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Abstract— This contribution presents a procedure to obtain
a multi - lane car following model in order to simulate larger
traffic scenes with different percentages of vehicles equipped
with a certain assistance system. We introduce a way how to
extend the Intelligent Driver Model (IDM) to support multiple
lanes and model driver imperfections. The required parameters
are obtained from an experiment in a 3D stereoscopic driving
simulator in a CAVE and then transferred to an implementation
of the Car Following Model in the traffic simulator SUMO.
Promising results regarding the overall effect of the presented
Advanced Driver Assistance Systems (ADAS) are obtained
executing several hundred simulation runs of various scenarios.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) are strong
innovation drivers in the automotive field. These complex
systems that employ sophisticated hardware and softwa-
re technologies are usually prototyped for first tests in a
laboratory environment and then tested by drivers in a
driving simulator. In our case we implemented a system to
support anticipative driving called ISPA (Intelligent Support
for Prospective Action) as shown in [10] and [6]. Such
experiments give feedback about the general feasibility of
a system but provide only limited insight to the impact of
such a system on a larger traffic scenario. One possibility
to overcome the limitation of a single test driver would be
a large number of connected driving simulators in which a
group of people interact with the same scenario at the same
time as presented in [9]. This imposes several practical and
economical problems (reproducibility, hardware cost etc.), so
a solution could be to retrieve a model of the typical behavior
of an assisted and an unassisted driver to use it in a traffic
simulation. That enables the possibility of nearly arbitrarily
large groups of simulated drivers and simulation runs. Such
a procedure obviously depends heavily on the quality of the
driver model but can provide valuable insights on the general
impact of a system.

II. CONCEPT

In many cases a microscopic car model can be separated
into a Car Following Model (CFM) and a Lane Change
Model (LCM). Most of the currently employed microscopic
CFMs only take into account vehicles in front on their own
lane. This happens regardless of the distances and relative
positions of other cars on adjacent lanes. An example for
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Fig. 1. Deceleration curve of real drivers in a driving simulator approaching
a traffic jam behind a long drawn-out curve from 1000m distance without
assistance

a model considering several preceding vehicles is proposed
by Zhu and Jia in [16]. They extend the General Optimal
Velocity Model (GOVM, see [12]) by calculating a weighted
sum of the optimal velocities for all relevant vehicles. The
weight factor is exponentially decreasing for increasingly
distant vehicles.

In an extreme scenario a conventional CFM would keep
on speeding towards a distant car on the same lane and pass
by cars on adjacent lanes at very high speeds. This might
not be the case for a human driver who would also adapt his
speed to nearby vehicles on adjacent lanes even if he does not
intend to change lanes. Lane Change Models need to take
into account neighboring vehicles by definition. This only
has an influence on the speed if a higher level logic uses
this information to adapt the desired speed to the average
speed of the target lane as it is done by Luo and Bölöni in
[8].

The proposed CFM is based on the IDM model of Trei-
ber, Kesting, Hennecke and Helbing. Several CFMs were
evaluated prior to this decision by comparing the behavior
of real drivers in a driving simulator (see Fig. 1) to the output
of several models in the same scenario. As can be seen in
Fig. 2 the IDM model produces the most realistic behavior
especially compared to the large oscillations of the Kerner
model.

As described in the work of Tschöpe [14] the Enhanced
IDM was extended by a state machine which configures the
EIDM to introduce configurable reaction times and different
driver types producing similar curves as depicted in Fig.
1. The three driver types differ in their quality of distance
judgement and reaction time to an output of the ISPA system.
An important result of these extensions is the possibility to
produce a crash with the originally collision free Enhanced
IDM. This modification is essential for running simulations
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Fig. 2. Deceleration curves of different Car Following Models approaching
a standing vehicle in the traffic simulation SUMO

which provide results about the number of crashes correlating
with a specific assistance system.

A. The Behavior Map

Starting from a single lane Car Following Model (CFM)
a concept is derived to expand it to multiple lanes and
theoretically arbitrary numbers of vehicles or surveyed area
sizes. In the work of Zhu et al. (see [16]) the GOVM is
extended to take l preceding vehicles into account which
are on the same lane. This is done with a weighted sum to

”synthesize“ a new optimal velocity of the nth vehicle Vs,n
in the form Vs,n(∆x, t) =

∑l
m=1 αmV (∆xn−1+m(t). The

weighting function αm is defined as αm = p(m−1) − pm

with m = 1...l − 1 and 0 < p ≤ 1
2 and n = 1...N , N being

the total number of preceding vehicles on the lane.
In contrast to that the Behavior Map stores weighting fac-

tors (here called Importance) based on actual driver behavior
as well as several metrics that are needed for the IDM. This
is not only done for the lane of the ego vehicle, but also for
the two neighboring lanes on each side.

The following sections describe the overall process of
generating a multi lane CFM based on the single lane
Enhanced Intelligent Driver Model (EIDM, see [13] and [4])
which was enhanced by Tschöpe [14]. To extend the model
not only to a multi lane model but to survey a specified
area around the driver, the surrounding of the ego vehicle
is segmented in a grid-like shape which is aligned to the
lanes. Driving experiments provide representative metrics
such as Time To Collision (TTC), relative speed (∆v) or
Time Headway (THW) from real drivers which are stored in
the grid as described in [3].

The idea behind the Behavior Map (BM) is to divide the
area around the ego vehicle into several subdivisions which
implies that the BM is moving with the ego vehicle. At first
several shapes of these areas are proposed as depicted in Fig.
3. For the evaluation the grid shaped style to subdivide the
surrounding area was chosen due to its simplicity and the
fact that the grid can easily be aligned to the shape of the
lanes. Each subdivision of a lane has a length of 7.5 meters
to fit at most one standard sized vehicle. With a length of 53
columns a distance of 400 meters can be covered and 5 rows

are sufficient to cover the two adjacent lanes on each side
when driving on a three lane road. The distance of 400 meters
is derived from the preferred Time Headway of 3 seconds as
proposed in [1] at a speed of 130km

h on a German Autobahn.
Several metrics are stored for each division of the Behavior

Map including:
• Relative speed (∆v)
• Time To Collision (TTC)
• Time Headway (THW)
• Importance Weight Index (IWI).

These metrics are later obtained by driving simulator expe-
riments with real drivers.

(a) Concentric Circles (b) Pie Slices (c) Grid

Fig. 3. Possible patterns for subdividing the area surrounding the driver.
Cars within the same color field are merged into one object.

III. SUPPLEMENTARY WORK

In order to run the required experiments several prerequisi-
tes need to be prepared. These include the driving simulator,
the ISPA system and the traffic simulator SUMO which will
be described in the following sections.

A. Driving Simulator

The driving simulator is situated in a 4-sided CAVE
(Cave Automated Virtual Environment) which displays the
environment and also parts of the cockpit. It also consists of
a cockpit from an Audi TT equipped with a Force Feedback
steering wheel and a digital instrument cluster. The software
is based on 3DVIA Virtools and its car physics Buildings
Blocks (BBs) as well as custom BBs for e.g. real time com-
munication with the traffic simulator SUMO. The 3D model
of the environment was generated with ESRI CityEngine
which allows rapid generation of 3D models of cities and
landscapes based on scripted rules that procedurally generate
a model as described in [15]. With the Python interface of
the CityEngine the street network can be exported and then
imported into the SUMO framework.

B. ISPA Assistance System

For the ADAS functionality the ISPA system was chosen.
It aims to provide information about upcoming traffic situati-
ons which the driver potentially cannot anticipate. Particular-
ly it provides support in situations in which the driver needs
to decelerate within the next 10 - 20 seconds, e.g. a traffic
jam on a highway behind a curve. The information about this
situation is received through Car2X communication which
is expected to provide much more precise and up-to-date
information than current technologies such as TMC.

ISPA calculates three distances to an obstacle that are re-
quired to reach the target speed for the following deceleration
strategies:

• Stepping off the gas pedal (Coasting)
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Fig. 4. ISPA User Interface: LED bar indicating obstacle distance together
with suggested deceleration strength and instrument cluster with standard
traffic symbol and distance indicator

• Comfort deceleration by applying the brake (-0.2 g)
• Strong deceleration (-0.4 g)

If the actual distance is smaller than one of these three
distances, an output on the GUI is triggered. The GUI
consists of two main components (see 4), a portion of
the digital instrument cluster and an array of three RGB -
LED modules (see also [6]). As soon as the ISPA system
is triggered a standardized traffic symbol is shown in the
instrument cluster along with a bar indicator representing
the obstacle distance. The number of illuminated LEDs
increases during the obstacle approach, their color encodes
the proposed deceleration strategy with yellow corresponding
to ”Coasting“, orange to ”Comfort Deceleration“ and red
to ”Strong deceleration“. The maximum activation distance
is 1000 meters where the lowest number of LEDs are
illuminated.

C. SUMO Traffic Simulator

SUMO is an open source traffic simulator from the Ger-
man Aerospace Center (DLR). It is a microscopic simulator
which means that it models each traffic participant indivi-
dually, but does not necessarily distinguish e.g. between a
driver model and a car physics model. The usual way to use
SUMO is to prepare a set of configuration files and then
run the simulation which usually runs faster than real time,
depending on the scenario. The driving simulator utilizes the
TraCI (Traffic Control Interface) to access the simulation and
extract all needed data.

IV. EXPERIMENTAL GENERATION OF THE
BEHAVIOR MAP

To obtain the content of the Behavior Map it was chosen to
run driving simulator experiments instead of using available
real traffic flow data. The reason for this decision is that
real traffic flow data can provide a baseline configuration
but would not be directly comparable to the experiments
with assisted drivers. Consequently all experiments had to
be carried out in the same environment.

It is important to chose the appropriate tasks and number
of drivers to get meaningful data from these test drives. The
course was a 10 km long segment of a three lane highway

with additional landscape elements such as trees, parking lots
and other details. All other cars were controlled by SUMO
with the CFMs of Tschöpe (see [14]) with and without ISPA
assistance behavior. The tasks had to be carried out in varying
order, with the assisted drives always at the end so drivers
could get used to the simulator without having to deal with
an additional assistance system.

The test corpus consisted of 20 people (16 male, 4 female)
with an average age of 26,95 years. All held a valid driver
license. In total 100 test drives were recorded with an overall
driven distance of ca. 1000 kilometers at a sampling rate of
10 Hz.

A. Design

An important goal of the driving tasks is to ”fill up“ the
Behavior Map as completely as possible. Therefore in some
cases the drivers must be instructed to follow a car on an
adjacent lane as if it was forbidden to overtake these cars.
This way it is possible to create a controlled scenario to
obtain the desired data also for parts of the Behavior Map
which are usually less occupied by other vehicles. Generally
the most natural way to gather the BM would be to let the
drivers move freely through traffic. The main disadvantages
in our case would be that this takes longer to cover significant
parts of the BM and would require substantially larger well
defined scenarios to produce various situations. Both reasons
led to the experiment design explained in the following
paragraphs which describe the different driving tasks which
were all executed with and without ISPA assistance for the
test persons except for the lateral following task.

1) Frontal Following Task: The goal of this task is to
obtain the car following behavior regarding cars on the
same lane. In contrast to most microscopic CFMs data is
also collected and analyzed from cars in front of the direct
predecessor. Drivers were instructed to follow the leading
vehicles, to avoid dangerous situations and not to overtake to
circumvent such situations. The course for this task consisted
of three parts:

• 0 - 3km: Follow a single vehicle on the same lane
• 3km - 4.5km: Follow a group of three cars driving side

by side
• 4.5km - 6km: Follow the same group, this time the

leading cars have ISPA assistance
All leading vehicles were programmed to accelerate and
decelerate randomly so the test persons had to react frequent-
ly to speed changes of their neighboring cars. If the other
drivers constantly kept the same speed, too few interactions
would result with the test vehicle.

2) Lateral Following Task: In this task cars need to be
followed which are on different lanes even if drivers do not
have a leading car directly in front of them. Again they were
instructed not to overtake even if they would do it in a real
world scenario. ISPA assistance was disabled as it only takes
obstacles on the same lane into account. The drivers started
on the far right lane and had to follow a car on the far left
lane for 2km, then one on the middle lane for 2km. Then
they moved to the far left lane and had to follow a car on
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the far right lane for 2km and after that on the middle lane
again for 2km. As in the Frontal Following Task the other
vehicles accelerated and decelerated in a similar way.

3) Free Driving Tasks: Here drivers were situated in a
general highway scenario with several other cars. They could
act at their own will as they would do in the real world.
The intention was to gain a deeper insight on the natural
driving behavior and to further fill the Behavior Maps with
measurement data including overtaking maneuvers. This task
had to be fulfilled with and without ISPA assistance and it
was allowed to change lanes.

B. Data Analysis

As mentioned before the space surrounding the ego vehicle
is partitioned in a grid that is aligned to the lanes. In our case
with three lanes a Behavior Map with five rows (the ordinate
axis of Figures 5 and 6) and 53 columns (the abscissa axis
of Figures 5 and 6) was created with a longitudinal delta of
7.5m per column resulting in a look ahead distance of 400m.
The registration point of the ego vehicle is in the third row
in the first column.

For all drivers the metrics ”Relative Speed“, ”TTC“, ”Time
Headway“ and ”Importance Weight Index“ were calculated
for each grid entry. From the first three metrics the Median
is calculated over all entries per driver resulting in a single
entry per metric in each grid cell for each driver.

The Importance Weight Index (IWI) is motivated by the
idea that cars that have a high influence on a driver’s speed
choice have a low relative speed. It is limited to a range of
[0...1] for later use and calculated as follows:

IWI = 1 − ∆v − ∆vmin

∆vmax − ∆vmin
(1)

where
• ∆vmin: global min. of all relative speeds in the BM
• ∆vmax: global max. of all relative speeds in the BM
• ∆v: relative speed of the respective entry in the BM

Not all tasks are suitable to obtain all possible metrics. For
example the IWI should not be derived from the Following
Tasks but rather the Free Driving Task as the others would
not resemble the natural relative speed choice. The following
table shows which tasks were used to derive which metrics:

Task THW ∆v IWI THWISPA ∆vISPA IWIISPA
Frontal Follow x
F. F. (ISPA) x
Lateral Follow x x
Free Driving x x x
Free D. (ISPA) x x x

TABLE I
OBTAINABLE BEHAVIOR METRICS (TIME HEADWAY (THW), RELATIVE

SPEED (∆v), IMPORTANCE WEIGHT INDEX (IWI)) FROM VARYING TASKS

From this data analysis finally two BMs result: one with
and one without ISPA assistance. The described driving tasks
do not produce enough varying situations to guarantee full

coverage of the behavior maps with measurement samples
as seen in Fig. 5.
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Fig. 5. Coverage of measurement data (number of vehicle occurrences
per grid tile) for the Behavior Map from the 20 test persons (Ego vehicle
positioned in the middle of the leftmost column, abscissa axis corresponding
to road ahead, ordinate axis corresponding to neighboring lanes)

Fig. 5 shows that in our scenarios the first 10 columns of
the first row and the first 5 columns of the second row have
not been covered by another vehicle at all. Fields in these
rows are only covered in cases in which the driver is on the
far right lane and approaches cars on both lanes to his left
at high relative velocities. This behavior is rarely observable
because it is forbidden by German law. The uncovered area
in front of the ego vehicle results from the minimum safty
gap the test persons kept during the experiment, we call this
the ”Safety Zone“. Uncovered areas in the BM were filled
by linear inter- and extrapolating of neighboring values.
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Fig. 6. Top: Time Headway, Bottom: Importance Weight Index in the
Behavior Map from the 20 test persons (Ego vehicle positioned in the middle
of the leftmost column, abscissa axis corresponding to road ahead, ordinate
axis corresponding to neighboring lanes)

The other metrics, except relative speed, are plotted in
Fig. 6 as the pattern for relative speed is the inverted version
of the IWI Behavior Map. It is also possible to analyze
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the impact of the ISPA assistance from the BM metrics.
Generally this can be done with the following equation Eq. 2:

∆B(r,m) = BISPA(r,m) −B(r,m) (2)

where

• r: row relative to the ego vehicle (from 1 to 53).
• m: metric which is contained in the BM (Time Head-

way, relative speed and Time To Collision).
• B(r,m): value contained in the averaged BM which

contains all driver behaviors without driver assistance.
• BISPA(r,m): value contained in the averaged BM

containing all driver behaviors with ISPA assistance.
• ∆B(r,m): difference between the values contained in

the ISPA and standard BMs for the defined row and
metric.

For the metric TTC this impact is plotted in Fig. 7 whereas
square markers denote a statistically significant difference at
the 5% level. The test was done with a Mann-Whitney-U-
Test.
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Fig. 7. Impact of the ISPA assistance on Time To Collision metric. The
plot is derived from the Behavior Maps of the assisted and baseline groups
(∆TTC = TTCISPA − TTCBaseline)

For a more intuitive and flexible use of the aggregated data
the experiment participants were divided into three groups
(inspired by [11]):

1) Prohibited overtaking on the right side
2) Low Time Headway
3) High relative overtaking speed

The categories are defined by the following characteristics:

1) Coverage with a least one car in the first or second
row of the first column of the BM

2) As mentioned in [11] a minimum Time Headway of 2s
shall be kept. The average THW is computed for the
third lane from the second to the 10th grid tile. If it is
lower than the overall average of all drivers of 4.23s,
he is assigned to this category

3) Similar to the THW the average relative speeds of all
drivers from column 1 to 5 are averaged for the 4th

lane. If the relative speed exceeds the overall average
of 18.54m

s , he is assigned to this category

During the preparation of a SUMO simulation this classifi-
cation enables the selection of distinct driver characteristics.

V. MODEL GENERATION

With the gathered data and the Behavior Maps a multi
lane CFM can be constructed. When a driver model is
instantiated in SUMO several parameters such as various
reaction times, desired speed and activated ISPA system are
set as well as the content of the Behavior Map. The latter
can be done in three ways: either a distinct driver or a mix
of parameter sets from within a driver group or from all
drivers of the recorded experiments can be chosen. That way
also synthesized Behavior Maps can be generated in order to
achieve a higher number of variations when running batch
simulations. For this goal a random weighting factor for each
driver within a group is generated which is then used to
obtain a linear combination of the parameter sets.

During a simulation run the following steps are taken to
derive a speed value for the next simulation step:

• Calculate the modified IDM for all occupied grid tiles
• Apply behavioral constraints
• Calculate the preliminary speed value
• Apply external constraints

A. Applying the Behavior Map to the IDM

During runtime the modified single lane IDM is being
calculated with the values for each grid tile that contains
vehicles. This results in an acceleration value related to every
grid tile. Partitioning the area around a vehicle with a grid
would lead to jumps in the final acceleration when a vehicle
moves from one grid tile to a neighboring one. Consequently
the relative position of the vehicle within a tile is used to
linearly interpolate the chosen values based on the adjacent
tiles. The acceleration is converted to a speed value using
the chosen time step size of the simulation.

B. Behavioral constraints

Some constraints are needed to cover a wide range of
possible situations. Without further rules it would not be
possible that the ego vehicle overtakes another vehicle even
if there is no coverage for the Time Headway in the BM.
The ego vehicle would stay behind the other vehicle with
the minimum gap of the IDM. This can be circumvented
by comparing the resulting relative speed derived from the
calculated speed with the relative speed value from the BM.
If the calculated relative speed for the next time step is
smaller than in the BM, the free road term of the IDM is
used which results in an acceleration up to the relative speed
stored in the BM. As a result overtaking is then possible.

Also when the ego vehicle is being overtaken undesired
behavior could occur. Covering a grid tile with high Time
Headway values in the BM would result in a sudden strong
deceleration of the ego vehicle. This can be overcome by
analyzing the relative speed. If the relative speed is negative
(the other vehicle is faster), the old speed value is kept.

C. Deriving a final speed value

A list of all other cars covered by the BM is then populated
and sorted by the corresponding IWI. If two cars should have
the same IWI, the one that is closer to the ego vehicle is
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put on the higher ranked list entry. After that the weighted
average of the speed values is calculated with the IWI being
the weighting factor. This is done starting with the highest
ranked vehicle and continues until the sum of all IWIs
reaches 1 or the end of the list ist reached. In the latter case
the free road term is added with the remaining weighting
factor.

D. External constraints

These constraints include speed limits, maximum accele-
ration and deceleration and maximum speed of the vehicle.
If one of the constraints is triggered, the final speed value is
set to the value corresponding to the constraint.

VI. TRAFFIC SIMULATION

As a last step the proposed model is evaluated in the
SUMO traffic simulator. As some of the parameters for
each instance of the model can be modeled in a stochastic
way with their expected value and variance, simulation runs
similar to the Monte Carlo method can be run. The only
stopping criterion is a fixed number of simulation runs. For
the scenarios different states of a traffic jam were chosen:
approaching the jam, moving with the jam in a stop-and-go
manner and dissolving of the jam. In each state a comparison
is made between the single lane CFM and the proposed multi
lane version. The Behavior Map for each driver is composed
by a superposition of the maps of all 20 previously recorded
real drivers.

A total of 120 simulation runs have been conducted per
scenario, 60 with and 60 without ISPA with three different
base configurations per group. This means that configuration
EGO1(ISPA ON) in Tab. II has been used 20 times for the
whole simulation series.

ID ISPA Max. Speed [m
s

] Accel. [ m
s2

] Decel. [ m
s2

]
EGO1 OFF/ON 33 0.6 5.5
EGO2 OFF/ON 36 0.8 6.5
EGO3 OFF/ON 39 1.0 7.5

TABLE II
VEHICLE CONFIGURATIONS USED IN THE DRIVING EXPERIMENTS, EACH

CONFIGURATION WAS USED 20 TIMES.

A. Scenario ”Approaching a traffic jam“

Different variations of this scenario have been tested. The
simplest variant is to have a single vehicle approach another
vehicle which is standing still at the 500m mark. A velocity
plot of 20 of the 60 simulation runs with and without ISPA is
shown in Fig. 8. All vehicles start with a speed of 33m

s and
accelerate to their maximum speed as determined by Tab. II.
After 100m the standing vehicle comes into the coverage of
the BM resulting in a deceleration. The shape of the velocity
curves with and without assistance are different especially
in the range 200m - 500m where the unassisted drivers slow
down to a speed of ca. 20m

s and keep it until 100m in front
of the obstacle. In contrast to that the assisted drivers slow
down to a range of 5m

s - 15m
s before finally stopping during

the last 100m. The relevant safety metrics for this situation
are collected in Tab. III.
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Fig. 8. Head on approach to a single standing vehicle with (top) and
without (bottom) ISPA (only 20 of 60 simulation runs are displayed)

ISPA Dec m
s2

∆v [m
s

] Gap [m] TTC [s]
I OFF -1.58 15.36 68.56 12.26
II ON -1.33 9.43 106.35 22.79

TABLE III
AVERAGE METRICS OF THE EXPERIMENT INCLUDING A SINGLE

STATIONARY VEHICLE ON THE SAME LANE.

The same situation was tested with the only difference
that the static obstacle was not a single car but a group of
30 cars starting at the 500m mark. A single lane driver model
regarding only one leading vehicle would behave exactly the
same way in this situation. But the plots in Fig. 9 and the
metrics in Tab. IV show a different behavior as expected for
a multi lane CFM.

When we compare the unassisted cases (the bottom plots)
in Fig. 8 and Fig. 9 it can be seen that the speeds shifted
to a range from 10m

s - 20m
s in the 200m - 400m range.

A comparable shift is present also for the assisted case
suggesting that drivers did not only rely on the ISPA system
for deceleration but also used their own judgment if other
cars were in sight. The curve shapes in Fig. 9 can now be
compared to the ones in the concept description in Fig. 1. All
driver types can be identified, especially the stepwise speed
decrease is also reproduced by the combination of the state
machine introduced by Tschöpe (see [14]) and the Behavior
Map.

In Fig. 10 the velocity plots show the approach of a single
vehicle standing on the middle lane. The upper plot shows
an approach on the fast lane where the vehicle slows down
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Fig. 9. Head on approach to a group of 30 standing vehicles with ISPA
assistance (top) and without assistance (bottom). Only 20 of 60 simulation
runs are displayed.

Exp. ISPA Dec m
s2

∆v [m
s

] Gap [m] TTC [s]
I OFF -2.05 15.17 100.98 15.55
II ON -1.18 6.87 147.79 38.42

TABLE IV
AVERAGE METRICS FOR ASSISTED DRIVERS (EXP. I) AND BASELINE

DRIVERS (EXP. II) FOR MULTIPLE STATIONARY VEHICLES.

to a range of 20m
s - 30m

s and then accelerates again to
the desired speed. This would not have happened with a
single lane model which would have shown no reaction to
this obstacle.

The lower plot in Fig. 10 shows an approach on the slow
lane. As the model was configured to make no lane changes
in this scenario the only possible reaction would be to stop
behind the standing vehicle. As some of the test persons
also overtook on the slow lane several times in the driving
simulator, the model showed this behavior, too. Here it is
important to know that these are no programmed behaviors
but result solely from the recorded Behavior Maps.

B. Scenario ”Stop-and-go traffic“

Two sub scenarios can be distinguished for this scenario:
approaching Stop-and-go traffic and moving within Stop-
and-go traffic. For both variants not a single car was sent into
the scenario, but a group of 12 cars with varying percentages
of ISPA equipped cars (0%, 25%, 50%, 75% and 100%).
Each configuration was simulated in 300 runs, e.g. in the
second run the possibility that a car was equipped with ISPA
was set to 25%. Then the safety metrics already introduced
before were calculated for the 300 runs of each configuration.
The jam was simulated by three cars standing side by side
at the 1000m mark.
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Fig. 10. Approach to a single vehicle standing on the middle lane from
the fast lane (top) and the slow lane (bottom) without ISPA (only 20 of 60
simulation runs are displayed)

ISPA v
[m
s

]
∆v
[m
s

]
Dec.
[ m
s2

]
Gap
[m]

THW
[s]

TTC
[s]

0% 14.66 4.33 -1.35 80.72 13.29 25.82
25% 13.25 3.90 -1.19 85.43 14.47 28.62
50% 11.99 3.53 -1.12 89.69 15.68 30.81
75% 10.88 3.21 -1.03 93.83 16.91 33.05
100% 9.84 2.90 -0.93 97.17 17.96 35.07

TABLE V
AVERAGE METRICS FOR A GROUP OF 12 CARS APPROACHING A TRAFFIC

JAM. TESTS WERE CARRIED OUT WITH VARYING PERCENTAGES OF

ASSISTED DRIVERS.

Table V shows the safety metrics for each configuration
of ISPA equipped cars. A bold number means that a Mann-
Whitney-U-Test showed a significant difference to the value
in the subsequent row at the 5% confidence level. For this
setting this means that an increase of 25% of equipped cars
shows an significant improvement of all safety metrics.

The results when the inspected group of 12 cars moves
with a Stop-and-go jam can be analyzed in Tab. VI. This
shows that the effects of the increasing assistance level are
not as clear as in the previous situation. But still there is a
positive trend visible for each step. An explanation for this
could be the less controlled development of the situation.

C. Scenario ”Dissolving traffic jam“

This situation is modeled by starting with all 12 cars
standing still with no obstacles in front of the group. All cars
in the front row can then accelerate freely to their desired
speed while the others interact with the first cars. That means
that their behavior maps come into effect. Table VII shows an
significantly increasing negative relative speed, higher gaps
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ISPA v
[m
s

]
∆v
[m
s

]
Dec.
[ m
s2

]
Gap
[m]

THW
[s]

TTC
[s]

0% 15.77 0.56 -1.80 78.78 18.41 28.67
25% 15.12 0.47 -1.56 78.37 18.12 31.64
50% 14.41 0.43 -1.44 77.04 17.44 32.70
75% 13.87 0.40 -1.36 76.17 17.07 33.60
100% 13.25 0.36 -1.21 74.38 16.31 34.81

TABLE VI
AVERAGE METRICS FOR A GROUP OF 12 CARS APPROACHING

STOP-AND-GO TRAFFIC. TESTS WERE CARRIED OUT WITH VARYING

PERCENTAGES OF ASSISTED DRIVERS.

and increasing TTC for every increase of equipped cars.

ISPA ∆v [m
s

] Gap [m] TTC [s]
0% -2.87 287.97 41.50
25% -3.03 300.48 53.37
50% -3.19 316.88 68.87
75% -3.30 324.18 71.11
100% -3.45 336.45 77.02

TABLE VII
AVERAGE METRICS FOR A GROUP OF 12 CARS ACCELERATING AFTER A

TRAFFIC JAM. TESTS WERE CARRIED OUT WITH VARYING PERCENTAGES

OF ASSISTED DRIVERS.

VII. CONCLUSIONS AND FUTURE WORK

We presented a possibility to extend a commonly known
single lane Car Following Model to a multi lane model
based on real driver behavior. The results are promising as
it was possible to reproduce behaviors such as overtaking
on the slow lane, passing a slower vehicle with reduced
speed or consideration of cars behind directly adjacent cars.
This was possible by applying Behavior Maps that contain
characteristic metrics of real drivers for a certain area of the
driver environment.

This approach could by applied to other CFMs as well
because it does not rely on specific properties of the EIDM.
In some cases it will probably be necessary to recalibrate
the base models on real traffic data to achieve representative
results. It also must be mentioned that the BM approach con-
sumes significantly higher computation ressources because a
CFM is not evaluated only once per vehicle but as many
times as the BM contains cells.

Because only the Car Following Model of SUMO was
changed, the Lane Change Model stayed untouched. This
led to the problem that lane changes practically never oc-
cured because the distance to the leading car never dropped
below the threshold to invoke a lane change. For a proper
integration the Lane Change Model should also be adapted.

A further improvement would be the application of se-
parate Behavior Maps corresponding to different situations
such as free driving on a highway, traffic jams, driving in
urban environments etc. Currently all those situations are
condensed in one common Behavior Map. In this research

effort the map has a grid-like shape. As mentioned in the be-
ginning different shapes can be worth investigating because
they potentially better resemble the human understanding of
space.
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