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ABSTRACT
In this paper, we propose a new spatio-temporal reconstruc-
tion scheme for the fast reconstruction of dynamic magnetic
resonance imaging (dMRI) data from undersampled k-space
measurements. To utilize both spatial and temporal redun-
dancy in dMRI sequences, our method investigates the poten-
tial benefits of enforcing local spatial sparsity constraints on
the difference to a reference image for each frame and ad-
ditionally exploiting the low-rank property of global spatio-
temporal signal via nuclear norm (NN) minimization. We
present here an iterative algorithm that solves the convex op-
timization problem in an alternating fashion. The proposed
method is tested on in-vivo 3D cardiac MRI and dynamic sus-
ceptibility contrast (DSC)-MRI brain perfusion datasets. In
comparison to two state-of-the-art methods, numerical exper-
iments demonstrate the superior performance of our method
in terms of reconstruction accuracy.

Index Terms— compressed sensing, dynamic MR imag-
ing, low-rank approximation, total variation, nuclear norm

1. INTRODUCTION

Dynamic magnetic resonance imaging (dMRI) is an impor-
tant medical imaging technique that enables the visualization
of anatomical and functional changes of internal body struc-
tures through time, resulting in a spatio-temporal signal. Al-
though MRI is a non-invasive, non-ionizing technology and
provides an unmatched quality in soft tissue contrast, phys-
ical and physiological limitations on scanning speed makes
this an inherently slow process [1]. Besides, there is a trade-
off between the spatial and temporal resolution. The reason
is that acquiring fewer k-space samples than those dictated
by the Nyquist criterion accelerates the process significantly,
but exhibits aliasing artifacts in image space. Fortunately, dy-
namic MR sequences usually provide redundant information

This research has received funding from the European Union’s H2020
Framework Programme (H2020-MSCA-ITN-2014) under grant agreement
no 642685 MacSeNet.

? Corresponding author. E-mail: cagdas.ulas@tum.de

in both spatial and temporal domains, which allows the reduc-
tion of acquisition time by using compressed sensing (CS) ap-
proaches [2, 3]. More recently, CS theory has been applied to
MRI enabling highly accurate reconstructions from fewer k-
space measurements depending on the assumption of sparsity
of the reconstructed data under some transform domain [4].

In recent years, researchers have proposed sophisticated
CS-based reconstruction methods that exploit both spatial
and temporal redundancies of the entire dataset, such as
spatio-temporal total variation [5], dictionary learning [6],
and low-rank approximation and sparsity [5, 7]. In general,
dynamic MR images are temporally correlated due to slow
changes of the same organ(s) through the whole image se-
quence, and such high correlation in the temporal domain has
been successfully investigated based on a sparsity constraint
in the temporal domain for dMRI reconstruction [6]. As an
extension of the conventional spatial total variation (TV), a
new sparsity inducing norm called dynamic total variation
(dTV) [8] has been recently introduced to utilize both spatial
and temporal correlations in online reconstruction.

In this paper, we make an attempt to integrate two fun-
damentally different approaches for CS-based reconstruction:
we enforce local coherences at the pixel-level via dynamic
total variation (dTV) and global regularity in the full spatio-
temporal domain via a nuclear norm (NN) minimization con-
straint. We present the dTV/NN optimization in a joint formal
framework which allows us to rely on an iterative minimiza-
tion algorithm. The joint minimization problem is solved iter-
atively by utilizing an alternating minimization strategy. The
proposed method is validated on two different dynamic MR
sequences with comparisons to state-of-the-art methods.

Our main contributions can be summarized as follows:
We propose a novel reconstruction scheme that iteratively en-
forces not only the local (spatial) regularity in every single
frame but also the global (spatio-temporal) regularity of a full
sequence. To this end, we introduce a reconstruction model
that is jointly using dTV sparsity and nuclear norm penalties,
exploiting both the sparsity of inter-frame differences and the
low-rank structure of the dynamic MR sequences in the full
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spatio-temporal space. Our approach also employs, for the
first time, the dTV sparsity inducing norm in an offline recon-
struction scheme.

2. METHODS

2.1. Problem formulation

Here, we denote X3D as a dMRI sequence to be represented
as a spatio-temporal 3D volume of size P = N ⇥N ⇥T , i.e.,
the images are of size N ⇥ N and T is the total number of
frames in the sequence. Let Xt denote the MR image matrix
at the tth frame, yt is the k-space data for the tth frame and
T = {1, 2, ..., T} is the set of frame number indices. The
main objective here is to reconstruct all Xt’s, t 2 T, from
the collected k-space measurements yt’s. The MR imaging
equation for each frame is formulated as

yt = Ftxt + ⌘ (1)

where Ft denotes the undersampling 2D Fourier opera-
tor for frame t, i.e., Ft = RtF2D, where Rt 2 Rm⇥N ,
m ⌧ N , is the undersampling mask to acquire only a sub-
set ⌦ of k-space, xt denotes the MR image vector formed
by row/column concatenation of Xt and ⌘ 2 Cm is addi-
tive Gaussian noise in k-space. We stack the data for all
the frames of the MR sequence as columns and denote them
as follows: Y = [y1|y2|...|yT ], X = [x1|x2|...|xT ], and
Fu = diag{F1,F2, ..,FT }.

We propose solving the following optimization problem
for the reconstruction of dMRI sequences:

min
X

⌫1kXk⇤ + ⌫2(dTV (X, x̄))

s.t. kFuX � Y k22  ✏
(2)

where ⌫1 and ⌫2 are respective regularization parameters for
the two terms, and kXk⇤ denotes the nuclear norm of X and
is calculated as

kXk⇤ =
X

i

�i(X)

where �i(X) represents the ith singular value of X . For an
image xt with N2 pixels, dTV (X, x̄) can be defined as

dTV (X, x̄) =
X

t2T

N2X

n=1

q
(rx(xt � x̄)n)

2 + (ry(xt � x̄)n)
2

where x̄ is the reference image calculated by averaging all
the frames in the sequence, rx and ry represent the finite-
difference matrices along the x and y dimensions respectively.

Let us introduce new variables zt = xt � x̄ and bt =
yt�Ftx̄, then the problem (2) can be reformulated as follows:

min
X,z

⌫1kXk⇤ + ⌫2
X

t2T
kztkTV

s.t.

(
kFuX � Y k22  ✏

kFtzt � btk22  ✏, 8t

(3)

where z = [z1, ..., zT ] and kztkTV = k[D1zt, D2zt]k2,1,
where D1 and D2 are two N2 ⇥ N2 first order finite differ-
ence matrices in vertical and horizontal directions, and `2,1
norm is the summation of the `2 norm of each row, [a1,a2]
denotes concatenating two vectors a1 and a2 horizontally.

2.2. Image reconstruction algorithm

The optimization problem (3) is convex and we choose to split
it into two simpler subproblems that can be efficiently solved
with greedy algorithms. Alternating the solution of these two
subproblems iteratively will give an approximate solution to
Eq. (3). In this approach, an approximate generic solution is
refined towards a better solution.

- Subproblem 1 : Enforcing local (spatial) regularity

min
zt

1

2
kFtzt � btk22 + ⌫2kztkTV , 8t (4)

For each frame xt in the sequence, we solve the optimiza-
tion problem (4) to reconstruct each frame individually given
a reference image x̄. This guarantees that the sum of TV
norms in Eq. (3) is also minimized. The problem (4) can
be efficiently solved by the fast iteratively reweighted least
squares (FIRLS) algorithm [9] based on preconditioned con-
jugate gradient. This algorithm provides fast convergence and
low computational cost by designing a new preconditioner
which can be accurately approximated using the properties
of the Fourier transform and diagonally dominant structure of
the FH

t Ft matrix, where H denotes the conjugate transpose.
We refer the reader to [9] for more details on FIRLS.

- Subproblem 2 : Enforcing spatio-temporal regularity

min
X

1

2
kFuX � Y k22 + ⌫1kXk⇤ (5)

The spatio-temporal signal representation of a dMRI se-
quence can be arranged as a 2D matrix of X , where each
column represents a vectorized image frame. Due to the
repetitive structure of the dMRI sequence between consecu-
tive frames, and the resulting high correlation between each
column of X , this matrix can be generally approximated to be
low-rank, i.e., X has only a few significant singular values.

By exploiting the low-rank property of X , we can solve a
low-rank matrix recovery problem using convex nuclear norm
as a prior. In this way, we pose low-rank matrix recovery
as a nuclear norm regularized linear least squares problem as
stated in (5). This problem can be solved iteratively through
an accelerated proximal gradient (APG) algorithm [10]. The
algorithm provides a computationally efficient way of recov-
ering low-rank matrices iteratively and consists of two main
steps: a first order update and a proximal projection of the
penalty that is solved via the singular value thresholding op-
erator, i.e., S↵(G) = U diag{(⌃ � ↵)+}VH , where U, ⌃,
V are obtained from singular value decomposition of G.

Our proposed scheme follows an iterative refinement of an



Algorithm 1 NNMdTV reconstruction
1: Input: Y , ⌫1, ⌫2, Fu, IterNo
2: Output: X
3: Initialize: X = X0 = FH

u Y , x̄ = x̄0 = mean(FH
u Y )

4: for i = 1 to IterNo do
5: for each t 2 {1, 2, ..., T} do
6: ẑt  argmin

zt

1
2kFtzt � btk22 + ⌫2kztkTV

7: xt  ẑt + x̄i

8: end for
9: Form updated Xi = [x1|x2|...|xT ]

10: Xi  argmin
X

1
2kFuX � Y k22 + ⌫1kXk⇤

11: x̄i  mean(Xi)
12: end for

initial solution. First, we start with zero-filled sequence and
iteratively improve the previous reconstruction by first solv-
ing the Subproblem 1 for each frame and refining this solution
by solving the Subproblem 2 as a following step. Second,
in each iteration we update the reference image that is used
for solving Subproblem 1, providing a better reference image
given as the input to the problem (4), thus yielding more ac-
curate reconstructions. Throughout the paper we will simply
term our proposed method as NNMdTV. Algorithm 1 sum-
marizes the steps of the NNMdTV algorithm.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

We evaluate our method on two different types of dynamic
MR sequences. We use an in-vivo breath-hold cardiac per-
fusion sequence [8] of size 192 ⇥ 192 ⇥ 40 and a dynamic
susceptibility contrast (DSC)-MRI brain perfusion sequence
of size 128 ⇥ 128 ⇥ 60 with normalized intensities. Both
sequences are artificially corrupted by multiplying its corre-
sponding k-space representation with a binary undersampling
mask and subsequently adding complex Gaussian white noise
with a standard deviation �. A radial sampling mask is used
to simulate undersampling. The same undersampling mask is
used for all frames in our experiments.

3.2. Evaluation

For quantitative evaluation, we adopt the Peak Signal-to-
Noise Ratio (PSNR) as the metric in our experiments. We
compare our method with two state-of-the-art methods: k-t
SLR [5] and dynamic total variation (dTV) [8]. The codes
of dTV and k-t SLR reconstruction methods are downloaded
from each author’s website and for k-t SLR we use the de-
fault parameter settings in the package for all experiments.
For dTV reconstruction, we use the first frame as the refer-
ence frame with 1/4 sampling rate and 1/6 sampling rate for
the remaining frames. The sampling rate for all frames is also

set to 1/6 for NNMdTV and k-t SLR. To ensure fair compar-
ison, the parameters settings used in dTV reconstruction are
also used in our NNMdTV method for all experiments. For
the NNMdTV method, we set ⌫1 = 5 ⇥ 10�8, ⌫2 = 0.001
and IterNo = 5 for both sequences. The noise standard
deviation is set to � = 10�5 for all reconstruction methods.

3.3. Experimental results

In Figs. 1 and 2, we present qualitative results for the DSC
brain and cardiac perfusion datasets respectively. Fig. 1
shows the temporal profile of the DSC brain data along a
fixed row. From the error maps (see Fig. 1(d, f, h)), it is
clearly visible that NNMdTV reconstructs better result com-
pared to other two methods. The red arrows in Fig. 1(h)
show the regions where the reconstruction is improved with
NNMdTV. A frame of the reconstructed cardiac sequence is
shown in Fig. 2. Visible artifacts can clearly be seen on the
images reconstructed by k-t SLR. In contrast, compared to the
dTV, the reconstruction result of NNMdTV is more similar to
the fully-sampled frame, and less noisy (see Fig. 2(h)).

Quantitative results of different methods on two perfusion
datasets are shown in Fig. 3. From the figure, we can clearly
observe that the proposed NNMdTV achieves the highest
PSNR for each iteration and for all frames of the sequences.
The graphs at the top of Fig. 3 mainly validate the fact that it-
eratively updated mean reference image in NNMdTV enables
better reconstruction accuracy.

4. CONCLUSION

In this paper, we have proposed a new CS-based reconstruc-
tion model for dynamic MRI based on the joint minimiza-
tion of local differences in each frame and global differences
in the full spatio-temporal space and developed an iterative
reconstruction algorithm to solve this minimization problem.

a b c d e f g h

Fig. 1. Temporal profile of row 75 in the original DSC brain
dataset (a), its undersampled by 6 zero-filled version (b), and
reconstructions using k-t SLR (c), dTV (e), and NNMdTV (g)
with their respective errors multiplied by 3 (d, f, h).
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Fig. 2. Visual comparison of a fully sampled frame of cardiac
dataset (a), its undersampled by 6 zero-filled version (b), and
reconstructions using k-t SLR (c), dTV (e), and NNMdTV (g)
with their respective errors magnified by 4 (d, f, h).

Experiments on two different perfusion datasets have demon-
strated the effectiveness of our method over the state-of-the-
art. Future work will aim at extending our method with the
use of patch-wise redundancies of spatio-temporal neighbor-
hoods in adjacent frames and making it more robust to noisy
scenarios and large inter-frame motion.
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Fig. 3. PSNR comparisons of different reconstruction meth-
ods. Cardiac dataset (left), DSC brain dataset (right).
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