors nvi and dj are
parallel (φ = 1), while the minimum wmin → 0, is obtained
when the angle approaches 90◦ (φ = 0). Note that, due
to camera projection, after ±90◦ the face is not viewed, or
viewed from the other side. Typically, we reject samples if
the weight is found to be very low wi < τw. This lets us
to choose the samples which are viewed in a fronto-parallel
fashion. This procedure can handle open meshes, as the mesh
normals provide directional information.

e) GPU Implementation: For the systems with graphics
support, the ray-triangle intersection as well as the weighting
can be implemented by rendering the coordinates of intersec-
tion on a 3 channel (RGB) image. This can be computed in
Shader. Furthermore, the triangle ID per pixel (sample point)
can be stored in alpha channel. This reduces the GPU-to-
CPU transfer of entire information to a single RGBA texture.

(a)

(a) Dense drone reconstruction of ~200m factory with ~26M vertices

(b) Sampled Surface using τ=0.001

(b)

Fig. 3: (a) Sparse voxel representation. (b) Very large surface
mesh and its sampling using the sparse voxels.

f) Merging View Based Samples: Given all the ray
intersections, we are left with a set of 3D points {pi} ∈ X
per each view, which are to be fused into the full 3D
sample cloud {pi} ∈ P. Some of these points pi could
be duplicates across views, or even if not, they will be
found very close (due to quantization errors). Moreover, a
satisfactory distribution of points over the object surface is
not yet achieved. Our goal is then to prune this large sample
pool X, subject to certain constraints. Note that, at this stage,
the desired task-based 3D sampling characteristics can be
also be enforced. Because typical object detection algorithms
[3] rely on equidistant/even sampling, as well as local surface
characteristics (such as normals), we adapt two strategies: We
employ Poisson disk sampling for distance based constraints,
and normal-space sampling to enforce a uniform distribution
of local surface characteristics. Our approach fuses these into
a single sampling strategy, which we will devise below.

g) Poisson disk sampling (PDS): Recently, PDS is
found to be particularly robust for PPF matching [3], due to
its generation of even distances and good spectral properties.
For our case, it will also help in reducing the bias, caused
by discrete sampling on the views. Fig. 2(b) illustrates this
effect. PDS tries to obtain uniform random points based on a
minimum distance criterion between the samples. Formally,
it tries to satisfy the following two conditions:

∀pi ∈ Pi,∀Ω ∈ Di−1, P (pi ∈ Ω) =
Area(Ω)

Area(Di−1)
(5)

∀(i, j : i 6= j), ‖pi − pj‖ > 2r (6)

where D is the domain of the sample pool and Di−1 denotes
the available (not-yet-sampled) domain. The first condition
(Eq. 5 - Poisson Sampling) states a uniformly distributed
sample pi falls in subdomain Ω with likelihood, proportional
to the area of Ω, provided that Di−1 ∩ Ω = ∅. Due to
the computational complexity of calculating the region of
sampling, we relax the first constraint. We associate each
sample pi to a sphere centered at pi with radius r. r is
the same for all the samples. The probability P (pi ∈ Ω) is

then computed as P (pi ∈ Ω) = 1−
i∑

j=1

α(j)4/3πr3, where

α(j) influences a poisson process bound in the interval (0, 1],



influencing the percentage of the feasible sampling space for
the point i. Instead of using {α(j)} as in a Poisson process,
we simply replace it with its expected value ᾱ, reducing to
P (pi ∈ Ω) = 1 − 4/3Kᾱπr3. By that, we are allowed
to retrieve samples from the pool, sequentially with equal
likelihood, i.e. the drawing is uniformly distributed.

Satisfying the 2nd condition (Eq. 6 - Disk Sampling) is
more trivial but required to be made efficient for a large
number of samples. The main idea is to draw samples from
the pool X iteratively and check against the existing samples
Pi−1, for the violation of Eq. 6. If Eq. 6 is satisfied, the
sample is accepted. A naive implementation involves a search
through all the so-far sampled points or marking all the
neighbors of a sample as rejected. Both are computationally
demanding. We take a different path and construct a 3D voxel
grid G over the existing samples. We then take a sample pi
from the pool sequentially and insert it into G. If the sample
satisfies Eq. 6, it is kept, otherwise rejected. The side length
of the grid is tuned such that the search ball remains within
9 voxels, and the query can be done in O(1) time, enabling
us to complete the entire sampling in O(N). Even though
this procedure is greedy - as it depends on the first sampled
point- it is found to generate good distribution in practice.

h) Sparse Voxel Representation: For large radii (less
samples), the search in dense voxel grids will be fast.
However small radii, where closer points are sampled are
problematic due to the exploding memory of the grid. For
that reason, we propose to use a sparser voxel-grid similar to
[32]. Our tree structure resembles the one in a B+ tree. By
construction, the tree is height-balanced, shallow and wide.
This decreases the number of operations for traversing the
tree from root to a leaf node. The structure implemented has
1 root node, 2 internal layers and a leaf layer as shown in
Fig. 3(a). Point information is stored only at the leaf layer,
wheres the internal layers maintain a bitmask for encoding
active children based on their spatial coordinates. To increase
traversal speed, the whole structure is restricted to powers of
two: First layer has a size of 8 units per dimension, second
layer 4 and leaf nodes 4. A Cache that holds the last visited
internal and leaf nodes is also implemented. The resolution
of the grid is automatically adjusted to 2r. This way, given
a point, we can answer the question should this point be
sampled? in constant time and can therefore downsample
very large point clouds such as the one in Fig. 3(b).

i) Normal Space Sampling: Rusinkiewicz and Levoy
[14] propose to sample points such that the normals are
uniformly distributed. We adapt this into our pipeline by
altering the order of the considered points. We first quantize
all normals into a dense set of bins {n̄j} and assign each
normal to the closest bin. We then take the random ordering
specified in Section IIIg, and compute the cumulative dis-
tribution function CDF = F (n̄i). After that, a scalar γ is
drawn uniformly in the interval [0, F (n̄i)] and the smallest
index i s.t. F (n̄i) > γ is computed, using binary search.
Since this can be done subsequent to the random sampling, it
has little effect in introducing regularity, while still satisfying
the uniform distribution of normals.

(a) A Synthetic Mesh (c) Sampling τ=0.06 (d) Sampling + Lloyd τ=0.06

(h) Pf of (d)(e) Pf of (b) (f) Pf of (b) + Lloyd (g) Pf of (c)

(b) Sampling τ=0.03

Fig. 4: Spectral analysis. (a) Original Mesh. (b,c) Sampling
with different radii. (d) Sampling + Lloyd relaxation. (e)
Power spectrum plot of (b). (f) Spectral plot of (b) after 10
Lloyd steps. (g) Spectral plot of (c). (h) Spectral plot of (d)

j) Lloyd Relaxation: Due to the introduced randomness
and greediness of the sampling algorithm, the sampled points
are not regular. To obtain a good balance between blue
noise property and regularity, we conclude our sampling by
applying a few Llyod iterations, in which the centers of the
points are shifted to the centers of the Voronoi diagram,
gradually. While, it is easy to apply this on synthesized
samples (samples not on a specific surface), ensuring that the
Voronoi centers remain on the surface is difficult. For that,
we exploit Restricted Centroidal Voronoi (R-CVD) iterations,
efficiently implemented by [33]. R-CVD operates by inter-
secting (restricting) the VD with the surface. Lloyd scheme
is formulated as a variational energy minimization and a
quasi-newton approximation is made for fast convergence.
Because minimum distance constrained is roughly satisfied in
the previous section, this scheme enjoys a good initialization
and only a few iterations are enough for pleasing results.

IV. RESULTS AND EVALUATION

We present evaluations of our method as well as a spectral
analysis for justifying frequency space properties.

a) Spectral Analysis: Since our sampling exhibits blue
noise characteristics, we use frequency domain analysis to
evaluate the quality. Lagae and Dutre [34] standardize this
analysis as a power spectrum study. First, we generate 50
different synthetic 2D meshes as shown in Fig. 4 and sample
them with our method. For each sampling, the periodogram
is computed. These periodograms are averaged to estimate
the power spectrum P (f). We plot these 2D spectra in
Fig. 4 with a logarithmic tone map, removing the high-
magnitude DC component. P (f) reveals the typical blue
noise properties: The central DC peak is surrounded by an
annulus of low energy, followed by a sharp transition region,
a low-frequency cutoff and a flatter high-frequency region.
As a result, inter-sample distances follow a certain power
law, with high frequencies being more common. Note that
our sampling preserves these spectral properties.

b) Real Dataset and Parameters: As our method best
performs with industrial CAD models in mesh forms, we
utilize the Toshiba dataset, proposed in [35]. This dataset
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Fig. 5: (a) Views of Toshiba dataset. Upper row: CAD models with anisotropic triangles and internal structures; Lower
row: A scene point cloud and its normals. (b) Models detected by [2] using our sampling. (c) Normals on sample points
compared. Notice our sampling (iv) can generate normals which are closest to their original CAD counterparts (i).

consists of real life wireframe 3d models and scanned
point clouds as scenes. The models have internal structures,
elongated triangles and sharp edges, making them hard to
work with. We modify this dataset to include normals for 20
scenes, each scene containing multiple objects at different
occlusion levels. The dataset is summarized in Fig 5a. For
all the experiments in this paper a set of fixed parameters
are used: τ = 0.03; image resolution is 640x480; the weight
function/threshold are shown in Fig. 7(a) and we use 2
subdivisions of the sphere, resulting in 162 camera poses
viewing the object.

c) Base Methods: We compare our approach against 4
other methods, which are capable of converting meshes into
point sampled surfaces. Our baseline is set to be the Monte
Carlo (MC) sampling (a uniform random sampling) within
the facets. A more proper method is the stratified sampling
or triangle subdivision method [36], in which each triangle
gets a sample depending on the resolution of an underlying
voxel grid. A mainstream and successful approach is Poisson
disk sampling [29], also used in [3]. Finally, we compare our
method against a uniform mesh resampling, which consists
of building a uniform volumetric signed distance field and
applying a marching cubes to get uniformly distributed
samples. This is also very similar to the method proposed
in [25]. Note that a large family of 3d keypoint extraction
methods operate directly on vertices [4], [37] and cannot be
applied to Toshiba dataset or this application.

d) Qualitative Evaluations: We assess the visual qual-
ity of our method on Piston object from the Toshiba dataset
as well as on two additional industrial CAD models of a
gasoline engine and a large transformator. All models have
complicated triangle arrangement, hidden faces and struc-
tural connections. The vertices are unevenly distributed and
clustered on certain support areas. Fig. 6 presents the results
of sampling 1000 points by our algorithm and preceding
methods. It is noticeable that our method better preserves
the global shape, has even distribution of vertices and can
get rid of internal structures. Moreover, thanks to the blue

noise characteristics, the discretization artifacts due to the
views are not visible. These result in an enhanced perceptual
quality of the generated point sets. The closest result to ours
is from Poisson sampling, but as it doesn’t treat hidden faces
or surface normals, our method remains visually superior. We
also visualize the normals estimated with different techniques
as well as ours in Fig. 5c. Here, one should look for the
set of directions, which resemble the CAD model’s the
most. Because we sample directly on the faces, the normal
estimation quality of ours is also the closest to the original
CAD model among the algorithms we evaluate. Please refer
to our suppl. material for further visual results.

e) Application to Object Detection: We now assess the
effectiveness of the method in the challenge of 3D detection
and pose estimation, the reason of its design. We use the PPF
method of [3], [2] as explained earlier, on the Toshiba dataset
[35]. The only modification is that, we replace the weighting
scheme of [3] with the weights computed in Section III. The
evaluations are done by substituting the existing sampling of
[2] with a different one and comparing the pose estimation
results. Our findings for different number of samples and
sampling algorithms are plotted in Fig. 8. We provide distinct
plots for the rotational (ER) and translational (Et) error
components, which are respectively measured as:

ER(Rt,Rg) = arccos

(
trace(R−1t Rg)− 1

2

)
1

π
(7)

and Et(tt, tg) = ‖tt − tg‖. A detection is said to be
correct if it can be refined to the correct ground truth
pose by a subsequent ICP (iterative closest point) alignment.
Depending on the pose with which the object lands on the
scene, the tolerance of ICP could differ and we use the
same setting across all methods. We only accumulate the
pose errors when the correct detection is spotted. Fig. 5b
illustrates these refined poses. We plot the number of correct
detection per each sampling in the left-most column of Fig.
8. It is consistently visible from this figure that choosing
evenly spaced points on the visible surface with uniform
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Fig. 7: (a) Used weighting function (see Section IIId). (b)
Computational timings of CPU implementation.

distribution of normals helps our algorithm to detect more
objects and make less error in the pose when the object is
detected. This means that we manage to sample more task
suited points which have higher probability of being seen
and have a better coverage of the entire surface - as for [2],
the pose depends on the point found to be on the surface.

The SDF based sampling of [25] is the closest to ours in
terms of pose estimation performance. However, it is noticed
that as the number of samples decrease, the performance gap
grows. This is because our samples are always located on
visible primitives and therefore are better suited to percep-
tion/detection tasks. We have also noticed that due to voxel-
grid used in Marching Cubes, the memory requirements of
[25] become intractable as the model size increases. Our
algorithm, on the other hand, doesn’t suffer from this issue
and can sample models of arbitrary size (see Fig. 3(b)).

f) Computational Time: We implemented our algorithm
on an Intel i5 2.3GhZ CPU. For ray casting, we use the freely
available Intel Embree library [38], carefully optimized for
Intel platform. The average timings on our dataset are plotted
in Fig. 7(b). The most important parameter for runtime is the

resolution of the synthetic views as we cast a ray for each
pixel of the view. The number of faces of the CAD model
has a diminished effect due to the apriori spatial indexing.
Our GPU implementation, on the average, could only run
twice as fast and is dominated by the transfer overhead of
the textures. Note that the view merging is always computed
on the CPU, to ease the implementation complexity.

V. CONCLUSION

In this paper we proposed a very effective, practical
and easy to implement point resampling strategy crafted
for computer vision problems, in particular PPF matching.
Our algorithm allows us to directly compute a randomized,
evenly spaced point sampling of the visible portion of the
surface. The normal computation and point quality are well
integrated into the schema and are always present in the
sampled result. We evaluated our approach qualitatively and
quantitatively on a real dataset, and demonstrated the boost
in the matching and pose estimation tasks. We further like
to enlarge the appliance of the method to different problems
such as reconstruction and multi-view registration.
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(b) Matching Results

Fig. 8: (a) Pose errors, for different number of samples N , computed for correct detections only and are averaged. Our
sampling could enable the same detection method to obtain more correct results with lower pose errors, regardless the sample
count. (b) Scene from Toshiba dataset. Detection results by different sampling algorithms are visualized on this point cloud.
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