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Abstract—In vehicular applications based on motion-stereo
using monocular side-looking cameras, pairs of images must
usually be rectified very well, to allow the application of dense
stereo methods. But also long-term installations of stereo rigs in
vehicles require approaches that cope with the decalibration of
the cameras. The need for such methods is further underlined
by the fact that offline camera calibration is a costly and time-
consuming procedure at vehicle production sites.

In this paper we propose an approach for dense stereo match-
ing that overcomes issues arising from inaccurately rectified
images. For this, we significantly increase the search range
for correspondences, but still preserve a high efficiency of the
method to allow operation on platforms with highly limited
processing resources.

We demonstrate the performance of our ideas quantitatively
using well known stereo datasets and qualitatively using real
video sequences of a motion-stereo application.

I. INTRODUCTION

Modern vehicles are often equipped with many differ-
ent cameras. Famous examples include a front camera for
advanced driver assistance and a rear camera for parking
assistance.Lesser known examples are side looking cameras,
which are usually integrated into the side mirrors or into the
front bumper and help the driver at parking maneuvers or to
observe crossing traffic (see Fig. 1).

The background of this paper are applications which are
based on real-time motion-stereo using side-looking monoc-
ular cameras, for example [1], [2], [3]. In this case, we
estimate depth by processing consecutive video frames using
dense stereo methods. From these depth maps a reconstruc-
tion is computed, so that several applications can be realized,
for example a parking assistant [2]. Since stereo matching is
very demanding in terms of processing power, only highly
efficient real-time methods are relevant.

In practice, an accurate rectification is of eminent impor-
tance when applying dense stereo methods to pairs of images.
The reason for this lies in practical considerations to max-
imize the efficiency of stereo methods, where rectification
usually transforms the epipolar geometry of both images in
a way, such that epipolar lines are horizontal and matched
up. This means, that after rectification the y-coordinate of
corresponding image pixels is always constant and that the
search-space for stereo-processing is heavily constrained.
Therefore, an inaccurate rectification directly affects stereo
matching. It is known that even slight inaccuracies of the
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epipolar geometry may result in significant degradation of
the stereo matching performance.

In motion-stereo applications, the rectification of two
consecutive camera frames must be estimated from available
vehicle sensors, for example, from odometry using wheels
and the levels of the dampers. However, practical experience
shows that the accuracy of both odometry and damper-levels
does not suffice for an accurate rectification, due to slippery
or uneven ground.

Furthermore, future vehicles may be equipped with binoc-
ular front cameras, which implies the use of stereo algorithms
in vehicles. For long-term installations of stereo rigs in
vehicles, an adaption to decalibration issues is preferable,
since there is very limited experience with vehicular stereo
rigs over very long periods of time (e.g. 10 years). In these
cases, the stability of the mounting concept (with respect
to deterioration or deformation) and termal influences on
material might have a huge impact on the accuracy of
rectification. Moreover, camera calibration is costly, time-
consuming and critical for the quality of serial production
vehicles. From this point of view, methods are preferable
that do not require an exhaustive calibration procedure, but
work well with rough, approximate settings, that might, for
example, be computed from CAD models.

In this paper we propose an algorithm to overcome issues
arising from inaccurate rectification. We assume that the pair
of images is approximately rectified and that the epipolar
deviation of corresponding image points (i.e. distance from
the epipolar line) is smaller than a predefined value. In our
algorithm, we significantly increase the search range for
correspondences and, although based on window-based block
matching, still maintain a surprisingly high efficiency.

For this, we generalize and extend the concepts of the
efficient disparity computation approach given in [4], which
was originally designed for highly efficient disparity com-
putation using accurately rectified image pairs. There, stereo
matching is performed iteratively by alternating minimization
and propagation phases at every pixel.

In the rest of the paper, we will first review related work,
then present our method and finally show an exhaustive
experimental evaluation.

II. RELATED WORK

Binocular stereo matching is a well explored direction
(51, (6], [71, [8], [9], [10], [11], [12], [13], [14], but to
our knowledge, all of these methods require an accurate
rectification of the images. However, relaxing the epipolar
constraint immediately leads to optical flow methods [15],
[16]. While real-time GPU implementations exist, most of
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Fig. 1.
via motion-stereo.

the approaches that compute a dense flow field on the
CPU are far from real-time. Further, many methods are
designed to recover small displacements and do not directly
address the problem of “small epipolar deviations”. In this
paper, we focus on an efficient method for standard CPUs
that directly addresses the problem of large horizontal and
small vertical displacements. In particular, our method is an
efficient formulation using block matching and is therefore
different from differential optical flow methods like [16].

While also reconstruction algorithms [17], [18], [19], [20],
[21], [22], [23] rely on some knowledge about camera
positions, the calibration may be done by estimating the
epipolar geometry from a sparse set of feature points [24],
[25], [26] using epipolar or trilinear constraints. However,
the extraction of feature points, their matching and the
projective warping of the pair of images for rectification
is also relatively time-consuming and only works well if
enough correctly matched feature points are available. In
practice, these interest points are a strong limitation for our
real-time motion-stereo application, since the presence of
them cannot always be ensured.

In other applications, online calibration of stereo rigs is
applied [27]. But also in these works, usually a set of sparse
correspondences is required to determine or refine calibration
parameters. In this work we focus on determining dense
correspondences directly.

IIT. METHOD

We assume that the positions of the two cameras are
estimated inaccurately using odometry information and that
the two camera images are rectified based on these estimated
positions. The unknown imprecision of the assumed camera
locations results then in a distortion of the epipolar geometry
of the rectified camera images. Therefore, correspondences
will not lie on the estimated epipolar lines, and have to be
searched within a certain corridor near the epipolar line. In
the following, we call the distance from the epipolar line the
epipolar deviation.

A. Stereo Matching with Epipolar Deviations

Our approach generalizes and extends the concepts pro-
posed in [4].

1) Definitions: For every pixel location p = (z,y)" we
search for a displacement vector d = (d,v)?, where d is
the displacement in x-direction (i.e. the disparity) and v the
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displacement in y-direction. For the dissimilarity of image
pixels, we use a matching cost summed over a support
region:

E(p,d)= > > C(p+(uv)", p+d+(u,v)") (1)
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where C(pr,pr) is a cost function, for example the ab-
solute intensity difference (AD) of the pixel py of the left
image and the pixel pgr of the right image. All these two-
dimensional displacement vectors are stored in a disparity
map D(p).

2) Hierarchical Iteration: We run our algorithm in multi-
ple resolutions, starting at a low, coarse resolution. In every
resolution, we perform a minimization procedure, which
computes an estimated disparity map. The use of different
image scales reduces ambiguity in textureless regions and
allows the recovery of large displacement vectors. Even
though it is disadvantageous for thin foreground objects, the
advantages outweigh the drawbacks in practice.

The image pyramid is created by halfing the image di-
mensions. At every resolution, the minimization uses the
upscaled disparity map from the previous, lower resolution
as a starting point.

DD (22 4,2y + j) = 2D (2, y) )

with 4,57 € {0,1}. In the very beginning, we initialize all
displacements to (0,0)7.

3) Optimization Procedure: One of the central ideas of
the method is that at every pixel location, a steepest descent is
performed. This means that at every pixel, the displacement
vector is modified using the minimization step. In general
however, the minimization will stop at local, suboptimal min-
ima. To alleviate this problem, a propagation is introduced,
so that at every pixel, the displacement vectors of adjacent
pixels are evaluated.

a) Minimization Step: Let the current displacement
vector at p be dg = D(p) = (do,vo)”. The mapping for
the iteration is then given as:
)T
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with the modified vectors
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If d,,+1 = d,, the iteration is stopped and the disparity map
is updated. In practice, we perform the iteration at all pixels
of the image.

b) Propagation Step: In the propagation at every pixel
displacement vectors from surrounding pixels are evaluated
and the disparity map is updated immediately:

D(p) — argminge v p) E(p, d) (&)

with the neighbouring displacement vectors N(p) (with
D(p) € N(p)). At this step, displacement vectors may
be spread through their local neighbourhood. In practice,
we alternate minimization and propagation steps for a few
iterations until convergence is achieved (2-3 repeatitions
from experience).

B. Epipolar Geometry and Reconstruction

From the computed correspondences, the fundamental ma-
trix can be estimated [24] to determine the epipolar geometry
and a corrected rectification or a reconstruction using known
techniques [17], [19].

If the pair of images is rectified, the updated disparity
map for the rectified images must be derived. Let pr =
pr +d be a correspondence and Hy, and Hy, be the rectifying
homographies for the left and right frame. For every entry
D'(p’,) of the updated disparity map we use the inverse
mapping pz, = H; ' (p),) to compute:

D'(p}) =Hgr (pL + D(PL)) — P}, (©6)

Please note that this formula uses inhomogenous vectors,
with Hy, and Hp, as projective functions. In practice, this step
and the rectification is relatively time-consuming and for our
application it is sufficient to simply ignore the small vertical
displacements.

C. Recommendations for the Implementation

To improve running times, the set of displacement vectors
M can be slightly reduced:
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In this case, the horizontal component (i.e. disparity) is
never decreased. Then, the number of vectors to evaluate
in the propagation step can also be reduced, by storing
the maximally tested disparity for every pixel: only those
displacements are evaluated whose disparity is larger than
the stored maximum.

Further, the quality of disparity maps can be slightly
improved, if only the horizontal dimension of the images is
scaled in the image pyramid. However, this strongly reduces
the maximally recoverable vertical displacement.

IV. RESULTS

We compare our proposal to the method originally in-
troduced in [4], which does not account for deviations of
epipolar geometry. All in all, we show the performance of
three different methods:
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Fig. 2. The overall disparity-error (y-axis) of different stereo methods for
growing values of the epipolar deviation (x-axis): the errors are percentages
of disparities that differ by more than 1 from the ground truth. We tested
the standard approach [4], our method (section III-A) and the optimized
variant of our proposal (section III-C).

1) Standard: Our implementation of [4], which does not
account for epipolar deviations.

2) Our Method: Our implementation of the concepts
presented in section III-A, which can handle very large
deviations.

3) Optimized: Our implementation including the im-
provements given in section III-C, which is optimized
for fast running times and small epipolar deviations.

We evaluate using modified stereo datasets of the well
known Middlebury benchmark [7] and show qualitative
results on real world sequences acquired with a vehicle.
To simulate the effects of a distorted epipolar geometry,
we transform the right image of every dataset of [7] with
a homography which does not modify the x-coordinate of
transformed points. By keeping the left camera frame un-
changed, we can still use the provided ground truth disparity
maps without modification. At every value for the epipolar
deviation v,,q,, wWe transformed the right image of every
dataset with a randomly parameterized homography such that
the epipolar deviation v of every pixel fulfills —v,,4, < v <
Umaz- 10 determine the overall disparity-error, we ran the
algorithms and compared the estimated disparity maps to
the ground truth.

A. Large Deviations

Fig. 2 shows the overall disparity-error (the percentage
of disparities that differ by more than 1 from the ground
truth) of the standard approach [4], our method (section III-
A) and the optimized variant (section III-C) for growing
values of the maximum epipolar deviation (x-axis). It can
be seen that for the standard approach the error grows very
quickly, whereas in our method, the error grows only slightly.
The error of the optimized variant also grows fast, but an
improvement at very small deviations is visible.

Fig. 4 shows disparity maps of the standard approach
[4] and our method for different values of the epipolar
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Fig. 3. The overall error (y-axis) of different stereo methods for small

values of the epipolar deviation (x-axis): the errors are percentages of
disparities that differ by more than 1 from the ground truth. We tested
the standard approach [4], our method (section III-A) and the optimized
variant of our proposal (section III-C).

deviation. The degradation of the disparity maps of the
standard approach is clearly visible from the appearance of
wrongly estimated disparities. In contrast, our method is also
qualitatively very robust against epipolar deviations.

B. Small Deviations

For small epipolar deviations (up to a few pixels), the
optimized variant of our method presented in section III-C
is interesting. Fig. 3 shows the overall error of the methods
for growing values of the maximum epipolar deviation.

The optimized variant is slightly worse than our original
proposal. In practice however, it gives a good compromise
between quality and processing time, if the expected maxi-
mum epipolar deviation is less than three pixels.

C. Real Sequences

We selected some particular video sequences acquired
with a monocular side-looking camera on the vehicle inte-
grated into the front-bumper for motion-stereo applications.
In these examples, the pairwise rectification of camera im-
ages was not accurate due to floor unevenness. In Fig. 5,
we present an undistorted camera image and disparity maps
computed using the standard approach and our proposals.
This figure intuitively reflects our practical experience that
the optimized variant is a very good compromise between
speed and accuracy, and is sufficient in almost all situations.

D. Execution Times

We tested our single-threaded implementations on a stan-
dard mobile computer (with a Intel Core2 Duo P8700 CPU
with 2.53 GHz and 2 GB RAM). We used SIMD instructions
to obtain maximum performance. Tab. IV-D lists the running
times of our implementations and additionally the running
times of traditional correlation-based stereo, which does
not include the efficient disparity computation algorithm
proposed in [4]. We also ran the approaches on a sequence
from the vehicle. In this case, we used sub-sampled images

with resolutions of 320x240 or 213x160, and a disparity
range of 48 or 32 respectively.

The generic version (Our method) presented in section III-
A introduces a relatively high overhead, when compared
to the standard approach. However, the optimized variant
comes only with a moderate computational overhead in
difficult scenes. Interesting is the comparison to traditional
correlation-based stereo: the additional cost is neglible in
difficult scenarios. In Tsukuba, the maximum disparity is
very small (only 10) and no advantage is taken of the efficient
disparity computation.

V. CONCLUSION

In this paper, we propose a novel dense stereo matching
method, whose performance is not sacrificed by inaccurately
rectified images. We achieve this by significantly increasing
the search range for correspondences. To preserve high
efficiency, we use a generic minimization and propagation
scheme embedded in a hierarchical setup. We further present
an optimized variant that allows real-time operation only
using CPUs.

We evaluate our proposal using famous stereo datasets and
real imagery from a motion-stereo application. Our paper
shows clearly that our method appeals through simplicity,
good results and efficiency.
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