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Abstract. We propose a robust reconstruction model for dynamic per-
fusion magnetic resonance imaging (MRI) from undersampled k-space
data. Our method is based on a joint penalization of the pixel-wise inco-
herence on temporal differences and patch-wise dissimilarities between
spatio-temporal neighborhoods of perfusion image series. We evaluate
our method on dynamic susceptibility contrast (DSC)-MRI brain perfu-
sion datasets and demonstrate that the proposed reconstruction model
can achieve up to 8-fold acceleration by yielding improved spatial re-
constructions and providing highly accurate matching of perfusion time-
intensity curves, thus leading to more precise quantification of clinically
relevant perfusion parameters over two existing reconstruction methods.

1 Purpose

Perfusion-weighted MR imaging (PWI) is a widely used imaging technique that
allows to measure the hemodynamic parameters of perfusion through the ex-
amination of spatio-temporal changes of signal intensities following the injec-
tion of bolus via exogenous contrast agents. Although PWI techniques have
become widespread clinical tools for the assessment of tumor malignancy, quan-
titative PWI requires high temporal resolution to capture the rapid kinetics
of contrast agent uptake, high spatial resolution to accurately delineate spa-
tial boundaries, and high signal-to-noise ratio (SNR) to enable precise fitting
of quantitative model parameters [6]. With such severe limitations, quantitative
PWI can greatly benefit from dynamic imaging reconstruction techniques [4,1,8].
This work presents a new reconstruction model that is specifically developed for
PWI and is capable of producing high-quality spatial images and reconstructing
the complete temporal signal dynamics, hence enabling accurate estimation of
perfusion parameters from accelerated acquisitions.
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2 Methods

Our reconstruction model integrates two different data-driven constraints for
the reconstruction of PWI: (i) the pixel-wise sparsity constraint on the temporal
differences of the image series, limiting the overall dynamic of the perfusion time
series, (ii) the patch-wise similarity constraint on the spatio-temporal neighbor-
hoods of the whole data, providing smooth image regions with less temporal
blurring when there are high inter-frame intensity changes. The proposed model
can be formulated as,

X̂ = arg min
X

{
1

2
‖FuX − Y ‖22 + λ1G1(X) + λ2G2(X)

}
(1)

where X denotes the perfusion image series to be reconstructed, Y represents
undersampled k-space data, λ1 and λ2 are the regularization parameters. The
first regularizer here penalizes the sum of pixel-wise differences on the temporal
difference images with respect to a reference image, and defined as,

G1(X) =
∑
t∈T

M×N∑
n=1

√
(∇x(xt − x̄)n)

2
+ (∇y(xt − x̄)n)

2
(2)

where x̄ is the reference image calculated by averaging all temporal frames, ∇x

and ∇y are the finite-difference operators along x and y dimensions, respectively.
This regularizer is better adjusted to the variation in time. The second regularizer
penalizes the weighted sum of `2 norm distances between spatio-temporal (3D)
patches of the image series, and this term is specified by,

G2(X) =
∑

(px,py,pt)∈Ω

∑
(qx,qy,qt)∈Np

w(p, q)‖Pp(X3D)− Pq(X3D)‖22 (3)

where Pp(X3D) is a 3D patch centered at voxel p, Np is a 3D search window
around p. The weights w(p, q) are determined using exponentially weighted `2
norm distance. This regularizer can exploit similarities between patch pairs and
enforce smooth solutions by averaging distance-wise close patches. To efficiently
solve the optimization in (1), we adopt an accelerated iterative algorithm based
on a generalized forward-backward splitting framework [5].

We evaluate our method using 5 DSC image series acquired within a PET/MR
study on brain tumor hypoxia. Data were acquired using a 3T Siemens mMR
Biograph scanner with a 2D dynamic single-shot gradient-echo EPI sequence
(TR/TE = 1500/30 ms, flip angle = 70◦, voxel size = 1.8 × 1.8 × 4 mm3, 60
dynamics). A bolus of 15 ml Gd-DTPA (Magnevist, 0.5 mmol/ml) was injected
3 minutes after an initial bolus of 7.5 ml with 4 ml/s injection rate. We com-
pare our method with two reconstruction methods: SparseSENSE with multiple
constraints [3] and k-t RPCA [7]. For fair comparison, we empirically fine-tuned
the optimal regularization parameters for each method. Undersampling was ret-
rospectively done via variable density Poisson-disc sampling [9]. A tracer kinetic
model [2] based on intravascular indicator-dilution theory was used for estimat-
ing perfusion parameters. Concordance correlation coefficients (CCCs) were used
to quantitatively compare the perfusion maps.
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Fig. 1. Spatial reconstructions of a single frame and time-intensity curves (TIC) aver-
aged over the region of interests (ROIs) of Subject 1 (A) and Subject 2 (B) obtained
with an 8-fold acceleration factor. Subfigure (A) also displays an exemplary under-
sampling mask in the bottom-left figure. For each frame, close-up views of two regions
(yellow and green square) are also displayed. Subfigure (B) shows the TICs obtained
from both non-tumor (nt) and tumor (tmr) region. Our method achieves the most ac-
curate estimation of peaks and temporal patterns of perfusion signal, whereas spatial
reconstructions are quite close to those obtained by SparseSENSE.
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Fig. 2. Perfusion parameter maps (CBF, CBV, MTT) of Subject 3 obtained by different
methods with an 8-fold acceleration. The tumor region is marked by a white arrow in
the Ground Truth CBF image. The proposed method results in perfusion maps where
most of the structures are preserved and appear sharper compared to SparseSENSE,
but some finer details are missing due to undersampling. The kt-RPCA reconstruction
method produces highly inaccurate perfusion maps as expected by the mismatch of
TICs shown in Figure 1. This method does not explicitly exploit variation in temporal
domain, which makes it inadequate for quantitative PWI.

3 Results

Figure 1 displays the results of both spatial reconstructions and estimated perfu-
sion time-intensity curves (TICs) of all methods obtained from two different sub-
jects with an 8-fold acceleration. The proposed method yields the most accurate
matching of peaks and temporal pattern of perfusion signal and produces accept-
able spatial reconstructions together with SparseSENSE. Figure 2 demonstrates
resulting perfusion maps of different reconstruction methods with an 8-fold ac-
celeration. Our method produces maps that are closer to the GT maps obtained
by fully sampled data and provide sharper edges compared to SparseSENSE. The
inefficiency of kt-RPCA for quantitative PWI is also demonstrated in Figure 2.
Figure 3 shows how the quality of perfusion maps of a subject decreases depend-
ing on increasing acceleration rates, and this evidence is quantitatively assessed
and illustrated for another subject in Figure 4. Figure 5 reports the average
CCCs of CBF and CBV parameters obtained from all methods with increasing
acceleration rates. Our method yields the best CCCs up to 8-fold acceleration
and shows similar performance like SparseSENSE at further accelerations.
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Fig. 3. Perfusion parameter maps (CBF, CBV, MTT) of Subject 1 resulting from
our proposed reconstruction method with respect to different acceleration factors and
Ground Truth (GT) perfusion maps for comparison. The estimated perfusion maps
appear highly accurate up to 8-fold acceleration but the maps start to deteriorate and
show over-smooth regions at higher acceleration rates..

4 Discussion

This study presents an efficient reconstruction method for quantitative PWI,
which jointly exploits the temporal variations in pixel-wise and patch-wise level.
The processing time of our method on a single-slice DSC-MRI dataset is around
4-5 minutes (on a Intel desktop). The maximum acceleration achieved with our
method could be further increased with the use of a high-spatial resolution data.
However, high-spatial resolution is not clinically realistic for PWI because a high
temporal resolution is necessary to accurately track the kinetics of the tracer.
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Fig. 4. Bland-Altman plots and 95% confidence intervals within two red lines for CBF
(top) and CBV (bottom) parameters of Subject 4 depending on different acceleration
factors, resulting from our proposed reconstruction. The bias and variance of the dif-
ference between estimated and ground truth parameter values generally become larger
when the acceleration rate increases. The estimated concordance correlation coefficients
(CCCs) are displayed at the top-left corner of each plot. CCCs decrease with increasing
acceleration, which coincides with the changes of bias and variance.

Fig. 5. Average concordance correlation coefficients (CCCs) of two perfusion parame-
ters (CBF, CBV) obtained from 5 subjects data with respect to increased acceleration
rates. The values in brackets refer to CBF and CBV, respectively. The best values for
each acceleration rate are highlighted in bold. Our method yields the best CCCs up
to 8-fold acceleration and result in very similar quantitative values like SparseSENSE
at 12-fold and 16-fold accelerations. The kt-RPCA method performs even worse than
Zero-filled reconstruction since it leads to over-smoothing of the temporal perfusion
signal, which can be easily observed in Figure 1.
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