
UNGER, BENHIMANE, WAHL, NAVAB: EFFICIENT DISPARITY COMPUTATION 1

Efficient Disparity Computation without
Maximum Disparity for Real-Time Stereo
Vision

Christian Unger1

http://campar.in.tum.de/Main/ChristianUnger

Selim Benhimane3

http://www.vision.inst.ac.uk/~pp

Eric Wahl1

Eric\.Wahl@BMW.de

Nassir Navab2

http://campar.in.tum.de/Main/NassirNavab

1 BMW Group
Munich, Germany

2 Chair for Computer Aided Medical
Procedures
Technische Universität München
Garching, Germany

3 Metaio GmbH
Munich, Germany

Abstract

In order to improve the performance of correlation-based disparity computation of
stereo vision algorithms, standard methods need to choose in advance the value of the
maximum disparity (MD). This value corresponds to the maximum displacement of the
projection of a physical point expected between the two images. It generally depends
on the motion model, the camera intrinsic parameters and on the depths of the observed
scene.

In this paper, we show that there is no optimal MD value that minimizes the matching
errors in all image regions simultaneously and we propose a novel approach of the dis-
parity computation that does not rely on any a priori MD. Two variants of this approach
will be presented. When compared to traditional correlation-based methods, we show
that our approach improves not only the accuracy of the results but also the efficiency of
the algorithm. A local energy minimization is also proposed for fast refinement of the
results.

An extensive comparative study with ground truth is carried out on classical stereo
images and the results show that the proposed method clearly gives more accurate re-
sults and it is two times faster than the fastest possible implementation of traditional
correlation-based methods.

1 Introduction
Dense stereo matching in real-time is important for many fields of applications that require an
on-line dense three-dimensional representation of the observed scene [8, 22]. Also the pro-
cessing of large images or long image sequences needs computationally efficient algorithms
[10]. However, for automotive and other mobile applications, the hardware requirements
must be as low as possible. This usually restricts the available processing power as well as
the number of cameras.

c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 UNGER, BENHIMANE, WAHL, NAVAB: EFFICIENT DISPARITY COMPUTATION

15%

20%

25%

30%

35%

40%

45%

28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

Maximum Disparity

In
co

rr
ec

t 
E

st
im

a
te

d
 D

is
p

a
ri

ti
es

 [
%

]

all

nonocc

textrls

discnt

Figure 1: Curves plotting the percentage of incorrect disparities estimated with classical
methods on the different image regions of the Teddy dataset as a function of the maximum
disparity value used. The curves show that the maximum disparity needs to be set according
to the region type of the image. When considering all pixels (all), the optimal value of
the maximum disparity is equal to 43. The same value is optimal when considering non
occluded regions (nonocc) and regions close to discontinuities (discnt). However, this value
is not optimal when considering textureless regions (textrls) where the value 37 provides a
lower percentage of wrong disparities.

Typical commercial implementations of such systems use one or two cameras together
with a computationally feasible algorithm to compute depth information [8, 22]. If two cam-
eras are used, local methods based on correlation can be implemented very efficiently [12].
On dedicated hardware, methods such as local correlation, dynamic programming, semi-
global matching or even belief propagation can be implemented for real-time application
[6, 8, 18, 24]. However, optimized local methods are among the fastest ways in order to per-
form dense matching solely on general purpose CPUs without special hardware. In this case,
decisions must be made upon the values of some parameters, particularly for the maximum
disparity (MD).

We show that the choice for a fixed MD influences the quality of the depth-map: setting
it too high introduces false matches and setting it too low will produce gross errors at close
objects. But also a seemingly ideal value will not result in the best possible result. The
relationship between MD and matching errors is shown in Fig. 1 for the standard dataset
Teddy1. The figure depicts that there is no optimal fixed MD setting that minimizes all
individual errors at once. For example, if the value 37 is used the errors of textureless regions
are minimized but this value will cause higher errors in the other regions. The optimum may
be obtained if the MD is set to 37 in textureless regions and to 43 in the rest of the image.
In general, the MD should be variable and as close as possible to the true disparity since a
higher MD only increases the possibility of false matches, especially in regions with weak
texture.

In some cases, the choice of MD is complicated. Generally, the disparity is proportional
to the distance between camera centers and the focal length and it is inverse proportional
to the depth of the point. Especially at motion-stereo [15], a choice for a fixed MD either
restricts the practical applicability (the minimally allowed depth of the points is a function
of the camera interframe displacement) or results in an increased number of errors and an
inefficient use of processing power (if the MD is set too high).

We propose a novel method for efficient dense stereo matching without the need of

1http://vision.middlebury.edu/stereo/
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the choice of MD, which is based on local correlation. Moreover, we present a fast post-
processing technique that is based on energy minimization and is suited to refine the obtained
results.

We successfully reduce the matching errors compared to traditional local correlation
since our approach uses locally a minimal MD. Furthermore, our approach is simple to im-
plement and the iterative search technique might be integrated into other stereo matching
algorithms as well. Finally, our proposal is even faster than the fastest possible implementa-
tion of local correlation with integral images [7, 23]. That is because we significantly reduce
the number of required correlations which ultimately saves processing time.

1.1 Related Work
A lot of work has been done in the field of dense stereo matching. Traditional local correlation-
based methods [8] can be implemented very efficiently [7, 17, 23]. Several techniques, for
example [12], have been introduced to improve the quality of these methods but are some-
times quite time consuming [26].

In Graph Cuts [5, 14] and Belief Propagation [9, 13, 21] stereo matching is formu-
lated as an energy minimization problem, where a function is computed that minimizes a
global energy functional. Both methods produce really good results, but are relatively slow.
Dynamic Programming [20] and Scanline Optimization [16, 19] reduce the computational
effort by processing individual scanlines. However, this may lead to streaking effects and
most formulations of dynamic programming require an ordering constraint to be fulfilled
[4]. Another efficient and promising idea is Semi-Global Matching [10, 11, 18], where a
minimum of a global energy functional is estimated using local computations.

Recently, region-based methods [2, 3, 25] have received great success. These methods
first segment the input image and then estimate the correspondence between regions rather
than pixels.

Most of those methods can be implemented very efficiently, and can even be used in
real-time applications if they are running on dedicated hardware [6, 8, 18, 24]. They provide
results with a very high quality, but need to set the MD in advance to preserve the real-time
performance. However, we will concentrate on approaches that can be used for real-time
applications with no dedicated hardware and without a priori knowledge about the MD.

2 Traditional Disparity Computation
In traditional correlation-based methods, to each pixel p = (x,y)T , the disparity associated
with the minimum cost is assigned:

D(p) = arg min
0≤d≤dmax

E(p,d) (1)

where D is the depth-map, dmax is the MD and E(p,d) is the dissimilarity (lower values
indicate higher similarity). We consider E as a matching cost summed over a support region
around the pixel:

E(p,d) =
w

∑
u=−w

w

∑
v=−w

C0
(
p+(u,v)T ,d

)
(2)

C0(q,d) is for example the squared intensity difference (SD) or the absolute intensity dif-
ference (AD). For some separable formulations of E (especially for the sum of absolute in-
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Figure 2: Depth-maps computed with wrong values for MD using the Tsukuba dataset (see
also Fig. 4). One depth-map with dmax = 6 (a) and four thresholded depth-maps with dmax ∈
{6,7,8,10}, thresholded using dmax (b-e). In general, C n is computed from Dn.

tensity differences (SAD)), its values can be computed very efficiently using integral images
[23].

3 Disparity Computation without MD
We introduce a novel algorithm for disparity computation, which does not require a before-
hand specified MD. Our proposal is particularly suited for usage in real-time correlation-
based stereo methods. We consider that pairs of images are rectified, so that corresponding
epipolar lines are horizontal and that pixel coordinates are integer valued – i.e. (x+1,y) and
(x,y+1) are neighbouring pixels of (x,y).

3.1 Basic Idea
We depict our very initial ideas in the hope that they are of further scientific use. However,
this subsection is not mandatory for understanding the rest of the paper. Our early idea
originates from thresholded depth-maps computed with intentionally wrong values for MD
(see Fig. 2): we computed depth-maps using different values for the MD dmax using local
correlation and extracted all pixels whose disparity is equal to dmax (a “thresholded depth-
map”). Similar to Fig. 2 we observed that there are “regions” being present among many
thresholded instances. In our first analyses we focussed on tracking these regions: We first
performed stereo correspondence with some small MD d0

max. Then we extracted the set
of pixels C whose disparity is equal to the MD d0

max. By assuming that the set of pixels
with a disparity greater than d0

max is close to C , we were able to formulate an approximate
criterion to compute pixels that may have disparity d0

max + 1. We continued this process by
incrementing the MD dn+1

max = dn
max +1 iteratively until no pixel was assigned the current MD.

This formulation, although able to greatly reduce the number of required matching cost
computations, is not able to compete with the traditional method in terms of execution time,
due to an inefficient conceptual layout: according to [17], the innermost loop should run over
the domain of disparity values and not over the domain of coordinates. Fortunately, we were
able to derive a superior approach which is described below.

3.2 Algorithm Description
Instead of determining disparities by a brute-force search within the whole disparity domain,
we focus on an iterative algorithm that stops at the right value. We perform two operations
at each pixel: a minimization followed by a propagation-step. The minimization basically
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follows a line search strategy and allows us to find the “next” local minimum of the matching
cost function. Since matching costs have many local minima we introduce a propagation-
step in order to find further, more optimal minima using disparity values of neighbouring
pixels. We embedded these steps into a hierarchical setup, which will also be described in
detail.

Minimization For every pixel p, we determine an intermediate optimal disparity:

D(p) 7→ min
{

d |d ∈ N0, d ≥D(p), E(p,d +1) >= E(p,d)
}

(3)

Using this formula, we “step down the hill” and thus search for the next optimal disparity by
iteratively incrementing the current disparity.

Propagation As the minimization-step will only return the first (and possibly not opti-
mal) minimum of the dissimilarity function (see Fig. 3(a)), we additionally propagate the
disparities of adjacent pixels:

D(p) 7→ arg min
d∈N(p)

E(p,d) (4)

with the neighbouring disparities N(p). N(p) should at least contain the disparities of the
left and right neighbours and must fulfill D(p) ∈ N(p). Disparity values will be propagated
through their local neighbourhood in this step. This is the reason why the minimization- and
propagation-steps should be run alternately. In practice, only a few iterations are required
(2-4).

d
1

(a) Minimiza-
tion (Iteration
1)

d
2

(b) Propagation
(Iteration 1)

d
3

(c) Minimiza-
tion (Iteration
2)

Figure 3: An example for a dissimilarity function (vertical axis) over disparity (horizontal
axis). (a) Only the first minimum d1 of the function is found by minimization. (b) Then,
the adjacent disparity d2 is propagated since it further reduces the dissimilarity. (c) Another
minimization finds the optimal minimum d3.

Hierarchical Setup A hierarchical implementation stabilizes execution times, because dis-
parities can be found with an almost constant effort. However, it must be noted that a hierar-
chical setup may obey the drawback of loosing thin foreground objects and that errors at low
resolutions may have severe impacts at higher resolutions. To minimize artifacts from false
matches at low resolutions, we apply the hierarchical approach only to the horizontal dimen-
sion. Basically, at every resolution, the depth-map is initialized with the scaled up disparities
from the previous resolution (in the beginning, the depth-map is initialized with zeros). For
our algorithm, it is important to scale up disparities properly. Since the search direction of
the minimization-step is in positive disparity orientation, it is beneficial to underestimate the
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actual disparity. Let σ be the scale factor, for example σ = 2. For scaling up, we use the
following formula:

D ′(σx,y) = σD(x,y)−σ +1 (5)
D ′(σx+ k,y) = σ min(D(x,y),D(x+1,y))−σ +1 with k = 1, . . . ,σ −1 (6)

To summarize, the minimization- and the propagation-step is applied to every pixel of
the image/scanline. This process is repeated until the disparities reach a fixed point. Then,
the whole procedure is applied to the next resolution using the scaled up disparities.

4 Local Energy Minimization for Refinement
Local correlation-based methods produce errors in regions near depth discontinuities [12, 23]
due to the assumption of constant disparity within the support region. This assumption
is violated at object borders. There are techniques to reduce such errors but they do not
eliminate them completely and are sometimes hindering for real-time application, in terms
of execution time. The most effective remedy is to abandon matching windows, and to use
pixelwise matching. However, to treat instabilities caused by pixelwise matching [1], many
global methods minimize an energy functional, such as

E(D) = ED(D)+λES(D) (7)

where ED measures how well the depth-map D matches with the input images and ES is a so
called smoothness term, penalizing disparity variations [19].

Based on the assumption that the depth-map of a local method is a rough estimate of the
ideal solution, we focus on enhancing a previously computed depth-map. To maximize the
efficiency, we perform a winner-take-all optimization at every pixel (which is different to
scanline optimization [19]).

The general idea is to propagate disparities through their neighbourhood. This way, the
computational scheme is similar to the approach presented in section 3.2.

Algorithm For every pixel p = (x,y)T , we determine the best matching disparity value:

D(p) 7→ arg min
d∈N(p)

C(p,d) (8)

with the neighbouring disparities N(p) as defined in section 3.2. Our pixelwise matching
cost is defined as:

C(p,d) := C0
(
p,d

)
+ τ(p)ρ(d−D(p− rx))+ τ(p)ρ(d−D(p− ry)) (9)

with

ρ(t) :=


0 t = 0
PL

∣∣ t
∣∣ = 1

PH otherwise
τ(p) :=

{
γ ∆I (p) > ΘI

1 otherwise
(10)

C0 is the (possibly truncated) absolute intensity difference or Birchfield and Tomasi’s sam-
pling invariant dissimilarity [1]. The parameters rx and ry point to the previously processed
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pixel/scanline (for example, if the image scanlines are processed from bottom to top, ry may
be set to (0,−1)). In (9) we use only two neighbours in order to avoid that depth discon-
tinuities are penalized twice. The penalties PL and PH should be chosen such that PL < PH
to improve the recovery of slanted surfaces. The function τ helps to align discontinuities to
intensity edges if 0 < γ < 1 because it lowers the penalty if the intensity gradient ∆I is high.

Through rx and ry the solution depends on the ordering in which pixels are processed.
This also affects the possibilities how object borders may be adapted. In practice, we process
every scanline in both directions, such that rx ∈ {(1,0)T ,(−1,0)T} (to support the propaga-
tion in both directions equally).

Occlusion Detection On top we try to improve disparities near depth discontinuities. Gen-
erally, there are occluded pixels in the left image, if there is a positive disparity gradient in
positive x-direction. The number of occluded pixels is given by the difference of the two
disparities. We implement this efficiently in a relatively simple way using an array. At every
pixel p = (x,y) we mark the entry at index x−D(p). But, if the entry has already been
marked, the pixel is considered occluded.

5 Recommendations for an Efficient Implementation
In accordance to [17], we optimize scanlines individually to benefit from caching in CPUs.

We achieved good running times by remembering the maximally tested disparity for
every pixel, in order to reduce redundant computations. In this way, we discard disparities
smaller than the maximally tested disparity.

Another important optimization is the use of SIMD2 instructions (in all methods: the
traditional local correlation-based method and our proposals). However, to keep the code
maintainable, we optimized the dissimilarity measure only (in our case: sum of absolute
differences over an 8×8 window). We used so called compiler intrinsics to avoid cryptic
assembler instructions.

6 Results
We chose to evaluate our disparity computation algorithm using well known stereo images
with ground truth. To ensure a fair comparison, we decided to not improve the methods
by e.g. multiple or shiftable windows and used a simple matching cost. Our goal was to
evaluate the effects of a different disparity computation algorithm. We also show that stereo
matching with no MD is possible without compromising quality or speed. Accordingly, we
understand our algorithm not as a standalone method, but as a way to speed up existing real-
time implementations. Furthermore, we applied our local energy minimization on depth-
maps of our method as well as on those of the traditional method.

6.1 Stereo Images with Ground Truth
Fig. 4 presents a qualitative comparison using stereo image pairs with ground truth [19].
Obviously, some of the errors made by the traditional disparity computation method are
avoided by our algorithm (for example, near the camera in the background), because our

2Single Instruction, Multiple Data
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Method Tsukuba Venus Teddy Cones

Traditional correlation-based 11.17 14.16 25.96 22.50
Traditional + Refinement 5.09 4.37 19.61 18.18
Traditional + Refinement with Occlusion Detection 3.71 4.02 18.84 17.50
Our Algorithm 9.11 11.65 22.60 22.39
Our Algorithm + Refinement 4.99 4.73 18.43 17.86
Our Algorithm + Refinement with Occlusion Detection 3.93 4.54 17.00 17.15
Hirschmüller [12] 4.25 1.53 – –
Graph-Cuts (gray scale) 4.43 4.53 25.93 17.76
Graph-Cuts (color) 4.13 2.66 17.65 15.97

Table 1: The errors of the methods (percentage of disparities that differ by more than 1; we
ignore a border of 18 pixels) Correlation with our efficient disparity computation algorithm
in conjunction with our refinement (local energy minimization with occlusion detection)
comes close to the graph-cuts method.

Method Tsukuba Venus Teddy Cones

Traditional Correlation 32 52 98 98
Our Algorithm 31 44 47 48
Our Algorithm + Refinement with Occlusion Detection 46 74 73 85
Graph-Cuts > 1000 > 1000 > 1000 > 1000

Table 2: Execution Times at standard data sets in milliseconds. Our algorithm is up to twice
as fast as the fastest possible implementation of the traditional disparity computation.

algorithm manages to stop searching earlier than the traditional brute-force search. The
local energy minimization appears to improve depth-maps independent from the actual stereo
method and is therefore well suited as a robust post-processor.

In the quantitative evaluation (see Tab. 1), we used a border of 18 pixels. For Graph-
Cuts and our methods we used constant parameters across all four images (for Graph-Cuts
and the traditional method, the MD was chosen optimally for every image pair). We ap-
plied the Graph-Cuts method to color and gray scale images. The numbers depict, that
our disparity compuation algorithm is clearly better than the traditional brute-force method.
Post-processing depth-maps of local correlation-based methods with our local energy min-
imization results in a quality close to Graph-Cuts, while being much more efficient (see
Tab. 6.2).

6.2 Execution Times

The execution times, see Tab. 6.2, are an evidence for the efficiency of our new algorithm.
Naturally, to some degree the computational effort of our approach depends on the image
content: the computational effort spent can be directly estimated from the final depth-map.
In practice, the additional overhead of our refinement routine is about 50% (compared to our
method). Ideally, the time saved by efficient disparity computation may be invested in fast
refinement. Interestingly, the additional overhead of enabled occlusion detection was below
1 millisecond.

All execution times were obtained using 32-bit single-threaded executables (compiled
using MSVC90) on an Intel dual-core machine with 2.67 GHz.
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(a) Left image (b) True disparities (c) Traditional Correla-
tion

(d) Our Disparity Com-
putation Algorithm

(e) Traditional + Refine-
ment

(f) Bad Pixels of (e) (g) Our Algorithm + Re-
finement

(h) Bad Pixels of (g)

(i) Left image (j) True disparities (k) Our Disparity Com-
putation Algorithm

(l) Our Algorithm + Re-
finement

(m) Left image (n) True disparities (o) Our Disparity Com-
putation Algorithm

(p) Our Algorithm + Re-
finement

(q) Left image (r) True disparities (s) Our Disparity Com-
putation Algorithm

(t) Our Algorithm + Re-
finement

Figure 4: Comparison of the methods. Our refinement method was implemented with the
described occlusion detection.
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7 Conclusion
In this paper we show that the value of the maximum disparity (MD) has a great impact on
the solution in local methods. In general, the MD should be locally as close as possible to
the true disparity.

With our novel algorithm, disparities may be computed without specifying a MD. Rather
than performing a brute-force search, we iteratively perform minimization- and propagation-
steps. We not only circumvent the difficult task of determining the optimal search range for
the disparity computation, but also present a solution that is applicable in real-time without
special hardware. Unlike existing techniques, we do not need any information about the MD
which makes our method extremely useful in motion-stereo setups.

Furthermore, we propose a local energy minimization technique that is suitable for fast
refinement of the results. In the comparison, we show that the combination of our methods
results in a quality close to Graph-Cuts and is even real-time.

In the future, we plan to explore further improvements of the local energy minimiza-
tion method. Another interesting venue to explore is to integrate our disparity computation
method into other stereo approaches.

Acknowledgements
We would like to thank Daniel Scharstein and Richard Szeliski for providing stereo images
with ground truth data.

References
[1] Stanley T. Birchfield and Carlo Tomasi. Depth discontinuities by pixel-to-pixel stereo.

In ICCV, pages 1073–1080, 1998.

[2] Stanley T. Birchfield, Braga Natarajan, and Carlo Tomasi. Correspondence as energy-
based segmentation. Image Vision Comput., 25(8):1329–1340, 2007.

[3] M. Bleyer and M. Gelautz. A layered stereo matching algorithm using image seg-
mentation and global visibility constraints. Photogrammetry and Remote Sensing, 59:
128–150, 2005.

[4] M. Bleyer and M. Gelautz. Simple but effective tree structures for dynamic
programming-based stereo matching. In International Conference on Computer Vision
Theory and Applications (VISAPP), 2008.

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization
via graph cuts. In ICCV, pages 377–384, 1999.

[6] Alan Brunton, Chang Shu, and Gerhard Roth. Belief propagation on the gpu for stereo
vision. In Canadian Conference on Computer and Robot Vision, pages 76–81, 2006.

[7] L. Di Stefano, M. Marchionni, and S. Mattoccia. A fast area-based stereo matching
algorithm. Image and Vision Computing, 22(12):983–1005, Oct 2004.



UNGER, BENHIMANE, WAHL, NAVAB: EFFICIENT DISPARITY COMPUTATION 11

[8] Olivier Faugeras, B. Hotz, Hervé Mathieu, T. Viéville, Zhengyou Zhang, Pascal Fua,
Eric Théron, Laurent Moll, Gérard Berry, Jean Vuillemin, Patrice Bertin, and Catherine
Proy. Real time correlation-based stereo: algorithm, implementations and applications.
Technical Report RR-2013, INRIA, 1993.

[9] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early
vision. IJCV, 70(1):41–54, 2006.

[10] Heiko Hirschmuller. Accurate and efficient stereo processing by semi-global matching
and mutual information. In CVPR, pages 807–814, 2005.

[11] Heiko Hirschmuller. Stereo vision in structured environments by consistent semi-global
matching. In CVPR, pages 2386–2393, 2006.

[12] Heiko Hirschmüller, Peter R. Innocent, and Jon Garibaldi. Real-time correlation-based
stereo vision with reduced border errors. IJCV, 47(1-3):229–246, 2002.

[13] Andreas Klaus, Mario Sormann, and Konrad Karner. Segment-based stereo matching
using belief propagation and a self-adapting dissimilarity measure. In ICPR, pages
15–18, 2006.

[14] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence with oc-
clusions using graph cuts. In ICCV, pages 508–515, 2001.

[15] Ye Lu, J. Z. Zhang, Q. M. J. Wu, and Ze-Nian Li. A survey of motion-parallax-based
3-d reconstruction algorithms. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., 34(4):
532–548, 2004.

[16] S. Mattoccia, F. Tombari, and L. Di Stefano. Stereo vision enabling precise border
localization within a scanline optimization framework. In ACCV, 2007.

[17] Karsten Mühlmann, Dennis Maier, Jürgen Hesser, and Reinhard Männer. Calculating
dense disparity maps from color stereo images, an efficient implementation. IJCV, 47
(1-3):79–88, 2002.

[18] Ilya D. Rosenberg, Philip L. Davidson, Casey M. R. Muller, and Jefferson Y. Han. Real-
time stereo vision using semi-global matching on programmable graphics hardware. In
SIGGRAPH 2006 Sketches, 2006.

[19] Daniel Scharstein, Richard Szeliski, and Ramin Zabih. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV, 47:7–42, 2002.

[20] Christoph Strecha, Rik Fransens, and Luc Van Gool. Combined depth and outlier
estimation in multi-view stereo. In CVPR, pages 2394–2401, 2006.

[21] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief
propagation. IEEE Trans. PAMI, 25(7):787–800, 2003.

[22] W. van der Mark and D. M. Gavrila. Real-time dense stereo for intelligent vehicles.
IEEE Trans. Intell. Transp. Syst., 7(1):38–50, 2006.

[23] Olga Veksler. Fast variable window for stereo correspondence using integral images.
In CVPR, pages 556–561, 2003.



12 UNGER, BENHIMANE, WAHL, NAVAB: EFFICIENT DISPARITY COMPUTATION

[24] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and David Nister. High-quality
real-time stereo using adaptive cost aggregation and dynamic programming. In Proc.
Int. Symp. 3D Data Proc., Vis., and Transm. (3DPVT), pages 798–805, 2006.

[25] Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative
optimization. In CVPR, pages 1–8, 2008.

[26] Kuk-Jin Yoon and In-So Kweon. Locally adaptive support-weight approach for visual
correspondence search. In CVPR, pages 924–931, 2005.


