

# Survey and Classification of Head-Up Display Presentation Principles

Marcus Tönnis<sup>1</sup>, Marina Plavšić<sup>2</sup>, Gudrun Klinker<sup>1</sup>

<sup>1</sup> Fachgebiet Augmented Reality Technische Universität München

<sup>2</sup> Lehrstuhl für Ergonomie Technische Universität München



#### **Motivation**

- Future HUDs might provide ways to superimpose the outside world with virtual information, i.e. enable Augmented Reality (AR)
- Various AR systems are already under development and run through user studies
- Problem: Independent variables
- Reason: AR visualizations use *multiple principles* of presentation. To clearly attribute measured effects to a specific independent variable only one principle may be changed between two variants
- Issue: Different system variants often have multiple parameters affected
- Awareness: Know about different principles of presentation before you start system and test design

<sup>•</sup> Azuma, R. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385



#### **Overview**

- 3D space for information presentation
- Classes of dimensions for information presentation
- Design examples and potential cross-relationships of designs
- Conclusion



#### **3D Space for Information Presentation**

- With AR, information no longer requires stationary displays as carrier it can move into the surrounding world
- With the paradigm of AR, information has the potential to be presented at the direct place where the origin for the need of information presentation is located
- Instead of 2D on conventional displays, AR extends to 3D



Survey and Classification of Head-Up Display Presentation Principles - Marcus Tönnis et al.

#### **Issues of the 3D Presentation Space**

- Information **locally fixed** to the environment **moves** over the HUD
- Dynamic layouting for avoidance of occlusion of relevant objects
- Focal accommodation depth queues



AR





### **Classes of Dimensions for Information Presentation I**

- Continuous vs. Discrete Information Presentation
  - Continuous information must not be immersive information
  - Discrete information (e.g. warning events) cause driver to leave control circuit of driving task
- 2D Symbolic vs. 3D Information Presentation
  - 2D symbolic information can use flat icons
  - 3D information renders virtual 3D objects
- Contact-analog vs. Unregistered Presentation
  - Information may be registered with the environment (contact-analog)
  - Information may be placed independently of a location in the surrounding

### **Classes of Dimensions for Information Presentation II**

- Presentation in Different Frames of Reference
  - Virtual information can be presented from the driver's point of view, embedding in the perceived scenery
  - Virtual information can also use another frame of reference e.g. a bird's eye map
- Direct vs. Indirect Referencing of Objects or Situations
  - Direct referencing refers to objects that reside in the drivers field of view
  - Indirect referencing refers to objects that lie occluded in the drivers field of view
  - Pure referencing intends to guide the attention of the driver to a direction outside the field of view
- Location of Presentation in Relation to Glance Direction
  - With glance tracking systems, information can be placed w.r.t. the glance direction of the driver
  - Issues are not to obstruct the view but to keep the information perceivable



# Design Examples and potential Cross-relationships of Designs

 Paper illustrates and discusses pair-wise combinations of dimensions

| Continuity (1)            | - |   |   |   |   |   |
|---------------------------|---|---|---|---|---|---|
| Representation (2)        | Х | - |   |   |   |   |
| Registration in Space (3) | Х | Х | X |   |   |   |
| Frame of Reference (4)    | Х | X | X | - |   |   |
| Type of Reference (5)     | Х | Х | X | Х | - |   |
| Glance Relation (6)       | Х | Х | X | Х | X | - |
|                           | 1 | 2 | 3 | 4 | 5 | 6 |

• Only marked will be illustrated in subsequence – see paper for full survey

Survey and Classification of Head-Up Display Presentation Principles - Marcus Tönnis et al.



#### **Constraints of Display Technology (3)**

- Human eye focuses to the **focal distance** to perceive the image
- Image is rendered in a perspective distance shorter than a real object (green car).
- =>Reverted Depth Cue



## **Registration in Space vs. Type of Referencing (3 vs 5)**

- Example: system for guidance of a car driver's attention
- Different registration in space
  - Bird's eye scheme is unregistered (1)
  - 3D arrow is contact-analog (2)
- Different types of referencing
  - Bird's eye scheme shows location (1)
  - 3D arrow shows direction (2)
- Issues when testing
  - Benefit for pointing to location instead of pointing to a direction? (1)
  - Benefit for information embedded into the world (less need for transformation between frames of reference)? (2)



<sup>•</sup> Tönnis, M., & Klinker, G. (2006, October). Effective Control of a Car Drivers Attention for Visual and Acoustic Guidance towards the Direction of Imminent Dangers. In Proc. of International Symposium on Mixed and Augmented Reality (ISMAR)







#### **Registration vs. Frames of Reference (3 vs 4)**

- Example: system for guidance of a car driver's attention
- Different registration in space
  - Bird's eye scheme is unregistered (1)
  - 3D arrow is contact-analog (2)
- Different frames of reference
  - Bird's eye: Transform to coordinate system presentation - gather information - transform back to real world coordinate system – interpret (1)
  - 3D arrow: Embedded as object floating in the world coordinate system (2)





<sup>•</sup> Tönnis, M., Sandor, C., Lange, C., Klinker, G., & Bubb, H. (2005, October). Experimental Evaluation of an Augmented Reality Visualization for Directing a Car river's Attention. In Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR)

<sup>•</sup> Tönnis, M., & Klinker, G. (2006, October). Effective Control of a Car Drivers Attention for Visual and Acoustic Guidance towards the Direction of Imminent Dangers. In Proc. of International Symposium on Mixed and Augmented Reality (ISMAR)

#### **Representation vs. Frame of Reference (2 vs 4)**

- Example: Navigation systems
- Different frames of reference
  - North Up: Exocentric (1)
  - Face Up: Exocentric, but motion compensated to egomotion (2)
  - AR presentation: Fully egocentric (in perspective and in motion behavior) (3)
- Varying Representation
  - 2D: Available HUD (2)
  - 3D: In embedded visualization (1) and AR (3)
- To which variation do results of studies attribute to?



• Lamb, M., & Hollands, J. G. (2005). Viewpoint Tethering in Complex Terrain Navigation and Awareness. In 49th Annual Meeting of the Human Factors and Ergonomics Society







## **Registration vs. Glance Behavior (3 vs 6)**

- Virtual objects can/could be registered to the glance behavior of the user
- Upcoming issues
  - Direct registration to the line of sight (foveal area of retina) occludes the whole surrounding
  - Adding a static offset to the virtual object disables looking at the virtual object it always keeps its offset to the line of sight
- Floating algorithms are necessary to establish a relation between an object of concern, its associated information and the dynamic placement if this information



#### Conclusion

- Spatial AR displays are not yet explored and standardized as conventional 2D displays are
- System development must carefully focus on even small changes to a presentation strategy
- Even minor changes may change the test outcome of a system in comparison to another
- Knowing about presentation principles and possible crossrelationships can avoid misleading results of user studies
- Future work has to investigate these dimensions to reveal foundations for presentation concepts

Survey and Classification of Head-Up Display Presentation Principles - Marcus Tönnis et al.



#### In other words...

- Next time you develop two systems and put them into a user study, e.g., a
  - Continuous, 3D presentation with contact-analog registration in space showing egocentric information and referring directly to the object of concern and in not glance mounted
  - Discrete, 2D presentation without spatial registration showing its information in an exocentric manner but indirectly refers to the object of concern thereby being glance mounted
- Think if you really want to treat all these principles as one independent variable!



# Survey and Classification of Head-Up Display Presentation Principles

Marcus Tönnis<sup>1</sup>, Marina Plavšić<sup>2</sup>, Gudrun Klinker<sup>1</sup> Contact: toennis@in.tum.de

> <sup>1</sup> Fachgebiet Augmented Reality Technische Universität München

<sup>2</sup> Lehrstuhl für Ergonomie Technische Universität München